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We study a regression model with many more unknown parameters than observations, and show that the
LASSO can provide good predictions. Let X ∈ X be the dependent variable, and Y ∈ R be the response.
For a “prediction” f(X) of Y , we consider some loss γ(Y, f(X)). We let the model class F be a given
p-dimensional linear space of real-valued functions f on X , say

F = {fα =
p∑

k=1

αkψk(·) : α ∈ Rp},

with the {ψk} given functions on X .
Let the observations {(Xi, Yi)}n

i=1 consist of n i.i.d. copies of (X,Y ). The empirical risk is

Rn(f) :=
1
n

n∑
i=1

γ(Yi, f(Xi)).

When p is large, minimizing Rn(f) over all f ∈ F will generally result in overfitting. The LASSO regularizes
the empirical risk by adding a penalty proportional to the weighted `1 norm

Î(α) =
p∑

k=1

τ̂kαk,

with weights τ̂k equal to the empirical standard deviation of ψk. Taking smoothing parameter λn > 0, the
LASSO estimator is

f̂n = arg min
fα∈F

{
Rn(fα) + λnÎ(α)

}
.

The value of λn is chosen of order
√

log p/n. We will show that under general conditions, in “sparse”
situations, the estimator has good predictive properties, in the sense that R(f̂n) is close to the overall
minimum minall f R(f). Here, R(f) := Eγ(Y, f(X)) is the theoretical risk.

The examples include least squares, robust regression, logistic regression and support vector machine
type loss.


