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Introduction

The Cube Method is a family of algorithms that enables to select balanced samples with equal
or unequal inclusion probabilities. Balancing samples is an old issue ; Deville et al. (1988) gave a
solution in case of equal inclusion probabilities and Ardilly (1991) gave a general but time expensive
method. A general solution, usable for large files, only came recently (Deville and Tillé, 2004). In
this user’s guide, we present a very fast implementation of the Cube Method as well as macros for
balancing samples based on this algorithm.

The paper is organised as follows. In Section 1, a short remind of the principles of the Cube Method
is given and the new algorithm is presented. This part is extracted from an article submitted with
Yves Tillé (Chauvet and Tillé (2004)). For a detailed presentation of the Cube Method, see Deville
and Tillé (2004) and Deville and Tillé (2005). In Section 2, the macro %exe_cube (version 1) using
the fast algorithm is presented and examples are given. In Section 3, a particular use of balanced
sampling called stratified sampling is presented. The macro %echant_strat (version 1), which
enables to perform stratified sampling, is presented with examples in the Section 4.

It should be noticed that both exe_cube and echant_strat use SAS IML and some sub-macros,
namely the macros: vol, atterrissage1, atterrissage2 and atterrissage3. All these macros
can be found in the SAS files "fast_cube" and "fast_cube_stratification".

The softwares exe_cube and echant_strat are free and come with no warranty. You are welcome
to contact Guillaume Chauvet at chauvet@ensai.fr for any comment or suggestion.
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1 A fast algorithm of balanced sampling

1.1 Introduction

The Cube method, that allows the selection of balanced samples, was developed at ENSAI (France)
(see Deville and Tillé, 2004, 2005; Tillé, 2001) and students of the Ecole Nationale de la Statistique
et de l’Analyse de l’Information (ENSAI) initially wrote the program. The program currently used
at Institut National de la Statistique et des Etudes Economiques (INSEE, France) was written by
Frederic Tardieu, and then finalized by Bernard Weytens thanks to improvements suggested by the
Unit of Statistical Methods of the INSEE and by the Methodological Unit of the Renovated Census.

The method was first dedicated to the selection of primary units in two-stage sampling, because the
execution was proportional to the square of the population size. This method was already applied
to several important statistical problems. For instance, the rotation groups of municipalities and
addresses of the French renovated census were selected by means of the cube method (Bertrand
et al. (2004) ; Dumais and Isnard (2000)). The cube method is actually a family of algorithm the
implementation of which admits a lot of variants. We propose a very fast implementation. The
originality consists of applying the basic step on a subset of units and not on the whole population.
This subset evolves at each step of the algorithm, and the execution time doesn’t depend any more
on the square of the population size.

In Section 1.2, the notation is defined. In Section 1.3, we give a brief reminder of the cube method.
The new algorithm is proposed in 1.4. Next, in Section 1.5, we discuss the implementation of the
fast algorithm, and some numerical results are presented. Finally, in Section 1.6, we show that this
algorithm can be applied to the problem of unequal probability sampling.

1.2 Notation and balance sampling

Consider a finite population U of size N whose units can be identified by labels k ∈ {1, . . . , N}. The
aim is to estimate the total Y =

∑
k∈U yk of a variable of interest y that takes the values yk, k ∈ U,

for the units of the population. Suppose also that the vectors of values xk = (xk1 . . . xkj . . . xkp)
′

taken by p auxiliary variables are known for all the units of the population. The p vectors
(x1j . . . xkj . . . xNj)

′, j = 1, . . . , p, are assumed without loss of generality to be linearly inde-
pendent.

A sample is denoted by a vector s = (s1 . . . sk . . . sN )′, of R
N where sk takes the value 1 if k

is in the sample and is 0 otherwise. A sampling design p(.) is a probability distribution on the
set S = {0, 1}N of all the possible samples. The random sample S is a random vector of R

N that
takes the value s with probability Pr(S = s) = p(s). The inclusion probability of unit k is the
probability πk = Pr(Sk = 1) that unit k is in the sample, and the vector of inclusion probabilities
is π = (π1 . . . πk . . . πN )′. Note that

π = E(S) =
∑

s∈S

p(s)s ∈ R
N .

The joint inclusion probability πkℓ = Pr(Sk = 1 and Sℓ = 1) is the probability that two distinct
units are jointly in the sample. The Horvitz-Thompson estimator given by Ŷ =

∑
k∈U Skyk/πk is an

unbiased estimator of Y. The Horvitz-Thompson estimator of the jth auxiliary totalXj =
∑

k∈U xkj
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is X̂j =
∑

k∈U Skxkj/πk. The Horvitz-Thompson estimator vector,

X̂ =
∑

k∈U

Skxk/πk,

estimates without bias the totals of the auxiliary variables, X =
∑

k∈U xk.

The aim is to construct a balanced sampling design, i.e. a sampling design such that X̂ = X,
and that satisfies a predetermined vector of inclusion probabilities π. Nevertheless, in most cases,
an exact balanced sampling design does not exist. The objective is thus to find an approximately
balanced design, that is, one for which X̂ ≈ X. If ak = xk/πk, and A is a p×N matrix such that

A = (a1 . . . ak . . . aN ),

then a balanced sampling design is such that

AS = Aπ, (1)

which is called the system of balancing equations.

1.3 The cube method

The cube method is composed of two phases called the flight phase and the landing phase. In the
flight phase, the constraints are always exactly satisfied. The objective is to round off randomly
to 0 or 1 almost all the inclusion probabilities. The landing phase consists of managing as well as
possible the fact that the system of balancing equations (1) cannot always be exactly satisfied. The
flight phase is described in Algorithm 1.

Algorithm 1: General balanced procedure: flight phase

First initialize at π(0) = π. Next, at time t = 0, ...., T, repeat the three follow-
ing steps.

Step 1: Generate any vector u(t) = {uk(t)} 6= 0, random or not, such that u(t)
is in the kernel of the matrix A, and uk(t) = 0 if πk(t) is an integer.

Step 2: Compute λ∗1(t) and λ∗2(t), the largest values of λ1(t) and λ2(t) such that
0 ≤ π(t) + λ1(t)u(t) ≤ 1, and 0 ≤ π(t) − λ2(t)u(t) ≤ 1. Note that λ1(t) > 0
and λ2(t) > 0.

Step 3: Select

π(t+ 1) =

{
π(t) + λ∗1(t)u(t) with probability q(t)
π(t) − λ∗2(t)u(t) with probability 1 − q(t),

(2)

where q(t) = λ∗2(t)/{λ
∗

1(t) + λ∗2(t)}.

The general procedure is repeated until it is no longer possible to carry out
Step 1.
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If T is the last step of Algorithm 2 and that π∗ = π(T ), then Deville and Tillé (2004) have shown
that,

1. E(π∗) = π,

2. Aπ∗ = Aπ,

3. if q = card{k|0 < π∗k < 1}, then q ≤ p, where p is the number of auxiliary variables.

Vector π∗ can be a sample, but in most cases, there are at most q non-integer elements in π∗. If
q > 0, the rounding problem, i.e. the fact that the system of balancing equations cannot be always
satisfied, is processed by the ‘landing phase’. Two solutions are possible for the landing phase
(Deville and Tillé, 2004). The first one consists of relaxing a constraint and to run the flight phase
again, until it is no longer possible to ‘move’ within the constraint hyperplane. The constraints
are thus relaxed successively. The second solution uses a linear program for obtaining the best
approximated balanced design (Deville and Tillé, 2004). The flight phase consumes most of the
execution time. The new implementation concerns only the flight phase, and the landing phase
remains unchanged.

Due to the complexity of the cube algorithm, the joint inclusion probabilities cannot be derived
exactly. Deville and Tillé (2005) have however shown that the variance of a balanced sample can
be well approximated and estimated without knowing the joint inclusion probabilities.

1.4 A very fast implementation

The aim of this new implementation is to obtain a reduction of the execution time. In the general
algorithm, the search for a vector u in KerA is extremely expensive. The basic idea is to use a
submatrix B containing only p + 1 columns of A. Note that the number of variables p is smaller
than the population size N, and that rank B ≤ p. The dimension of the kernel of B is thus larger
or equal to 1.

A vector v of KerB can then be used to construct a vector u of KerA by complementing v with
zeros for the columns of B that are not in A. With this idea, all the computation can be done only
on B. This method is described in Algorithm 2.

If T̃ is the last step of the algorithm and that π̃ = π(T̃ ), then we have

1. E(π̃) = π,

2. Aπ̃ = Aπ,

3. if q̃ = card{k|0 < π̃k < 1}, then q̃ ≤ p, where p is the number of auxiliary variables.

In the case where some of the constraints can be satisfied exactly, the flight phase can be continued.
Suppose that C is the matrix containing the columns of A that correspond to non-integer values of
π̃, and φ is the vector of non-integer values of π̃. If C is not full-rank, one or several steps of the
general Algorithm 1 can still be applied on C and φ. A return to the general Algorithm 1 is thus
necessary for the last steps.
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Algorithm 2: fast algorithm for the flight phase
(a) Initialization

(i) Before applying the algorithm, the units with null inclusion prob-
abilities are removed from the population and the units with inclusion
probabilities equal to 1 are definitively selected in the population. The al-
gorithm is thus applied on the the remaining units such that 0 < πk < 1.
(ii) The inclusion probability are loaded in vector π.
(iii) Vector ψ is made up of the first p+ 1 elements of π.
(iv) A vector of ranks is created r = (1, 2, . . . , p, p+ 1)′.
(v) Matrix B is made up of the first p+ 1 columns of A.
(vi) Initialize k = p+ 2.

(b) Basic loop
(i) A vector u is taken in the kernel of B,
(ii) Only ψ is modified (and not the vector π) according the basic tech-
nique. Compute λ∗1 and λ∗2, the largest values of λ1 and λ2 such that
0 ≤ ψ+ λ1u ≤ 1, and 0 ≤ ψ− λ2u ≤ 1. Note that λ∗1 > 0 and λ∗2 > 0.

(iii) Select ψ =

{
ψ+ λ∗1u with probability q
ψ− λ∗2u with probability 1 − q,

where q = λ∗2/(λ
∗

1 + λ∗2).
(iv) (The units that corresponds to ψ(i) integer are removed from B, and
are replaced by inclusion probabilities of new units. The algorithm stops
at the end of the file.).
For i = 1, . . . , p+ 1:

If ψ(i) = 0 or ψ(i) = 1 then
π(r(i)) = ψ(i)
r(i) = k

If k ≤ N then ψ(i) = π(k)
For j = 1, . . . , p, B(i, j) = A(k, j)
k = k + 1

ElseIf Goto Step (c) (i)
(v) Goto Step (b) (i)

(c) End of the first part of the flight phase
(i) For i = 1, . . . , p+ 1,π(r(i)) = ψ(i).

1.5 Implementation and numerical results

The implementation of the fast algorithm is quite simple. Matrix A never has to be completely
loaded in memory and thus remains in a file that can be read sequentially. For this reason, there is
no restriction on the population size. The execution time depends linearly on the population size.
The search for a vector u in the submatrix B limits the choice of the direction u. In most cases,
only one direction is possible. In order to increase the randomness of the sampling design, the units
can possibly be randomly mixed before applying the algorithm.

Algorithm 2 has been implemented by means of a SAS-IML macro. We have tested the processing
capacity of the algorithm to select samples in large populations with a lot of balancing variables.
We have used a population of 313,702 units, corresponding to the addresses of the big municipalities
(10,000 inhabitants or more) of the Rhone-Alpes French region. All the units are selected with the
same inclusion probability equal to 1/5. The balancing variables are:

• a constant in order to obtain a fixed sample size,

• 18 sociodemographic variables, which are presented in Table 1,
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• 81 variables that are the products of an indicator variable of the presence of the addresses in
the 81 municipalities and the number of households in the addresses.

Table 1: List of the sociodemographic variables
NLOG Number of households
NLOGCO Number of households in collective addresses
H0019 Number of men, age less than 20
H2039 Number of men, ages 20 to 39
H4059 Number of men, ages 40 to 59
H6074 Number of men, ages 60 to 74
H7599 Number of men, age more than 75
F0019 Number of women, age less than 20
F2039 Number of women, ages 20 to 39
F4059 Number of women, ages 40 to 59
F6074 Number of women, ages 60 to 74
F7599 Number of women, age more than 75
ACTIFS Number of working persons
INACTIFS Number of nonworkers
NATFN Number of people with French nationality by birth
NATFA Number of people with French nationality by acquisition
NATHE Number of foreigners outside European Union
NATUE Number of foreigners from European Union

The last 81 variables ensure that the number of households is balanced in each municipality. One
hundred balancing variables are thus used. A sample of 62,741 addresses is then selected, by means
of a personal computer (Pentium 3, 1 Gh). The population has been sorted in decreasing order
of the size of the address. The selection has been completed in about 1 hour and 50 minutes.
The condition of fixed size is perfectly realized. With the former version of the algorithm the
execution time should be multiplied by about 3000. Next we have computed the ratio of the square
of the difference between the Horvitz-Thompson estimators of the total and the variances of the
Horvitz-Thompson estimator under simple random sampling:

R =
(X̂j −X)2

varsimple(X̂j)
.

These ratios are presented in Table 2, and show the dramatic improvement of accuracy.

1.6 Case of unequal probability sampling

When J = 1 and that the only auxiliary variable is xk = πk, then the problem of balanced sampling
amounts to sampling with unequal probability. In this case, A = (1 . . . 1). At each step, matrix
B = (1, 1) , and u = (−1, 1)′. Algorithm 2 can be simplified dramatically as presented in Algorithm 3
that is a very simple method of sampling with unequal inclusion probabilities. Actually Algorithm 3
is an implementation of the pivotal method (Deville and Tillé, 1998) in the framework of the splitting
method.
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Table 2: Ratio of the square of the difference between the Horvitz-Thompson estimators of the total
of the variances under simple random sampling

Variable Ratio Variable Ratio Variable Ratio
NLOG 2.7 10−5 H7599 1.2 10−4 ACTIFS 9.7 10−7

NLOGCO 2.5 10−5 F0019 6.0 10−6 INACTIFS 2.3 10−5

H0019 1.4 10−6 F2039 1.9 10−6 NATFN 2.0 10−5

H2039 8.2 10−5 F4059 2.0 10−6 NATFA 1.3 10−5

H4059 3.0 10−7 F6074 8.6 10−5 NATHE 7.8 10−5

H6074 3.2 10−5 F7599 6.7 10−5 NATUE 5.8 10−4

Algorithm 3: pivotal methof for unequal inclusion probabilities
Eventually sort the data in a random order
Definition a, b, u real; i, j, k integer;
a = π1; b = π2; i = 1; j = 2;
For k = 1, . . . , N : sk = 0;
k = 3
While k ≤ n:

u = uniform random variable in [0,1]

If a+ b > 1 then If u < 1−b
2−a−b

: b = a+ b− 1 ; a = 1

Else a = a+ b− 1 ; a = 1

If k ≤ N then If u < b
a+b

: b = a+ b ; a = 0

Else a = a+ b− 1 ; b = 0
If a is an integer and k ≤ n then si = a ; a = πk ; i = k ; k = k+1
If b is an integer and k ≤ n then sj = b ; b = πk ; j = k ; k = k+1

si = a ; sj = b

1.7 Case of Poisson sampling

Deville notices that with p = 0, i.e. without any balancing equations, the fast algorithm amounts
to Poisson sampling. Algorithm 2 can then be simplified as follows:

Algorithm 4: Poisson sampling
Definition: ψ real ; i, k integer
Initialise ψ = π1 ; i = 1 ; k = 2
u is any non zero scalar
While k ≤ N

If u > 0 then λ∗1 = 1−ψ

u
; λ∗2 = ψ

u

Select

ψ =

{
ψ+ λ∗1u = 1 with proba q
ψ− λ∗2u = 0 with proba 1 − q,

where q =
λ∗

2

λ∗

1
+λ∗

2

= πk

If u < 0 then λ∗1 = −ψ

u
; λ∗2 = − 1−ψ

u

Select

ψ =

{
ψ+ λ∗1u = 0 with proba q
ψ− λ∗2u = 1 with proba 1 − q,

where q =
λ∗

2

λ∗

1
+λ∗

2

= 1 − πk
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2 The macro for balanced sampling

2.1 Description

The exe_cube macro enables to select a balanced sample and returns a data table containing the
result of the sampling.

2.2 The Input Data

The data relative to the population in which we want to select a balanced sample must be put into
a SAS table, containing all units of the population, and at least:

• An identifying variable

• The variable of inclusion probabilities

• The balancing variables

This table may not contain missing values for the variables quoted below. The variable of inclusion
probabilities, as well as the balancing variables, must be of numerical type.

2.3 Syntax of the macro

2.3.1 Parameters relative to the Data Base

All these parameters are compulsory.

• BASE = name of SAS library
Name of the SAS library containing the SAS table of Input data.

• DATA = name of SAS table
Name of the SAS table containing the Input data.

• ID = variable
Name of the variable that identifies the units of the population

• PI = variable
Name of the variable of inclusion probabilities

• CONTR = variable(s)
Names of the variables on which the sample will be balanced. The names must be spaced
with blanks.

2.3.2 Parameters relative to the sampling

All these parameters are optional.
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• ATTER = option

States the option selected for the landing phase. Possible values are:

– ATTER = 1
The balancing variables are progressively abandoned. The last variable in the CONTR
parameter is removed first, then the variable before and so on.

– ATTER = 2
The landing phase is performed by considering all the possible samples among the re-
maining units, and selecting preferably those providing a low difference to the balancing.

– ATTER = 3
The landing is performed like with ATTER=2, but only considering the samples whose
size equals the sum of inclusion probabilities. We obtain a fixed sample size. If this option
is used, the variable of inclusion probabilities must be put in the CONTR parameter.

The default value is: ATTER=1. This is the fastest landing option. To ensure a reasonable
execution time, the option ATTER=2 should not be used with more than 14 balancing vari-
ables, and the option ATTER=3 should not be used with more than 18 balancing variables.

• COMPEQ = option

Equals 1 if the complementary of the sample has to be balanced on the same variables too,
and 0 otherwise. The default value is: COMPEQ=0

Here we use a result of Tillé and Favre (2004). The proof can be found in Annexe 1. This
option allows selecting several non-overlapping samples, balanced on the same variables, with
fixed inclusion probabilities. Suppose we want to select two non-overlapping samples, bal-
anced on the variable x, with inclusion probabilities πk. We select the first balanced sample
S1 as usual, with option COMPEQ=1. Then we select a sample S2 in the complementary of

S1, with inclusion probabilities πk

1−πk
, balanced on the variable (zk) =

(
xk

1−πk

)
. This method

can be applied to any number of balancing variables. We can select up to mink∈U

⌊
1
πk

⌋
bal-

anced samples with this method, where (⌊x⌋ is the larger integer smaller than n). This option
multiplies by 2 the number of balancing variables, thus by about 4 the execution time.

If all inclusion probabilities are equal, the complementary of the sample is automatically
balanced on the same variables, so the option becomes useless. See Appendix 1 for details.

2.3.3 Parameters relative to the Output

• SORT = name of SAS table

Name of the SAS table containing the Output data. This table belongs to the library quoted
in BASE. Il contains all the units of the population, and a variable ECH equal to 1 if the unit
has been selected in the sample, and 0 otherwise.
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2.3.4 Some examples

/******************************************/

/* Definition of the data */

/* id is an identifying variable */

/* pi1 and pi2 are two different variables*/

/* of inclusion probabilities */

/* var1, var2 and var3 are 3 numerical */

/* variables */

/******************************************/

data a1;

input id $ pi1 pi2 var1 var2 var3;

cards;

1 0.3 0.2 1 4 7

2 0.3 0.4 2 6 4

3 0.3 0.8 3 7 9

4 0.3 0.2 2 3 2

5 0.3 0.7 8 6 4

6 0.3 0.1 3 5 6

7 0.3 0.5 2 6 3

8 0.3 0.3 2 1 3

9 0.3 0.4 4 7 6

10 0.3 0.5 8 2 5

;run;

/******************************************/

/* Example 1 */

/******************************************/

/* Balancing on var1 and var3, with pi2 as*/

/* inclusion probabilities, with the 1st */

/* landing option, without balancing the */

/* complementary */

/******************************************/

%exe_cube(base=work,data=a1,id=id,pi=pi2,contr=var1 var3,

sort=ech,atter=1,compeq=0);

/******************************************/

/* Example 2 */

/******************************************/

/* Balancing on var1, var2 and var3, with */

/* pi2 as inclusion probabilities and */

/* fixed size, with the 2d landing option,*/

/* and balancing the complementary */

/* (fixed size compels to put pi2 as a */

/* balancing variable) */

/******************************************/

%exe_cube(base=work,data=a1,id=id,pi=pi2,contr=pi2 var1 var2 var3,

sort=ech,atter=2,compeq=1);

/******************************************/

/* Example 3 */
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/******************************************/

/* Balancing on var1 and var2, with pi1 as*/

/* inclusion probabilities, with the 3st */

/* landing option, without balancing the */

/* complementary */

/* (in fact, inclusion probabilities are */

/* equal, so the complementary is */

/* automatically balanced) */

/* (the use of the 3d landing option */

/* compels to put pi1 as a balancing */

/* variable) */

/******************************************/

%exe_cube(base=work,data=a1,id=id,pi=pi1,contr=pi1 var1 var2,

sort=ech,atter=3,compeq=0);

2.3.5 Some numerical examples

We use a population of 26471 units corresponding to the city of Lyon, given by the 1999 Census.
The samples are selected by means of a personal computer (Penthium 4, 1.8 Gh).

Example 1 We first select a sample with equal probabilities 1
5 , balanced on the socio-demographic

variables quoted in Table 1 (18 variables) and on a constant for the condition of fixed sample size.
We use the first landing option. A sample of 5345 units is drawn in a few seconds. Results are
presented in Table 3.

Example 2 We want to select a sample of 1500 addresses, with probabilities proportional to the size
of the address (the size is given by the number of households), balanced on the socio-demographic
variables quoted in Table 1 (18 variables). We also balance on the variable of inclusion probabilities
and use the third landing option, for the sample to be of exact fixed size. The sample is drawn
in less than one minute. The condition of fixed size is perfectly realized. Results are presented in
Table 4.

Example 3 Now, suppose we want to select several samples, balanced on the former variables.
We still use probabilities proportional to the size of the address ; we want to select 3 samples of
500 addresses. In the population, all reverse inclusion probabilities are higher than 3.98, thus the
coordinated sampling is possible. We also balance on the variable of inclusion probabilities. We use
the first landing option and the option COMPEQ=1. Indeed, as the number of balancing variables
is very big (38, corresponding to the 19 basics balancing variables, and 19 other variables generated
by option COMPEQ=1), the sampling couldn’t be performed in a reasonable time with options
ATTER=2 or 3.
Results are presented in Table 5, page 13. The fixed size is perfectly obtained for each of the
samples.
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Table 3: Relative difference between the real total and the Horvitz-Thompson estimator of the total
for the balancing variables

Variable Horvitz-Thompson estimator Real total Relative difference
of the total ( % )

NLOG 251 380 251 279 -0,04%
NLOGCO 243 480 243 381 -0,04%
H0019 46 390 46 395 0,01%
H2039 75 145 75 116 -0,04%
H4059 46 080 46 078 0,00%
H6074 20 735 20 726 -0,04%
H7599 10 440 10 435 -0,05%
F0019 46 145 46 156 0,02%
F2039 83 980 83 957 -0,03%
F4059 51 900 51 881 -0,04%
F6074 28 645 28 637 -0,03%
F7599 21 440 21 421 -0,09%
ACTIFS 206 780 206 732 -0,02%
INACTIFS 224 120 224 070 -0,02%
NATFN 376 425 376 326 -0,03%
NATFA 21 815 21 833 0,08%
NATHE 22 990 22 978 -0,05%
NATUE 9 670 9 665 -0,05%

Table 4: Relative difference between the real total and the Horvitz-Thompson estimator of the total
for the balancing variables

Variable Horvitz-Thompson estimator Real total Relative difference
of the total ( % )

NLOG 251 279 251 279 0,00%
NLOGCO 243 071 243 381 0,13%
H0019 46 596 46 395 -0,43%
H2039 75 091 75 116 0,03%
H4059 46 195 46 078 -0,25%
H6074 20 733 20 726 -0,03%
H7599 10 495 10 435 -0,57%
F0019 46 196 46 156 -0,09%
F2039 83 966 83 957 -0,01%
F4059 51 983 51 881 -0,20%
F6074 28 644 28 637 -0,02%
F7599 21 512 21 421 -0,42%
ACTIFS 206 834 206 732 -0,05%
INACTIFS 224 576 224 070 -0,23%
NATFN 376 919 376 326 -0,16%
NATFA 21 906 21 833 -0,33%
NATHE 22 993 22 978 -0,07%
NATUE 9 591 9 665 0,76%
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Table 5: Relative difference between the real total and the Horvitz-Thompson estimator of the total for the balancing variables

HT estimator Relative HT estimator Relative HT estimator Relative
Variable Real total of the total Difference of the total Difference of the total Difference

given by ( % ) given by ( % ) given by ( % )
the 1st sample the 2nd sample the 3d sample

NLOG 251 279 251 279 0,00% 251 279 0,00% 251 279 0,00%
NLOGCO 243 381 243 238 0,06% 243 238 0,06% 243 741 0,13%
H0019 46 395 46 541 -0,31% 46 549 -0,33% 46 408 -0,43%
H2039 75 116 74 940 0,23% 75 042 0,10% 75 347 0,03%
H4059 46 078 46 686 -1,32% 46 229 -0,33% 46 196 -0,25%
H6074 20 726 20 715 0,05% 20 687 0,19% 20 754 -0,03%
H7599 10 435 10 093 3,27% 10 548 -1,08% 10 099 -0,57%
F0019 46 156 46 639 -1,05% 46 433 -0,60% 46 456 -0,09%
F2039 83 957 84 069 -0,13% 84 121 -0,20% 84 187 -0,01%
F4059 51 881 51 753 0,25% 52 173 -0,56% 52 282 -0,20%
F6074 28 637 28 914 -0,97% 28 479 0,55% 28 540 -0,02%
F7599 21 421 21 270 0,71% 21 482 -0,28% 21 044 -0,42%
ACTIFS 206 732 207 197 -0,22% 206 907 -0,08% 207 851 -0,05%
INACTIFS 224 070 224 422 -0,16% 224 835 -0,34% 223 462 -0,23%
NATFN 376 326 376 200 0,03% 378 181 -0,49% 377 177 -0,16%
NATFA 21 833 22 435 -2,76% 21 260 2,63% 21 348 -0,33%
NATHE 22 978 23 431 -1,97% 22 820 0,69% 23 391 -0,07%
NATUE 9 665 9 553 1,16% 9 482 1,89% 9 397 0,76%
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3 Global balancing and stratified balancing

3.1 Notation

We keep the same notation as in part 1. We suppose here that U is divided into H non-overlapping
strata U1, . . . , UH . We remind that the sampling design is said to be balanced on the variable x if

∑

k∈U

Skxk

πk

=
∑

k∈U

xk

We say that the sampling design is balanced by strata on the variable x if

∑

k∈Uh

Skxk

πk

=
∑

k∈Uh

xk, for all h = 1 . . . H (3)

Note that if a sampling design is balanced by strata, it is globally balanced on the whole population.

This technique has been used in the French renovated census for the building of the rotation groups
of small municipalities ; in each French region, these rotation groups are made up by selecting
samples balanced globally on socio-demographic variables, and balanced by French department on
the number of households (in order to ensure that a reasonable number of municipalities of each
department can be found in any of the five rotation groups).

3.2 Drawbacks of a direct balancing by strata

Stratified balance sampling can be performed by selecting a sample directly in the whole population.
Indeed, (3) is equivalent to

∑

k∈U

Sk(xk 1k∈Uh
)

πk

=
∑

k∈U

xk 1k∈Uh
for all h = 1 . . . H

We thus only need to select a sample in U , balanced on the variables equal to the product of the
balancing variables x1, . . . , xp and the indicator variables:

1k∈Uh
=

{
1 if k ∈ Uh

0 otherwise,

which means balancing on H × p variables. This method has several drawbacks:

• If H × p is too big, we cannot perform the landing phase by searching the sample that gives a
low difference to the balancing state, because the number of possible samples is too important.
The only landing option available is the first, i.e. to progressively remove some constraints

• All strata don’t have the same quality of balancing. With the first option for the landing
phase, the balancing is worst for the stratum corresponding to the variables removed first

• The fixed size cannot be obtained in each stratum
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The program developed here draws it’s inspiration from a remark on the treatment of big data bases
(Rousseau and Tardieu, 2004). The idea is the following:

• We first try to balance by strata: we perform a flight phase independently on each stratum,
balancing on the auxiliary variables

• When it is no more possible to balance by strata, we look for a global balancing: we gather
the units that have not been sampled or rejected during the flight phases in the strata, then
we perform a last flight phase on all these units before landing

The justification can be found in Appendix 2.

4 The macro for stratified balancing

4.1 Description of the macro

The macro echant_strat enables to select a sample, globally balanced on the whole population
and approximately balanced on strata.

4.2 The Input Data

There must be as many input SAS tables as strata in the population: each of these tables contain,
for one particular stratum, the data relative to its units, and at least:

• The variable of inclusion probabilities

• The balancing variables

This table may not contain missing values for the variables quoted below. The variable of inclusion
probabilities, as well as the balancing variables, must be of numerical type.

4.3 Syntax of the macro

4.3.1 Parameters relative to the Data Base

All these parameters are compulsory.

• BASE = name of SAS library
Name of the SAS library containing the SAS tables of Input data.

• DATA = SAS table(s)
Name(s) of the SAS table(s) containing the Input data. The names must be spaced with
blanks. Each table contains the units of one stratum.
For example, suppose that the population is stratified into 4 strata U1, U2, U3, U4. 3 tables
are created, say STRAT1 for stratum U1, gathering the units of U1, STRAT2 for stratum
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U2, gathering the units of U2, and so on. The syntax will be: DATA= STRAT1 STRAT2
STRAT3 STRAT4.

• PI = variable
Name of the variable of inclusion probabilities

• CONTR =variable(s)
Names of the variables on which the sample will be balanced. The names must be spaced
with blanks.

4.3.2 Parameters relative to the Output

• SORT = name of SAS table
Name of the SAS table containing the Output data. This table belongs to the library quoted
in BASE. Il contains all the units of the population, and a variable ECH equal to 1 if the unit
has been selected in the sample, and 0 otherwise.

4.4 An example

/******************************************/

/* Definition of the data */

/* id si an identifying variable */

/* pi1 and pi2 are two different variables*/

/* of inclusion probabilities */

/* var1, var2 and var3 are 3 numerical */

/* variables */

/******************************************/

/* The population U is divided into 2 non */

/* overlapping strata */

/******************************************/

/* Table a1 gathers the units of the 1st */

/* stratum */

/******************************************/

data a1;

input id $ pi var1 var2 var3;

cards;

1 0.2 1 4 7

2 0.4 2 6 4

3 0.8 3 7 9

4 0.2 2 3 2

5 0.7 8 6 4

6 0.1 3 5 6

7 0.5 2 6 3

8 0.3 2 1 3

9 0.4 4 7 6

10 0.5 8 2 5

;run;

/******************************************/
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/* Table a2 gathers the units of the 2nd */

/* stratum */

/******************************************/

data a2;

input id $ pi var1 var2 var3;

cards;

11 0.4 1 2 6

12 0.2 6 6 3

13 0.6 4 2 5

14 0.9 2 1 5

15 0.4 2 5 4

16 0.5 5 7 2

17 0.7 4 1 7

18 0.6 2 2 3

;

run;

/******************************************/

/* Example */

/******************************************/

/* Stratified balancing, on variables var1*/

/* var2, with pi as inclusion */

/* probabilities, and fixed size by */

/* stratum */

/******************************************/

%echant_strat(base=work,data=a1 a2,id=id,pi=pi,contr=pi var1 var2,

sort=ech2);

4.5 A numerical example

Once again, we use the population corresponding to the adresses of the city of Lyon. This city is
divided into 36 strata called Iris. A 37th Iris which contained very few adresses is gathered with
another one.
By means of the echant_strat macro, we select a sample with equal inclusion probabilities ( 1

5),
balanced on the variables quoted in Table 1 (18 variables). We thus require a sample:

• Globally balanced (on the whole city)

• Approximately balanced in each Iris

• Of fixed size in each Iris

We get a sample of 5295 units in a few seconds. Table 6 compares the sample sizes we get in each
stratum with those we wanted to get. If we round the sample sizes wanted, the condition of fixed
size is perfectly realized in the strata (except in the 36ème one, to within one unit).

The estimations on the whole city are presented in Table 7. The global balancing is perfectly realized.
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Table 6: Comparison between the sample sizes obtained and the sample sizes wanted by stratum

Stratum 1 2 3 4 5 6 7 8 9 10 11 12
Sample

size 277.8 222.8 231.4 101.4 34.6 260.4 259.2 160 128.6 20.6 268.8 285
wanted
Sample

size 278 223 231 102 35 260 259 160 129 21 268 285
obtained

Stratum 13 14 15 16 17 18 19 20 21 22 23 24
Sample

size 179.8 50.8 213.6 220.8 199 81.4 24.4 245 213.6 142.8 122.4 113
wanted
Sample

size 180 51 214 221 199 82 25 245 214 143 122 113
obtained

Stratum 25 26 27 28 29 30 31 32 33 34 35 36
Sample

size 134.4 103.6 46.6 153 157.2 114.2 71.4 102.6 55.4 155.2 124.6 18.6
wanted
Sample

size 134 104 46 153 157 114 71 103 55 156 125 17
obtained

Table 7: Relative difference between the real total and the Horvitz-Thompson estimator of the total
for the balancing variables

Variable Horvitz-Thompson estimator Real total Relative difference
of the total ( % )

NLOG 251 707 251 279 -0.17%
NLOGCO 243 820 243 381 -0.18%
H0019 46 446 46 395 -0.11%
H2039 75 304 75 116 -0.25%
H4059 46 166 46 078 -0.19%
H6074 20 751 20 726 -0.12%
H7599 10 450 10 435 -0.14%
F0019 46 295 46 156 -0.30%
F2039 84 142 83 957 -0.22%
F4059 51 954 51 881 -0.14%
F6074 28 634 28 637 0.01%
F7599 21 421 21 421 0.00%
ACTIFS 207 084 206 732 -0.17%
INACTIFS 224 474 224 070 -0.18%
NATFN 377 005 376 326 -0.18%
NATFA 21 886 21 833 -0.24%
NATHE 23 001 22 978 -0.10%
NATUE 9 655 9 665 0.10%

As for strata (see Table 8), only five strata present a bad balancing (the 5, 10, 19, 33, 34). Except
the last one, they are small strata in which a very small sample has been drawn. As quoted before,
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Table 8: Indicators of the quality of balancing by stratum for the balancing variables

Stratum 1 2 3 4 5 6 7 8 9 10 11 12
Maximum
relative 4% 19% 6% 4% 44% 2% 12% 13% 12% 48% 7% 3%

difference
(modulus)
Average
relative 2% 3% 2% 2% 11% 1% 4% 4% 2% 20% 2% 1%

difference
(modulus)

Stratum 13 14 15 16 17 18 19 20 21 22 23 24
Maximum
relative 4% 19% 7% 6% 9% 9% 24% 3% 17% 10% 22% 23%

difference
(modulus)
Average
relative 2% 6% 2% 2% 3% 4% 13% 1% 4% 2% 6% 4%

difference
(modulus)

Stratum 25 26 27 28 29 30 31 32 33 34 35 36
Maximum
relative 29% 16% 13% 13% 9% 27% 14% 12% 27% 33% 29% 16%

difference
(modulus)
Average
relative 7% 3% 4% 6% 2% 8% 8% 6% 11% 16% 7% 3%

difference
(modulus)

we could have perform a similar sampling with the other macro of balanced sampling, exe_cube.
We would have drawn one sample directly in the whole population. But we would have needed the
following balancing variables:

• The inclusion probability (to get a fixed sample size) and the 18 variables quoted above to
obtain a global balancing. If we take into account the colinearities, that means: 17 variables

• A variable indicating the belonging to one stratum, to get a fixed sample size by stratum.
That means: 35 balancing variables

• Variables equal to the product of the socio-demographic variables (18) and the variables
indicating the belonging to a stratum (36) to get a stratified balancing. If we take into
account the colinearities, that means: 16 × 35 = 560 balancing variables

For the same kind of sampling, we would have needed 612 balancing variables. The sampling would
have been much slower, and the balancing would have been very badly performed in some strata.
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Appendix 1: Balancing a sample and its complementary

Let U be a finite population. A sample s is said to be balanced on the variable x if

∑

k∈s

xk

πk

=
∑

k∈U

xk

Let s̄ be another sample, defined as the complementary of s in U . The inclusion probabilities are
then π̄k = P(k ∈ s̄) = 1 − πk, and then the sample s̄ is said to be balanced on the variable x if:

∑

k∈s̄

xk

1 − πk

=
∑

k∈U

xk

The balancing of a sample s and its complementary on a variable x can be achieved by selecting a

sample s balanced on variables (xk) and
(

xk

1−πk

)
. Indeed, we get :

∑

k∈s

xk

πk

=
∑

k∈U

xk

by definition, and: ∑
k∈s̄

xk

1−πk
=

∑
k∈U

xk

1−πk
−

∑
k∈s

xk

1−πk

=
∑

k∈s
xk

πk(1−πk) −
∑

k∈s
xk

1−πk

=
∑

k∈s
xk

1−πk

(
1
πk

− 1
)

=
∑

k∈s
xk

πk
=

∑
k∈U xk

Thus, s̄ is also balanced.

Appendix 2: Stratified balancing

Let U be a finite population, stratified into H parts U1, . . . , UH . Let πk be the inclusion probability
of unit k and xk the vector of balancing variables.
We follow the process described in 3.2, and first perform a flight phase independently on each
stratum (Phase 1). With the same notations as in Algorithm 1, we get at the end of Phase 1:

∑

k∈Uh

xk =
∑

k∈Uh

xk

πk

πk =
∑

k∈Uh

xk

πk

π∗k =
∑

k∈S∗

h

xk

πk

+
∑

k∈U∗

h

xk

πk

π∗k, for all h = 1 . . . H

where S∗
h denotes the units sampled in stratum Uh and U∗

h the remaining units (neither rejected
nor selected, i.e. with 0 < π∗k < 1).

For Phase 2, we gather the remaining units and select a sample with inclusion probabilities π∗k,
balanced on variables xk

πk
π∗k. Let U∗ =

⋃H
h=1 U

∗
h , S∗ the sample selected in U∗ and S∗∗

h the units of
S∗ which belong to Uh. The balancing implies:

∑

k∈U∗

xk

πk

π∗k =
∑

k∈S∗

xk

πk
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The final sample S is the union of the units selected in Phase 1 and those selected in Phase 2, i.e.
S = S∗

⋃H
h=1 S

∗
h. We have:

∑
k∈S

xk

πk
=

∑
k∈S∗

xk

πk
+

∑H
h=1

∑
k∈S∗

h

xk

πk

=
∑

k∈U∗

xk

πk
π∗k +

∑H
h=1

∑
k∈S∗

h

xk

πk

=
∑H

h=1

[∑
k∈S∗

h

xk

πk
+

∑
k∈U∗

h

xk

πk
π∗k

]

=
∑H

h=1

∑
k∈Uh

xk =
∑

k∈U xk

i.e., the sample is globally balanced, and for each stratum h:
∑

k∈Sh

xk

πk
=

∑
k∈S∗∗

h

xk

πk
+

∑
k∈S∗

h

xk

πk

=
∑

k∈S∗∗

h

xk

πk
+

∑
k∈Uh

xk −
∑

k∈U∗

h

xk

πkπ∗

k

=
∑

k∈Uh
xk +

∑
k∈U∗

h

xk

πk

[
1k∈S∗∗

h
− π∗k

]
≃

∑
k∈Uh

xk

We also have an approximate balancing by stratum.
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