Research

Discover our 5 research chairs:

Chair of Probability

Probability theory is the branch of mathematics that deals with situations in which chance plays a role. As such, it is ubiquitous across many scientific fields, such as economics, finance, ecology, population dynamics, statistical physics, AI, data science, meteorology, and more.

To address the wide variety of situations encountered, probability theory relies on a broad range of mathematical tools. It draws upon both continuous mathematics—such as analysis, functional analysis, and dynamical systems theory—and discrete mathematics, including combinatorics and graph theory.

Prof. Michel Benaïm's page Collaborators

Chair of Applied Mathematics

The Chair of Applied Mathematics is dedicated to the study and development of mathematical methods aimed at solving complex problems arising from a wide range of fields, such as natural sciences, engineering, economics, and information technology. This dynamic field builds a vital bridge between theoretical research and real-world challenges, drawing on tools such as mathematical modeling, algorithms, and numerical analysis.

By combining scientific rigor with practical purpose, applied mathematics contributes to innovation across numerous sectors. The Chair promotes an interdisciplinary approach by collaborating with other research units and by equipping students with the skills needed to tackle today’s scientific and technological challenges.

Prof. Elisa Gorla's page Collaborators

Chair of Geometry and Topology

Geometry studies figures in the plane and space, from Euclidean geometry to more abstract forms like projective geometry. Topology, a branch of geometry, focuses on properties that remain unchanged under continuous deformation.

Prof. Peter Feller's page Collaborator

Chair of Algebraic Geometry

Algebraic geometry is a field of mathematics which, historically, was initially concerned with geometric objects made up of points whose coordinates verified equations involving only sums and products.

Prof. Jérémy Blanc's page Collaborators

Chair of Dynamical Systems

The Chair of Dynamical Systems focuses on the analysis and modeling of the behavior of complex systems over time. Relying on tools such as feedback loops, stock and flow diagrams, and differential equations, this approach makes it possible to explore interactions and developments within systems. It thus provides a deeper understanding of the mechanisms of change at work across various fields.

By grasping the fundamental principles of dynamical systems, researchers and practitioners can model, analyze, and predict future behaviors of these systems, contributing to the design of more resilient and sustainable solutions in the face of contemporary challenges. This Chair promotes an interdisciplinary approach, fostering a better understanding of complex phenomena and the interactions that shape our world.

Prof. Felix Schlenk's page Collaborators