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Objectives of the talks

1. Present some examples where the problem of sampling from a finite
population arises in Monte Carlo

=⇒ special focus on sequential Monte Carlo methods.

2. Present some new results on resampling algorithms

=⇒ Based on a joint work with Nicolas Chopin (CREST/ENSAE) and
Nick Whiteley (Bristol)

3. Present some open questions
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Monte Carlo basics

The goal of Monte Carlo methods is to approximate integrals of the form

I =
∫
X
ϕ(x)π(dx), X ⊂ Rd (1)

The basic observation underpinning Monte Carlo methods is that (1) is the
expectation of ϕ under π, that is, I = Eπ[ϕ]

Therefore, if {(xn,wn)}N
n=1 is a weighted point set such that

πN :=
N∑

n=1
wnδxn ≈ π

one can approximate I = Eπ[ϕ] by I N = EπN [ϕ].
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Two main questions in Monte Carlo literature

1. How is the approximation error ‖I N − I‖ related to ‖πN − π‖?

Some results:

I E[(I N − I )p]1/p ≤ Cp
N1/p Eπ[(ϕ− I )p]1/p if xn iid∼ π and wn = N−1.

I |I N − I | ≤ ‖πN − π‖? if V (ϕ) ≤ 1

2. How can we define πN so that ‖πN − π‖ is small?

=⇒ We focus on this second point in this talk.
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Computing πN

The simplest Monte Carlo scheme is Monte Carlo integration, where xn i.i.d.∼ π
and

πN = 1
N

N∑
n=1

δxn .

However, in most statistical problems we don’t know how to sample i.i.d. from
π and thus more complicated methods need to be used to compute a ‘good’
πN .

Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC, or
particle filters) are arguably the two most popular classes of Monte Carlo
algorithms used in statistics.

=⇒ As will shall see, a crucial step of SMC amounts to sampling from a
finite population.
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SMC: Basic idea

In SMC, instead of trying to approximate π directly we start with the simpler
problem of approximating π0, a distribution chosen by the user and easy to
sample from.

In a second step, we define a sequence {πt}T
t=0 such that πT = π and such

that, in some sense, πt is ‘close’ to πt−1. For instance,

πt ∝ π(1−ρt)
0 πρt , 0 = ρ0 < · · · < ρT = 1.

Then, the main idea underpinning SMC is that if πN
0 is a good approximation

of π0, and if π1 is close to π0, then it should be possible to use πN
0 to build a

good approximation πN
1 of π1.

By repeating this reasoning up to the terminal time T we end up with an
approximation πN

T of πT = π.
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Algorithmic description of SMC
Operations must be be performed for all n ∈ 1 : N .
At time 0,

(a) Generate xn
0 ∼ π0(dx0).

(b) Compute wn
0 = N−1

Recursively, for t = 1 : T ,
(a) Generate A1:N

t−1 ∼ ρ
(
{xn

t−1,wn
t−1}N

n=1) [resampling]

(b) Generate xn
t ∼ mt(xAn

t−1
t−1 ,dxt) [mutation]

(c) Compute

wn
t = wt(xn

t )∑N
m=1 wt(xm

t )
, wt(x) = πt(dx)

πt−1(dx)

Output: An approximation πN
t =

∑N
n=1 wn

t δxn
t

of πt for all t ≥ 0 such that
(hopefully)

πN
t ⇒ πt , as N → +∞, a.s.
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Resampling schemes: Informal definition
A resampling scheme ρ takes as an input a weighted sample

{
(xn,wn)

}N
n=1

and returns as an output {An}N
n=1, a set of random indices in {1, . . . ,N}.

Resampling steps play a central role in SMC since they

1. Prevent the particle system
{

(xn
t ,wn

t )
}N

n=1 to collapse (i.e. to end up with
a particle system where one particle has weight equal to one).

2. Prevent the particle approximation πN
t of πt to deteriorate as t increases

(time uniform bounds)

On the other hand, a good resampling scheme should be such that

1
N

N∑
n=1

δxAn ≈
N∑

n=1
wnδxn

to minimize the noise introduced by the resampling operation at the current
iteration t.
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Most commonly used resampling methods
I Multinomial resampling:

An = F−N (un), n = 1, . . . ,N , FN (x) =
N∑

n=1
wnI(n ≤ x)

where {un}N
n=1 are i.i.d. U(0, 1) random variables.

I Stratified resampling:

An = F−N
(n − 1 + un

N

)
, n = 1, . . . ,N

where {un}N
n=1 are i.i.d. U(0, 1) random variables.

I Systematic resampling:

An = F−N
(n − 1 + u

N

)
, n = 1, . . . ,N

where u ∼ U(0, 1).
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Numerical comparison of resampling schemes
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Figure 1 : TV distance between empirical distributions of weighted particles, and
resampled particles as a function of τ ; particles are N (0, 1) random variables, weight
function is w(x) = exp(−τx2/2).
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Main issues

Multinomial resampling is easy to understand/analyse since

xAn iid∼
N∑

n=1
wnδxn .

But little is known about the properties of stratified and systematic
resampling.

Indeed, despite the popularity these two resampling mechanisms most results
on particle filtering assume that multinomial resampling is used.

In particular, it is not even known whether or not particle filters are still
weakly convergent (i.e. πN

t ⇒ πt as N → +∞) when stratified or systematic
resampling are used instead of multinomial resampling.

=⇒ I will now present some results that contribute to fill these gaps.
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Resampling schemes: Formal definition

Definition
A resampling scheme is a mapping ρ : [0, 1]N ×Z → Pf (X ) such that, for any
N ≥ 1 and z = {xn,wn}N

n=1 ∈ ZN ,

ρ(u, z) = 1
N

N∑
n=1

δ(xan
N (u,z)),

where for each n, an
N : [0, 1]N ×ZN → 1 : N is a certain measurable function.

Notation:

1. P(X ) is the set probability measures on X .

2. Pf (X ) is the set of discrete probability measures on X .

3. Z :=
⋃+∞

N=1ZN with ZN =
{

(x,w) ∈ XN × RN
+ :

∑N
n=1 wn = 1

}
.
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Consistent resampling schemes
We consider in this work that a resampling scheme is consistent if it is
weak-convergence-preserving.

Definition
Let P0 ⊆ P(X ). Then, we say that a resampling scheme ρ : [0, 1]N ×Z → Z is
P0-consistent if, for any π ∈ P0 and random sequence (ζN )N≥1 such that
πN ⇒ π, P-a.s., one has

ρ(ζN )⇒ π, P− a.s.

Remarks:

1. All the random variables are defined on the probability space (Ω,F ,P).

2. ζN is a r.v. that takes its value in ZN and πN ∈ Pf (X ) is the
corresponding probability measure.

3. It is well known that multinomial resampling is P(X )-consistent.

13 / 31



A general consistency result: Preliminaries

I To simplify the presentation we assume henceforth that X = Rd .

I The random variables {Z n}N
n=1 are negatively associated (NA) if, for

every pair of disjoint subsets I1 and I2 of {1, . . .N},

Cov
(
ϕ1
(
Z n,n ∈ I1

)
, ϕ2

(
Z n,n ∈ I2

))
≤ 0

for all coordinatewise non-decreasing functions ϕ1 and ϕ2, such that for
k ∈ {1, 2}, ϕk : R|Ik | → R and such that the covariance is well-defined.

I Let P̃b(X ) ⊂ P(X ) be a set of probabilities densities with “not too thick
tails” (see paper for exact definition).

=⇒ The condition on the tail is weak as it does not impose that
π ∈ P̃b(X ) has a finite first moment.
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Main result

Theorem (X = Rd to simplify)
Let ρ : [0, 1]N ×Z → Pf (X ) be an unbiased resampling scheme such that:

(H1) For any N ≥ 1 and z ∈ ZN the collection of random variables
{

N n
ρ,z
}N

n=1
is negatively associated;

(H2) There exists a sequence (rN )N≥1 of non-negative real numbers such that
rN = O(N/ log N ), and, for N large enough,

sup
z∈ZN

N∑
n=1

E
[
(∆n

ρ,z)2] ≤ rN N ,

∞∑
N=1

sup
z∈ZN

P
(

max
n∈1:N

∣∣∆n
ρ,z
∣∣ > rN

)
< +∞.

Then, ρ is P̃b(X )-consistent.

Notation: N n
ρ,z =

∑N
m=1 I(Am = n) and ∆n

ρ,z = N n
ρ,z −NW n.

Definition: ρ is unbiased if E
[
∆n
ρ,z
]

= 0 for all n and z ∈ Z.
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Applications

From the previous theorem we deduce the following corollary:

Corollary
I Multinomial resampling is P̃b(X )-consistent (not new);
I Residual resampling is P̃b(X )-consistent (not new);
I Stratified resampling is P̃b(X )-consistent (new);
I Residual/Stratified resampling is P̃b(X )-consistent (new);
I SSP/Pivotal resampling is P̃b(X )-consistent (new).

Remark: The above result prove the consistency of resampling schemes based
on conditional Poisson sampling, Sampford sampling or Pareto sampling.
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Applications

Our general consistency result can be easily extended to the case where
MN ≤ N elements are (re)sampled, provided that e.g. N/MN → K (for some
K < +∞).

=⇒ Application for survey sampling: Almost sure weak consistency of
the Horvitz-Thomson “distribution” measure

1
N

MN∑
n=1

1
πN ,An

δYAn , πN ,n = MN G(Zn)∑N
m=1 G(Zm)

under various sampling methods (and suitable assumptions on the link
function G and (Zn)n≥1).

17 / 31



Strategy of the proof (assume X = (0, 1)d to simplify)

1. In a first step we show that a resampling scheme ρ is P̃b(X )-consistent if
and only if, for any π ∈ P̃b(X ) and sequence (ζN )N≥1 such that
πN =⇒ π, P-a.s., we have

lim
N→∞

‖ρ(ζN )h − πN
h ‖? = 0, P− a.s. (2)

with h : X → (0, 1) a measurable pseudo-inverse of the Hilbert space
filling curve.

2. In a second step, noting that, for every z = (xn,wn)N
n=1 ∈ ZN

‖ρ(z)h − πN
h ‖? = max

m∈1:N

∣∣ m∑
n=1

∆σh(n)
ρ,z

∣∣, h(xσh(1)) ≤ · · · ≤ h(xσh(N))

we show that the hypotheses (H1) and (H2) are sufficient to establish (2),
via a maximal inequality for negatively associated random variables due
to Shao (2000).
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The Hilbert space filling curve
The Hilbert space filling curve H : [0, 1]→ [0, 1]d is a continuous and
surjective mapping.

It is defined as the limit of a sequence (Hm)m≥1

First six elements of the sequence (Hm)m≥1 for d = 2 (source: Wikipedia)
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What about systematic sampling?

We show that systematic resampling is not consistent in the sense of the above
definition, i.e. there exist a continuous probability measure π and a random
sequence (ζN )N≥1 such that πN ⇒ π, P-a.s., but

P
(
ρsyst(ζN )⇒ π

)
< 1.

Open question 1: Is systematic resampling consistent when applied on
{(xσN (n),W σN (n))}N

n=1, where σN is a random permutation of 1 : N ?

Open question 2: More generally, is a resampling scheme ρ is such that
supz,n |∆n

ρ,z | ≤ C consistent when applied on {(xσN (n),W σN (n))}N
n=1?

=⇒ Use of deterministic resampling mechanism?
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Digression: Variance of systematic sampling
Let h(x1) ≤ · · · ≤ h(xN ) and, for σ a permutation of 1 : N and n ∈ 1 : N let

Fσ(n) =
n∑

i=1
W σ(i), an

σ,N = {NFσ,N (σ−1(n)− 1)}, bn
σ,N = {NFσ,N (σ−1(n))}

and, assuming that minn W n > 0,

cn
σ,N =

{
1, bn

σ,N > an
σ,N

−1 bn
σ,N < an

σ,N
, I n

σ,N =
{

[an
σ,N , bn

σ,N ), cn
σ,N = 1

[bn
σ,N , an

σ,N ), cn
σ,N = −1.

Then, following L’Ecuyer and Lemieux (2000), under systematic resampling

Var
( 1

N

N∑
i=1

ϕ
(
xAn))

= 1
N 2

N∑
n=1

N∑
m=1

ϕ(xn)ϕ(xm)cn
σ,N cm

σ,N
(
λ1(I n

σ,N ∩ I m
σ,N )− λ1(I n

σ,N )λ1(I m
σ,N )

)
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Hilbert ordered stratified resampling: Variance
As mentioned above, a good resampling scheme is such that

Var
(
ρ(z)(ϕ)

)
is small (for some class of functions) and all z ∈ ZN .

We show that Hilbert ordered stratified resampling is such that
I For any (ζN )N≥1 such that πN ⇒ π and any continuous and bounded ϕ,

N Var
(
ρ(ζN )(ϕ)

)
→ 0.

I For any N ≥ 1, z ∈ ZN

Var
(
ρ(ζN )(ϕ)

)
≤ Cϕ,dN−1−1/d

for sufficiently ’smooth’ ϕ (e.g. ϕ Lipschitz continuous if X = (0, 1)d).

=⇒ Improvements compared to multinomial resampling, but the gains
decrease quickly with d.
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Hilbert ordered stratified resampling

It is easy to see that for d = 1 and for ordered stratified/systematic resampling

∥∥ 1
N

N∑
n=1

δxAn −
N∑

n=1
W nδxn

∥∥
?
≤ 1

N , a.s.

(the upper bound is almost optimal).

Remark: For multinomial resampling,

∥∥ 1
N

N∑
n=1

δxAn −
N∑

n=1
W nδxn

∥∥
?

= O(N−1/2 log log N ), a.s.
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An interesting open question
For d ≥ 1, the best we can hope for with ordered stratified resampling is

∥∥∥ 1
N

N∑
n=1

δxAn −
N∑

n=1
W nδxn

∥∥∥
?
≤ C

N 1/d , a.s.

However, its is known (Aistleitner and Dick, 2014, Theorem 1) that for every
M ≥ 1 there exists a point set x̂1:M such that

∥∥∥ 1
M

M∑
m=1

δx̂m −
N∑

n=1
W nδxn

∥∥∥
?
≤ 63

√
d
(
2 + log2(M )

) 3d+1
2

M (3)

Open question 3: How can we construct such a point set x̂1:M (note that
elements of x̂1:M don’t need to be elements of x1:N ).

Open question 4: Can we achieve (3) with a sampling/resampling
algorithm, i.e. so that elements of x̂1:M are elements of x1:N ?

=⇒ What is the best we can do with a sampling mechanism?
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Extensible resampling schemes

As already mentioned, stratified and systematic resampling usually
outperform multinomial resampling in practice.

In particular, the variance Var
(
N−1∑N

n=1 ϕ(xAn )
)

is always smaller with
stratified/pivotal (thanks Guillaume!) resampling than with multinomial
resampling

However, and contrary to multinomial resampling, stratified/systematic/
pivotal resampling are not extensible.

Open question 5: Does there exist an extensible resampling scheme for
which Var

(
N−1∑N

n=1 ϕ(xAn )
)

is always smaller than with multinomial
resampling?

=⇒ useful to increase the number of particles in SMC whenever needed.
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Digression: Chairman assignment problem
It is known that, for N > 1,

sup
{W n}N

n=1

inf
(am)m≥1

sup
n∈1:N ,m∈1:M

|
M∑

m=1
1(am = n)−MW n| = 1− 1

2(N − 1)

Tijdeman (1979) provides an algorithm that, for given {W n}N
n=1, generates a

sequence (am)m≥1 for which

D({W n}N
n=1) := sup

n∈1:N ,m∈1:M
|

M∑
m=1

1(am = n)−MW n| ≤ 1− 1
2(N − 1)

and thus has the optimal worst case behaviour; that is,

sup
{W n}N

n=1

D({W n}N
n=1) = 1− 1

2(N − 1) .

Open question 6: Can this result be used to provide an extensible
(re)sampling algorithm with good properties?
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MCMC basics
MCMC algorithms can be used to sample a trajectory {xn}N

t=1 of a Markov
chain (xt)t≥1 having π as invariant distribution.

Then, I = Eπ[ϕ] is estimated by

1
N

N∑
n=1

ϕ(xn) (4)

Problems:
1. The number of distinct values in the set {xn}N

t=1 is (much) smaller than
N .

2. The random variables (xt)t≥1 are autocorrelated.

Consequently, N needs to be very large for the estimate (4) to give a good
approximation of I

=⇒ large memory cost and computing (4) may be costly when evaluating ϕ
is expensive.
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MCMC thinning: Goal

Construct a point set {x̂m}M
m=1, with M � N , such that:

π̂M = 1
M

M∑
m=1

δx̂m ≈ 1
N

N∑
n=1

δxn =: πN .

=⇒ Related problem: Construction of coresets in Big Data settings.

Main question: If we want {x̂m}M
m=1 to be a sample from {xn}N

n=1, how
should we define the inclusion probabilities in a meaningful way?

=⇒ Can a simple sampling procedure be used to construct a good set
{x̂m}M

m=1?

=⇒ use of reservoir method for online point selection?
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MCMC thinning: First idea

Discard k − 1 out of k observations, with k chosen so that cor(Xt ,Xt+k) is
small.

This idea has been proved (for d = 1) to improve statistical efficiency if k is
well-chosen and the cost of evaluating ϕ is large enough (Owen, 2017).

=⇒ The main limitation is that the optimal thinning (i.e. k) depends on the
particular function ϕ and is hard (impossible?) to establish in practice.
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MCMC thinning: Second approach
Choose {x̂m}M

m=1 such that

(x̂1, . . . , x̂M ) ∈ arg min
(z1,...,zM )

Wp

( 1
M

M∑
m=1

δzm , π
N
)
., p ≥ 1 (5)

Then, on the one hand (Weed and Bach, 2017)

E
[
Wp(π̂M , πN )

]
= O(M−

1
2p )

while, on the other hand (Dudley, 1968)

E
[
Wp(πN , π)

]
= O(N− 1

d )

(for continuous π)
Remark: This approach has been proposed in Claici and Salomon (2018) to
build coresets in Big Data setting.
Problem: Solving (5) for p = 2 is doable (see Claici and Salomon, 2018) but
is very expensive.
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Conclusion

Sampling from a finite population is a crucial step of SMC

It remains some open questions of interest for the SMC community, notably
the study of resampling mechanisms under random ordering

=⇒ validity of systematic resampling? validity of deterministic resampling?
CLT for SMC estimates based on stratified/pivotal resampling?

In MCMC/Big Data set-up, the (streaming) sampling problem of interest is
largely unsolved.
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