L^{p}-distortion and p-spectral gap of finite graphs

Pierre-Nicolas JOLISSAINT* and Alain VALETTE

December 3, 2011

Abstract

We give a lower bound for the L^{p}-distortion $c_{p}(X)$ of finite graphs X, depending on the first eigenvalue $\lambda_{1}^{(p)}(X)$ of the p-Laplacian and the maximal displacement of permutations of vertices. For a k-regular vertex-transitive graph it takes the form $c_{p}(X)^{p} \geq \operatorname{diam}(X)^{p} \lambda_{1}^{(p)}(X) / 2^{p-1} k$. This bound is optimal for expander families and, for $p=2$, it gives the exact value for cycles and hypercubes. As new applications we give non-trivial lower bounds for the L^{2}-distortion for families of Cayley graphs of the finite lamplighter groups C_{2} 乙 C_{n}^{d} ($d \geq 2$ fixed), and for a family of Cayley graphs of $S L_{n}(q)(q$ fixed, $n \geq 2)$ with respect to a standard two-element generating set.

1 Introduction

Let (X, d) and (Y, δ) be two metric spaces. Let $F: X \rightarrow Y$ be an imbedding of X into Y. We define the distortion of F as

$$
\operatorname{dist}(F)=\sup _{x, y \in X, x \neq y} \frac{\delta(F(x), F(y))}{d(x, y)} \cdot \sup _{x, y \in X, x \neq y} \frac{d(x, y)}{\delta(F(x), F(y))},
$$

where the first supremum is the Lipschitz constant $\|F\|_{\text {Lip }}$ of F, and the second supremum is the Lipschitz constant $\left\|F^{-1}\right\|_{\text {Lip }}$ of F^{-1}. As we will only consider the case where X is finite, supremum can be changed into maximum. The least distortion with which X can be embedded into Y is denoted $c_{Y}(X)$, namely

$$
c_{Y}(X):=\inf \{\operatorname{dist}(F): F: X \hookrightarrow Y\} .
$$

[^0]As target space, we will consider only $L^{p}=L^{p}([0,1])$. In this case, we write $c_{p}(X)=c_{L^{p}}(X)$. The quantity $c_{2}(X)$ is also known as the Euclidean distortion of X. As source space, we will take the underlying metric space of a finite, connected graph $X=(V, E)$, where d is then the graph metric. Note that, denoting by $\operatorname{diam}(X)$ the diameter of X, we have $c_{p}(X) \leq \operatorname{diam}(X)$, as shown by the embedding $F: V \rightarrow \ell^{p}(V): x \mapsto \delta_{x}$. It is a fundamental result of Bourgain [Bou] that $c_{p}(X)=O(\log |V|)$.

Our aim in this paper is to obtain lower bounds for the distortion c_{p} of finite graphs. To state our results, we introduce two invariants of graphs. The p-Laplacian $\Delta_{p}: \ell^{p}(V) \rightarrow \ell^{p}(V)$ is an operator defined by the formula

$$
\Delta_{p} f(x)=\sum_{x \sim y}(f(x)-f(y))^{[p]},
$$

$\left(f \in \ell^{p}(V), x \in V\right)$, where $a^{[p]}=|a|^{p-1} \operatorname{sign}(a)$ and \sim denotes the adjacency relation on V. It is worth noting that for $p=2$, it corresponds to the standard linear discrete Laplacian. We say that λ is an eigenvalue of Δ_{p} if we can find $f \in \ell^{p}(V)$ such that $\Delta_{p} f=\lambda f^{[p]}$. We define the p-spectral gap of X by

$$
\lambda_{1}^{(p)}(X):=\inf \left\{\frac{\frac{1}{2} \sum_{x \in V} \sum_{y: y \sim x}|f(x)-f(y)|^{p}}{\inf _{\alpha \in \mathbb{R}} \sum_{x \in V}|f(x)-\alpha|^{p}}\right\},
$$

where the infimum is taken over all $f \in \ell^{p}(V)$ such that f is not constant. It is known that the p-spectral gap is the smallest positive eigenvalue of Δ_{p} (see [GN]).

For α a permutation of the vertex set V (not necessarily a graph automorphism!), we introduce the displacement of α :

$$
\rho(\alpha)=\min _{x \in V} d(\alpha(v), v) ;
$$

then the maximal displacement of X is $D(X)=: \max _{\alpha \in \operatorname{Sym}(V)} \rho(\alpha)$. (Note that this definition makes sense for every finite metric space).

Our main result is:
Theorem 1 Let X be a finite, connected graph of average degree k. Then

$$
D(X)\left(\frac{\lambda_{1}^{(p)}(X)}{k 2^{p-1}}\right)^{\frac{1}{p}} \leq c_{p}(X),
$$

for $1<p<\infty$.
For vertex-transitive graphs, this takes the form:

Corollary 1 Let X be a finite, connected, vertex-transitive graph. Then for $1<p<\infty$:

$$
\operatorname{diam}(X)\left(\frac{\lambda_{1}^{(p)}(X)}{k 2^{p-1}}\right)^{\frac{1}{p}} \leq c_{p}(X)
$$

where k is the degree of each vertex.
Recall that a countable family of finite, connected graphs is a family of expanders if they have bounded degree, their Cheeger constants (measuring edge expansion) are bounded away from 0 , while the number of their vertices goes to infinity. Expanders were used by Linial-London-Rabinovich [LLR] for $p=2$, and by Matoušek [Mat] for arbitrary $p \geq 1$, to show that Bourgain's upper bound on c_{p} is optimal for every p. Thus, using Theorem 1 , we give a short proof of:

Theorem 2 (see [LLR, Mat]) For every $p>1$, families of expanders X, satisfy $c_{p}(X)=\Omega(\log |X|)$.

Of particular interest is the case $p=2$, and from Theorem 1 we deduce new proofs of the following results (compare with [LM]):

1) (Linial-Magen [LM]) For even n : the cycle C_{n} satisfies $c_{2}\left(C_{n}\right)=\frac{n}{2} \sin \frac{\pi}{n}$.
2) (Enflo [Enf]) The d-dimensional hypercube H_{d} satisfies $c_{2}\left(H_{d}\right)=\sqrt{d}$.

As new applications, we provide distortion estimates for certain families of k-regular Cayley graphs (k fixed) which are known NOT to be expander families.

As a first application, we consider lamplighter groups over discrete tori. Recall that, if G is a finite group, the lamplighter group of G is the wreath product $C_{2} \imath G$, i.e. the semi-direct product of the additive group of all subsets of G (endowed with symmetric difference) with G acting by shifting indices. Take $G=C_{n}^{d}$ and denote by $\left\{ \pm e_{j}: 1 \leq j \leq d\right\}$ the standard symmetric generating set for C_{n}^{d}, and denote by W_{n}^{d} the Cayley graph of the lamplighter group $C_{2} \prec C_{n}^{d}$, with respect to the generating set

$$
S=\{(\{0\}, 0)\} \cup\left\{\left(\emptyset, \pm e_{j}\right): 1 \leq j \leq d\right\}
$$

(so that W_{n}^{d} is $(2 d+1)$-regular). We will prove the following:
Proposition $1 c_{2}\left(W_{n}^{d}\right)= \begin{cases}\Omega\left(\frac{n}{\sqrt{\log (n)}}\right), & \text { for } d=2, \\ \Omega\left(n^{\frac{d}{2}}\right), & \text { for } d \geq 3 .\end{cases}$

However, the method we will use does not give a good estimate for the case $d=1$ as we will see in section 5 .

As a second application, let q be a fixed prime, and let Y_{n} be the Cayley graph of $S L_{n}(q)$ (where $n \geq 2$) with respect to the following set of 4 generators: $S_{n}=\left\{A_{n}^{ \pm 1}, B_{n}^{ \pm 1}\right\}$ and

$$
A_{n}=\left(\begin{array}{ccccc}
1 & 1 & & & \\
& 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right) ; \quad B_{n}=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & 0 & \ddots & \\
& & & \ddots & 1 \\
& (-1)^{n-1} & & & \\
& & &
\end{array}\right) .
$$

Proposition $2 c_{2}\left(Y_{n}\right)=\Omega\left(n^{1 / 2}\right)=\Omega\left(\left(\log \left|Y_{n}\right|\right)^{1 / 4}\right)$.
The interest of the family $\left(Y_{n}\right)_{n \geq 2}$ comes from the fact that it is known NOT to be an expander family: see Proposition 3.3.3 in [Lub].

The paper is organized as follows: Theorem 1 is proved in section 2, and Corollary 1 in section. Expanders are discussed in section 4, where asymptotic bounds on the maximal displacement are also given. Examples arising from Cayley graphs in section 5; that section also presents examples where the inequality in Corollary 1 is not sharp. Finally section 6 contains a discussion of other published results similar to our Theorem 1, and a comparison of the corresponding inequalities.

In this paper, Landau's notations O, Ω, Θ will be used freely.
Acknowledgements: We thank R. Bacher, B. Colbois, A. Gournay, A. Lubotzky and R. Lyons for useful exchanges, and comments on the first draft.

2 Proof of Theorem 1

We start with an easy lemma.
Lemma 1 Let $X=(V, E)$ be a finite, connected graph.

1. Let α be any permutation of V. For $F: V \rightarrow \ell^{p}(\mathbb{N}):$

$$
\sum_{x \in V}\|F(x)-F(\alpha(x))\|_{p}^{p} \leq 2^{p} \sum_{x \in V}\|F(x)\|_{p}^{p}
$$

2. Fix an arbitrary orientation on the edges. Then, for every $F: V \rightarrow$ $\ell^{p}(\mathbb{N})$, there exists $G: V \rightarrow \ell^{p}(\mathbb{N})$ such that $\operatorname{dist}(G)=\operatorname{dist}(F)$ and

$$
\sum_{x \in V}\|G(x)\|_{p}^{p} \leq \frac{1}{\lambda_{1}^{(p)}(X)} \sum_{e \in E}\left\|G\left(e^{+}\right)-G\left(e^{-}\right)\right\|_{p}^{p} .
$$

Proof: 1) Define a linear operator T on $\ell^{p}\left(V, \ell^{p}(\mathbb{N})\right)$ by setting $(T F)(x):=$ $F(\alpha(x))$. Clearly, $\|T\|=1$. Then, in the formula to be proved, the LHS is $\|(I-T) F\|_{p}^{p}$. Hence, the result immediately follows from the fact that the operator norm of $T-I$ is at most 2 , by the triangle inequality.
2) We proceed as in the proof of Theorem 3 in [GN]. Let $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ be the standard basis vectors in $\ell^{p}(\mathbb{N})$. Write $F(x)=\sum_{n \in \mathbb{N}} F_{n}(x) u_{n}$, for all $x \in V$; denote by $\alpha_{n} \in \mathbb{R}$ the projection of F_{n} on the subspace of constant functions in $\ell^{p}(V)$. It satisfies:

$$
\inf _{\alpha \in \mathbb{R}}\left\|F_{n}-\alpha\right\|_{p}=\left\|F_{n}-\alpha_{n}\right\|_{p}
$$

By the proof of Theorem 3 in [GN], the sum $w:=\sum_{n \in \mathbb{N}} \alpha_{n} u_{n}$ belongs to $\ell^{p}(\mathbb{N})$.

Defining $G(x):=F(x)-w$, so that $G_{n}(x)=F_{n}(x)-\alpha_{n}$, we have $\operatorname{dist}(G)=\operatorname{dist}(F)$. Recalling the definition of $\lambda_{1}^{(p)}(X)$, we have for every n :

$$
\sum_{x \in V}\left|G_{n}(x)\right|^{p} \leq \frac{1}{\lambda_{1}^{(p)}(X)} \sum_{e \in E}\left|G_{n}\left(e^{+}\right)-G_{n}\left(e^{-}\right)\right|^{p} .
$$

Taking the sum over n, we get the result.

Let k be the average degree of X. Combining both statements of lemma 1 with the fact that $|E|=\frac{k|V|}{2}$, we deduce the following Poincaré-type inequality:

Proposition 3 Let $X=(V, E)$ be a finite, connected graph with average degree k. For any permutation α of V and any embedding $G: V \rightarrow \ell^{p}(\mathbb{N})$ as in lemma 1, we have:

$$
\frac{1}{|V| 2^{p}} \sum_{x \in V}\|G(x)-G(\alpha(x))\|_{p}^{p} \leq \frac{k}{2|E| \lambda_{1}^{(p)}(X)} \sum_{e \in E}\left\|G\left(e^{+}\right)-G\left(e^{-}\right)\right\|_{p}^{p} .
$$

Proposition 4 Let $X=(V, E)$ be a finite connected graph with average degree k. For any permutation α of V and any embedding $G: V \rightarrow \ell^{p}(\mathbb{N})$ as in lemma 1, we have:

$$
\rho(\alpha)\left(\frac{\lambda_{1}^{(p)}(X)}{k 2^{p-1}}\right)^{\frac{1}{p}} \leq \operatorname{dist}(G)
$$

Proof: Clearly, we may assume that α has no fixed point. Then:

$$
\begin{aligned}
& \frac{1}{\left\|G^{-1}\right\|_{L i p}^{p}}=\min _{x \neq y} \frac{\|G(x)-G(y)\|_{p}^{p}}{d(x, y)^{p}} \leq \min _{x \in V} \frac{\|G(x)-G(\alpha(x))\|_{p}^{p}}{d(x, \alpha(x))^{p}} \\
\leq & \frac{1}{\rho(\alpha)^{p}} \min _{x \in V}\|G(x)-G(\alpha(x))\|_{p}^{p} \leq \frac{1}{\rho(\alpha)^{p}|V|} \sum_{x \in V}\|G(x)-G(\alpha(x))\|_{p}^{p} \\
& \leq \frac{2^{p-1} k}{\lambda_{1}^{(p)}(X) \rho(\alpha)^{p}|E|} \sum_{e \in E}\left\|G\left(e^{+}\right)-G\left(e^{-}\right)\right\|_{p}^{p} \text { (by Proposition 3) } \\
& \leq \frac{2^{p-1} k}{\lambda_{1}^{(p)}(X) \rho(\alpha)^{p}} \max _{x \sim y}\|G(x)-G(y)\|_{p}^{p}=\frac{2^{p-1} k}{\lambda_{1}^{(p)}(X) \rho(\alpha)^{p}}\|G\|_{L i p}^{p},
\end{aligned}
$$

where the last equality comes from the fact that the above maximum is attained for adjacent points in the graph (see for instance Claim 3.2 in [LM]). Re-arranging and taking p-th roots, we get the result.

Proof of Theorem 1: Since ℓ^{p} embeds isometrically in L^{p}, we clearly have $c_{p}(X) \leq c_{\ell^{p}}(X)$. Actually $c_{p}(X)=c_{\ell^{p}}(X)$, since for every map $F: V \rightarrow$ L^{p} and every $\varepsilon>0$, we can find a finite measurable partition $[0,1]=\bigcup_{j=1}^{k} \Omega_{j}$ and, for each $x \in V$, a step function $H(x)$ which is constant on each Ω_{j}, such that $\|F(x)-H(x)\|_{p}<\varepsilon$ for $x \in V$. Denoting by m the Lebesgue measure on $[0,1]$, the embedding $G: V \rightarrow \ell^{p}\{1, \ldots, k\}: x \mapsto\left(\left.H(x)\right|_{\Omega_{j}} m\left(\Omega_{j}\right)^{1 / p}\right)_{1 \leq j \leq k}$ then satisfies $\|G(x)-G(y)\|=\|H(x)-H(y)\|_{p}$ for every $x, y \in V$, hence the distortion of G is $\delta(\varepsilon)$-close to the one of F, where $\delta(\epsilon) \rightarrow 0$ for $\varepsilon \rightarrow 0$.

Finally, Theorem 1 for embeddings $V \rightarrow \ell^{p}$ immediately follows from Proposition 4.

3 Graphs with antipodal maps

From the definition of the invariant $D(X)$, we have $D(X) \leq \operatorname{diam}(X)$. The equality holds if and only if the graph X admits an antipodal map, i.e. a permutation α of the vertices such that $d(x, \alpha(x))=\operatorname{diam}(X)$ for every $x \in V$.

The existence of an antipodal map is a fairly strong condition. Recall that the radius of X is $\min _{x \in V} \max _{y \in V} d(x, y)$, so that the existence of an antipodal map implies that the radius is equal to the diameter of X. The converse is false however, a counter-example was provided by G. Paseman. A necessary and sufficient condition for X to admit an antipodal map was provided by R. Bacher: for $S \subset V$, set $\mathcal{A}(S)=\{v \in V: \exists w \in S, d(v, w)=\operatorname{diam}(X)\}$; the graph X admits an antipodal map if and only if $|\mathcal{A}(S)| \geq|S|$ for every $S \subset V$. For all this, see [MO].

The proof of Corollary 1 follows immediately from Theorem 1 and the next lemma:

Lemma 2 Finite, connected, vertex-transitive graphs admit antipodal maps.
Proof: For S a finite subset of the vertex set of some graph Y, denote by $\Gamma(S)$ the set of vertices adjacent to at least one vertex of S. It is classical that, if Y is a regular graph, then the inequality $|\Gamma(S)| \geq|S|$ holds ${ }^{1}$.

Now, let $X=(V, E)$ be a finite, connected, vertex-transitive graph. Define the antipodal graph X^{a} as the graph with vertex set V, with x adjacent to y whenever the distance between x and y in X, is equal to $\operatorname{diam}(X)$. By vertex-transitivity of X, the graph X^{a} is regular. Now observe that, for $S \subset V$, the set $\Gamma(S)$ in X^{a} is exactly the set $\mathcal{A}(S)$ defined above. By regularity of X^{a} and the observation beginning the proof, we therefore have $|\mathcal{A}(S)| \geq|S|$ for every $S \subset V$, and Bacher's result applies.

Remark 1 For Cayley graphs, there is a direct proof of the existence of antipodal maps. Indeed, let G be a finite group, and let X be a Cayley graph of G with respect to some symmetric, generating set S; use right multiplications by generators to define X, so that the distance d is left-invariant. Let $g \in G$ be any element of maximal word length with respect to S. Then $\alpha(x)=x g$ (right multiplication by g) is an antipodal map.

4 Bounds on the maximal displacement

Proposition 5 For finite, connected graphs X with maximal degree $k \geq 3$:

$$
D(X)=\Omega(\log |X|)
$$

[^1]Proof: For a positive integer $r>0$, the number of vertices in X at distance at most r from a given vertex, is at most the number of vertices in the ball of radius r in the k-regular tree, i.e.

$$
1+k+k(k-1)+k(k-1)^{2}+\ldots+k(k-1)^{r-1}=\frac{k(k-1)^{r}-2}{k-2}
$$

For $r=\left[\log _{k-1}\left(\frac{|V|}{6}\right)\right]$, we have $\frac{k(k-1)^{r}-2}{k-2}<\frac{|V|}{2}$. Let Y be the graph with same vertex set V as X, where two vertices are adjacent if their distance in X is at least $\log _{k-1}\left(\frac{|\hat{V}|}{6}\right)$. The preceding computation shows that, in the graph Y, every vertex has degree at least $\frac{|V|}{2}$. By G.A. Dirac's theorem (see e.g. Theorem 2 in Chapter IV of [Bol]), Y admits a Hamiltonian circuit. Let $\alpha \in \operatorname{Sym}(V)$ be the cyclic permutation of V defined by this Hamiltonian circuit. Then $\rho(\alpha) \geq \log _{k-1}\left(\frac{|V|}{6}\right)$, which concludes the proof.

Proof of Theorem 2: If $\left(X_{n}\right)_{n}$ is a family of expanders, then by the p-Laplacian version of the Cheeger inequality (see Theorem 3 in [Amg]), the sequence $\left(\lambda_{1}^{(p)}\left(X_{n}\right)\right)_{n}$ is bounded away from 0 . So the result follows straight from Theorem 1 together with Proposition 5.

We now observe that, for families of non-vertex-transitive k-regular graphs, the maximal displacement can be much smaller than the diameter (compare with lemma 2). We thank the referee of a previous version of the paper for suggesting this construction.

Proposition 6 Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function such that $f(n)=\Omega(n)$ and $f(n)=o\left(8^{n}\right)$. There exists a family $\left(X_{n}\right)_{n \geq 1}$ of 3-regular graphs such that:
a) $\left|X_{n}\right|=\Theta\left(8^{n}\right)$;
b) $\operatorname{diam}\left(X_{n}\right)=\Theta(f(n))$;
c) $D\left(X_{n}\right)=\Theta(n)$.

Proof: Let $\left(Y_{n}\right)_{n \geq 1}$ be a family of 3-regular graphs with $\left|Y_{n}\right|=\Theta\left(8^{n}\right)$ and $\operatorname{diam}\left(Y_{n}\right)=\Theta(n)$ (such a family is constructed e.g. in Theorem 5.13 of Morgenstern [Mor]). Let Z_{n} be the product of the cycle $C_{2 f(n)}$ with the one-edge graph (so that Z_{n} is 3 -regular on $4 f(n)$ vertices). Let $\left\{y_{1}, y_{2}\right\}$ (resp. $\left\{z_{1}, z_{2}\right\}$) be an edge in Y_{n} (resp. Z_{n}). We "stitch" Y_{n} and Z_{n} by replacing the edges $\left\{y_{1}, y_{2}\right\}$ and $\left\{z_{1}, z_{2}\right\}$ by edges $\left\{y_{1}, z_{1}\right\}$ and $\left\{y_{2}, z_{2}\right\}$, and define X_{n} as the resulting 3 -regular graph. Clearly $\left|X_{n}\right|=\Theta\left(8^{n}\right)$.

Observe that, since every edge in Z_{n} belongs to some 4-cycle, the distance in X_{n} between any two vertices in Y_{n} will differ by at most 5 from the original distance in Y_{n}; and similarly for vertices in Z_{n}. So:

$$
f(n)=\operatorname{diam}\left(Z_{n}\right) \leq \operatorname{diam}\left(X_{n}\right) \leq \operatorname{diam}\left(Y_{n}\right)+\operatorname{diam}\left(Z_{n}\right)+5,
$$

hence $\operatorname{diam}\left(X_{n}\right)=\Theta(f(n))$.
Finally, let α be any permutation of the vertices of X_{n}. Since the overwhelming majority of vertices belongs to Y_{n}, we find a vertex x such that x and $\alpha(x)$ are both in Y_{n}. Then

$$
\rho(\alpha) \leq d_{X_{n}}(x, \alpha(x)) \leq d_{Y_{n}}(x, \alpha(x))+5 \leq \operatorname{diam}\left(Y_{n}\right)+5,
$$

hence $D\left(X_{n}\right)=O(n)$. The equivalence $D\left(X_{n}\right)=\Theta(n)$ then follows from Proposition 5.

5 Examples with Cayley graphs

We give a series of consequences of Corollary 1 , in case $p=2$.

5.1 Cycles

Corollary 2 (Linial-Magen [LM], 3.1) For n even: $c_{2}\left(C_{n}\right)=\frac{n}{2} \sin \frac{\pi}{n}$.
Proof: We apply Corollary 1 with $k=2$, and $D=\frac{n}{2}$, and $\lambda_{1}^{(2)}\left(C_{n}\right)=$ $4 \sin ^{2} \frac{\pi}{n}$ (see Example 1.5 in [Chu]): so $c_{2}\left(C_{n}\right) \geq \frac{n}{2} \sin \frac{\pi}{n}$. For the converse inequality, it is an easy computation that the embedding of C_{n} as a regular n-gon in \mathbb{R}^{2}, has distortion $\frac{n}{2} \sin \frac{\pi}{n}$.

5.2 The hypercube H_{d}

The hypercube H_{d} is the set of d-tuples of 0 's and 1's, endowed with the Hamming distance. It is the Cayley graph of \mathbb{F}_{2}^{d} with respect to the standard basis.

Corollary 3 (Enflo [Enf]) $c_{2}\left(H_{d}\right)=\sqrt{d}$
Proof: For H_{d}, we have $k=d$, and $\operatorname{diam}\left(H_{d}\right)=d$, and $\lambda_{1}^{(2)}\left(H_{d}\right)=2$ (see Example 1.6 in [Chu] for the latter): so $c_{2}\left(H_{d}\right) \geq \sqrt{d}$ by Corollary 1. For the converse inequality, it is easy to see that the canonical embedding of H_{d} into \mathbb{R}^{d}, has distortion \sqrt{d}.

5.3 Lamplighters over discrete tori

Once again we apply Corollary 1 in order to prove Proposition 1. Let us define the matrix M on $C_{2} \imath C_{n}^{d}$ given by

$$
M_{[(f, a),(g, b)]}= \begin{cases}\frac{1}{4} & \text { if }(f, a)=(g, b) ; \\ \frac{1}{4} & \text { if } a=b \text { and } f=g+\delta_{a} ; \\ \frac{1}{16 d} & \text { if } a=b \pm e_{j} \text { and } f(z)=g(z), \forall z \notin\{a, b\} ; \\ 0 & \text { otherwise } .\end{cases}
$$

($a, b \in C_{n}^{d}$ and $f, g: C_{2} \prec C_{n}^{d} \rightarrow\{0,1\}$). Then M is the transition matrix of the lazy random walk on C_{2} 亿 C_{n}^{d} analysed by Peres and Revelle in Theorem 1.1 of [PR]. Using their estimation of the relaxation time of M, we deduce that the spectral gap of M behaves as $\Theta\left(\frac{1}{n^{d}}\right)$ for $d \geq 3$ and as $\Theta\left(\frac{1}{n^{2} \log (n)}\right)$ for the case $d=2$. By standard comparison theorems (see e.g. Theorems 3.1 and 3.2 in [Woe]), the Dirichlet forms for M and for the Laplace operator on W_{n}^{d} are bi-Lipschitz equivalent; moreover the Lipschitz constants do not depend on n (since the comparison can be made on the group C_{2} 乙 \mathbb{Z}^{d}, of which our lamplighters are quotients). So, we find $\lambda_{1}^{(2)}\left(W_{n}^{2}\right)=\Theta\left(n^{-2} \log (n)^{-1}\right)$ and $\lambda_{1}^{(2)}\left(W_{n}^{d}\right)=\Theta\left(n^{-d}\right)$ for $d \geq 3$. Furthermore, since the diameter of a regular graph is at least logarithmic in the number of vertices, we have $\operatorname{diam}\left(W_{n}^{d}\right)=\Omega\left(n^{d}\right)$, so we apply Corollary 1 to get:

$$
c_{2}\left(W_{n}^{d}\right)= \begin{cases}\Omega\left(\frac{n}{\sqrt{\log (n)}}\right) & \text { for } d=2, \\ \Omega\left(n^{\frac{d}{2}}\right) & \text { for } d \geq 3 .\end{cases}
$$

5.4 Cayley graphs of $S L_{n}(q)$

We now prove Proposition 2. Since $\left|S L_{n}(q)\right| \approx q^{n^{2}-1}$, we have $\operatorname{diam}\left(Y_{n}\right)=$ $\Omega\left(n^{2}\right)$ (actually it is a result by Kassabov and Riley $[\mathrm{KR}]$ that $\operatorname{diam}\left(Y_{n}\right)=$ $\left.\Theta\left(n^{2}\right)\right)$. On the other hand, from Kassabov's estimates for the Kazhdan constant $\kappa\left(S L_{n}(\mathbb{Z}), S_{n}\right)$ (see [Kas], and also the Introduction of $[\mathrm{KR}]$), we have: $\kappa\left(S L_{n}(\mathbb{Z}), S_{n}\right)=\Omega\left(n^{-3 / 2}\right)$.

If X is a Cayley graph of a finite quotient of a Kazhdan group G, with respect to a finite generating set $S \subset G$, then $\lambda_{1}^{(2)}(X) \geq \frac{\kappa(G, S)^{2}}{2}$ (see [Lub], Proposition 3.3.1 and its proof). From this we get: $\sqrt{\lambda_{1}^{(2)}\left(Y_{n}\right)}=\Omega\left(n^{-3 / 2}\right)$ and therefore $c_{2}\left(Y_{n}\right)=\Omega\left(n^{1 / 2}\right)$ by Corollary 1 .

5.5 The limits of the method

We give examples of Cayley graphs for which the lower bound of the Euclidean distortion given by Corollary 1 is not tight.

5.5.1 Products of cycles

Let us consider the product of 2 cycles $C_{n} \times C_{N}$, where n, N are even integers such that $n<N$. It is clear that it corresponds to the Cayley graph of the additive group $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}$ with generating set $S=\{(\pm 1,0),(0, \pm 1)\}$. It is well-known from representation theory of finite abelian groups G that, if $X=\mathcal{G}(G, S)$ is a Cayley graph of G and S is symmetric, then the spectrum of the Laplace operator on X is given by $\left\{\sum_{s \in S}(1-\chi): \chi \in \hat{G}\right\}$. Since for the product of finite abelian groups G, H, we can identify the dual of $G \times H$ as $\{\chi \cdot \eta: \chi \in \hat{G}, \eta \in \hat{H}\}$, it is easy to see that $\lambda_{1}\left(C_{n} \times C_{N}\right)=4 \sin ^{2} \frac{\pi}{N}$. As the diameter is equal to $\frac{n+N}{2}$, we get the lower bound

$$
c_{2}\left(C_{n} \times C_{N}\right) \geq \frac{(n+N) \sin \frac{\pi}{N}}{2 \sqrt{2}}
$$

On the other hand, it is known from [LM] that the normalized trivial embedding of $C_{n} \times C_{N}$ into \mathbb{C}^{2} gives the optimal embedding. Namely, defining

$$
\phi: C_{n} \times C_{N} \rightarrow \mathbb{C}^{2}:(k, l) \mapsto\left(\frac{\exp \frac{2 \pi i k}{n}}{2 \sin \frac{\pi}{n}}, \frac{\exp \frac{2 \pi i l}{N}}{2 \sin \frac{\pi}{N}}\right)
$$

we have

$$
c_{2}\left(C_{n} \times C_{N}\right)=\operatorname{dist}(\phi) .
$$

Since $\|\phi(x)-\phi(y)\| \leq 1$ for every $x, y \in C_{n} \times C_{N}$, we have to estimate

$$
\left\|\phi^{-1}\right\|_{L i p}=\max _{k \leq \frac{n}{2}, l \leq \frac{N}{2}} \frac{k+l}{\sqrt{\frac{\sin ^{2} \frac{\pi k}{\sin ^{2} \frac{n}{n}}}{n}+\frac{\sin ^{2} \frac{\pi l}{\sin ^{2} \frac{N}{N}}}{N}}} .
$$

By taking $k=\frac{n}{2}$ and $l=\frac{N}{2}$, we get

$$
\operatorname{dist}(\phi) \geq \frac{n+N}{2 \sqrt{\sin ^{-2} \frac{\pi}{n}+\sin ^{-2} \frac{\pi}{N}}}
$$

Since it is always the case that

$$
\sqrt{\frac{1}{\sin ^{-2} \frac{\pi}{n}+\sin ^{-2} \frac{\pi}{N}}}>\frac{\sin \frac{\pi}{N}}{\sqrt{2}},
$$

we conclude that the lower bound given by Corollary1 is not sharp in this case.

5.5.2 Lamplighter groups over the discrete circle

Here we consider the graphs W_{n}^{1} associated with the lamplighter groups C_{2} 2 C_{n}, associated with the generating S described in the Introduction. It is known from [ANV] that $c_{2}\left(W_{n}^{1}\right)=\Theta(\sqrt{\log (n)})$.

By way of contrast, let us check that $\operatorname{diam}\left(W_{n}^{1}\right) \sqrt{\lambda_{1}^{(2)}\left(W_{n}^{1}\right)}=O(1)$. Let us first estimate $\lambda_{1}^{(2)}$. For every homomorphism $\chi: C_{2}$ 乙 $C_{n} \rightarrow \mathbb{C}^{\times}$, the quantity $\sum_{s \in S}(1-\chi(s))$ is an eigenvalue of the Laplace operator (see the previous example). Let us consider the homomorphism χ given by $\chi(A, k)=e^{2 \pi i k / n}$ (it factors through the epimorphism C_{2} 乙 $C_{n} \rightarrow C_{n}$). Here we get $\lambda_{1}^{(2)}\left(W_{n}^{1}\right) \leq \sum_{s \in S}(1-\chi(s))=2-2 \cos (2 \pi / n)=4 \sin ^{2}(\pi / n)$, hence $\lambda_{1}^{(2)}\left(W_{n}^{1}\right)=O\left(\frac{1}{n^{2}}\right)$. On the other hand, by Theorem 1.2 in [Par], the word length of $(A, k) \in C_{2} \prec C_{n}$ is equal to $|A|+\ell(A, k)$, where $\ell(A, k)$ is the length of the shortest path in the cycle C_{n}, going from 0 to k and containing A. From this it is clear that $\operatorname{diam}\left(W_{n}^{1}\right) \leq 2 n$.

6 Comparison with similar inequalities

Lower bounds of spectral nature on $c_{2}(X)$, can be traced back to [LLR]. At least two other inequalities (see [GN, NR]) linking the distortion, the p-spectral gap and other graph invariants have been published. In this section, we compare them to Theorem 1. We start with the Grigorchuk-Nowak inequality [GN].

Definition 1 Let X be a finite metric space. Given $0<\epsilon<1$ define the constant $\rho_{\epsilon}(X) \in[0,1]$, called the volume distribution, by the relation

$$
\rho_{\epsilon}(X)=\min \left\{\frac{\operatorname{diam}(A)}{\operatorname{diam}(X)}: A \subset X \text { such that }|A| \geq \epsilon|X|\right\} .
$$

Theorem 3 ([GN] Theorem 3) Let X be a connected graph of degree bounded by k and let $1 \leq p<+\infty$. Then, for every $0<\epsilon<1$,

$$
\frac{(1-\epsilon)^{\frac{1}{p}} \rho_{\epsilon}(X)}{2^{\frac{1}{p}}} \operatorname{diam}(X)\left(\frac{\lambda_{1}^{(p)}(X)}{k 2^{p-1}}\right)^{\frac{1}{p}} \leq c_{p}(X) .
$$

It is easy to see that, when the graph satisfies $D(X)=\operatorname{diam}(X)$ (this is the case for vertex-transitive graphs, by lemma 2), then this result is weaker than our Theorem 1, since the factor $\frac{(1-\epsilon)^{\frac{1}{p}} \rho_{\epsilon}(X)}{2^{\frac{1}{p}}}$ is strictly smaller than 1 .

The second result, due to Newman-Rabinovich [NR], holds for $p=2$:

Proposition 7 ([NR] Proposition 3.2) Let $X=(V, E)$ be a k-regular graph. Then,

$$
\sqrt{\frac{(|V|-1) \lambda_{1}^{(2)}(X)}{|V| k} \operatorname{avg}\left(d^{2}\right)} \leq c_{2}(X)
$$

where $\operatorname{avg}\left(d^{2}\right):=\frac{1}{|V|(|V|-1)} \sum_{x, y \in V} d(x, y)^{2}$.
In the following, we will compute the term $\operatorname{avg}\left(d^{2}\right)$ for the cycle C_{n} and for the hypercube H_{d} in order to give explicitly the LHS term of the inequality due to Newman and Rabinovich. First, it is true that for a vertex-transitive graph $X=(V, E)$, we have

$$
\sum_{y, x \in V} d(x, y)^{2}=|V| \sum_{j=1}^{\operatorname{diam}(X)} j^{2}\left|S\left(x_{0}, j\right)\right|,
$$

where x_{0} is an arbitrary point in X and $S\left(x_{0}, j\right)$ is the sphere of radius j, centered in x_{0}. By taking $n \geq 4$ and even, we clearly have

$$
\sum_{x, y \in C_{n}} d(x, y)^{2}=n\left(2 \sum_{j=1}^{\frac{n}{2}-1} j^{2}+\frac{n^{2}}{4}\right)=\frac{n^{2}\left(n^{2}+2\right)}{12}
$$

Therefore, we get $\sqrt{\frac{n^{2}+2}{6}} \sin \frac{\pi}{n}$ as lower bound for $c_{2}\left(C_{n}\right)$, which is strictly weaker than Corollary 2. On the other hand, for the hypercube H_{d}, by the same argument, we have

$$
\operatorname{avg}\left(d^{2}\right)=\frac{1}{2^{d}\left(2^{d}-1\right)} \sum_{x, y \in H_{d}} d(x, y)^{2}=\frac{1}{2^{d}-1} \sum_{j=1}^{d} j^{2}\binom{d}{j} .
$$

Since $\sum_{j=1}^{d} j^{2}\binom{d}{j}<d^{2} 2^{d-1}$ for $d \geq 2$, we conclude that Corollary 3 gives a better lower bound for $c_{2}\left(H_{d}\right)$.

Finally, we mention for completeness a remarkable result, of a different nature, due to Linial, Magen and Naor [LMN]:

Theorem 4 ([LMN], Theorem 1.3) There is a universal constant $C>0$ such that, for every k-regular graph X with girth g :

$$
c_{2}(X) \geq \frac{C g}{\sqrt{\min \left\{g, \frac{k}{\lambda_{1}^{(2)}(X)}\right\}}}
$$

Observe however that, for the family $\left(H_{d}\right)_{d \geq 2}$ of hypercubes, the righthand side of the inequality remains bounded, while $c_{2}\left(H_{d}\right)=\sqrt{d}$ by Corollary 3.

References

[Amg] S. Amghibech Eigenvalues of the discrete p-Laplacian for graphs Ars Combin. 67 (2003), 283-302.
[ANV] T. Austin, A. Naor and A. Valette The Euclidean Distortion of the Lamplighter Group Discrete Comput. Geom. 44, No. 1, 55-74 (2010)
[Bol] B. Bollobas Graph Theory - an introductory course SpringerVerlag, Grad. Texts in Math. 63, 1979.
[Bou] J. Bourgain On Lipschitz embedding of finite metric spaces in Hilbert space Israel Journal of Mathematics, Vol. 52, Nos. 1-2, 46-52 (1985).
[Chu] Fan R. K. Chung, Spectral graph theory. CBMS Regional Conference Series in Mathematics, 92. American Mathematical Society, Providence, RI, 1997.
[Enf] P. Enflo On the nonexistence of uniform homeomorphisms between L_{p}-spaces. Ark. Mat. 81969 103-105 (1969)
[GN] R. Grigorchuk and P. Nowak, Diameters, Distortion and Eigenvalues. European Journal of Combinatorics, to appear.
[Kas] M. Kassabov Kazhdan constants for $S L_{n}(\mathbb{Z})$ Int. J. Algebra Comput. 15, No. 5-6, 971-995 (2005).
[KR] M. Kassabov and T. Riley Diameters of Cayley graphs of Chevalley groups European J. Combin. 28 (2007), no. 3, 791-800.
[LLR] N. Linial, E. London and Yu. Rabinovich The geometry of graphs and some of its algorithmic applications Combinatorica 15 (1995), 215-245.
[LM] N. Linial and A. Magen, Least-distortion Euclidean embeddings of graphs: products of cycles and expanders. J. Combin. Theory Ser. B 79 (2000), no. 2, 157-171.
[LMN] N. Linial, A. Magen and A. Naor, Girth and euclidean distortion. GAFA, Geom. funct. anal., Vol. 12 (2002) 380-394.
[Lub] A. LubotZky. Discrete groups, expanding graphs and invariant measures, volume 125 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1994.
[MO] MathOverflow Answer to question http://mathoverflow.net/questions/64746/antipodal-maps-on-regular-graphs
[Mat] J. Matoušek. On embedding expanders into l_{p} spaces. Israel J. Math. 102 (1997), 189?-197.
[Mor] M. Morgenstern Existence and explicit constructions of q + 1 Ramanujan graphs for every prime power q, J. Combinatorial Theory Ser. B, 62 (1994), 44-62.
[NR] I. Newman and Yu. Rabinovich Hard Metrics From Cayley Graphs Of Abelian Groups. Theory Of Computing, Volume 5 (2009), pp. 125-134.
[Par] W. Parry Growth series of some wreath products Trans. Amer. Math. Soc. 331 (1992), no. 2, 751?-759.
[PR] Y. Peres and D. Revelle Mixing times for random walks on finite lamplighter groups Electron. Journal Probab. 9 (2004), 82545.
[Woe] W. Woess Random walks on infinite graphs and groups Cambridge Tracts in Math. 138, Cambridge Univ. Press 2000.

Authors addresses:
Institut de Mathématiques - Unimail
11 Rue Emile Argand
CH-2000 Neuchâtel
Switzerland

```
pierre-nicolas.jolissaint@unine.ch; alain.valette@unine.ch
```


[^0]: *Supported by Swiss SNF project 20-137696.

[^1]: ${ }^{1}$ Recall the easy argument: assuming that Y is k-regular, count in two ways the edges joining S to $\Gamma(S)$; as edges emanating from S, there are $k|S|$ of them; as edges entering $\Gamma(S)$, there are at most $k|\Gamma(S)|$ of them.

