Milano Chemometrics and QSAR Research Group

Roberto Todeschini
Viviana Consonni
Davide Ballabio
Francesca Grisoni
Miriam Cortinovis

Department of Environmental Sciences University of Milano - Bicocca P.za della Scienza, 1-20126 Milano (Italy) Website: michem.disat.unimib.it/chm/

Tournament tables, Power-Weakness Ratio and Hasse diagrams: an informative combination for multi-criteria decisionmaking.

Roberto Todeschini
Viviana Consonni
Davide Ballabio
Francesca Grisoni
Miriam Cortinovis

Prologue

The starting points of this work are our two previous papers published in 2015:

R. Todeschini, F. Grisoni, S. Nembri, (2015)

Weighted power-weakness ratio for multi-criteria decision making. Chemometrics and Intelligent Laboratory Systems, 146, 329-336.
F. Grisoni, V. Consonni, S. Nembri, R. Todeschini (2015)

How to weight Hasse diagrams and reduce incomparabilities. Chemometrics and Intelligent Laboratory Systems, 147, 95-104.

Tournament table

The results of a Round Robin tournament of N players can be conveniently expressed by mean of a tournament table (dominance matrix) as:

$$
t_{i j}+t_{j i}=1
$$

H.A. David (1971)

Ranking the Players in a Round Robin Tournament.
Review of the International Statistical Institute, 39, 137-147.

Tournament table

The results of a Round Robin tournament of N players can be conveniently expressed by mean of a tournament table (dominance matrix) as:

	P1	P2	P3	\ldots	\ldots
P1	PN				
	0	1	t_{13}	\ldots	\ldots
P2	0	0	t_{23}	\ldots	\ldots
P3	t_{31}	t_{32}	0	\ldots	$\mathrm{t}_{2 \mathrm{~N}}$
\ldots	\ldots	\ldots	$\mathrm{t}_{3 \mathrm{~N}}$		
\ldots	\ldots	\ldots	\ldots	\ldots	
$\mathbf{P N}$	$\mathrm{t}_{\mathrm{N} 1}$	$\mathrm{t}_{\mathrm{N} 2}$	$\mathrm{t}_{\mathrm{N} 3}$	\ldots	\ldots

$$
t_{i j}+t_{j i}=1
$$

H.A. David (1971)

Ranking the Players in a Round Robin Tournament.
Review of the International Statistical Institute, 39, 137-147.

Tournament table

Tournament table $\mathbf{T}_{\mathbf{1}}$. For each $t_{i j}: 1$ if the P_{i} player won over $\mathrm{P}_{j}, 0$ if P_{j} won, 0.5 if they drew the match.

$\mathbf{T}_{\mathbf{1}}$	P1	P2	P3	P4	P5
P1	0	1	1	0.5	0
P2	0	0	1	0.5	0.5
P3	0	0	0	1	1
P4	0.5	0.5	0	0	0.5
P5	1	0.5	0	0.5	0

Sometimes, some conflicting rings arise:

1) Ranking cannot be decided
2) Transitivity property is lost

$$
P 1>P 3>P 5>P 1
$$

The row sum (Copeland score) can used for ranking:

P1: 2.5
$\mathrm{P} 2=\mathrm{P} 3=\mathrm{P} 5=2$
$P 4=1.5$
... but the ranking power can be low!

Tournament table

A tournament table can be derived from any data matrix $\mathbf{X}(\mathrm{N}, \mathrm{p})$, where N is the number of objects and p the number of variables, i.e. the considered criteria.

$$
\mathbf{X} \rightarrow \mathbf{T}_{\mathbf{w}}
$$

The general expression for this transform is defined by comparing objects pairwise:

$$
t_{i j}^{\mathrm{W}}=\sum_{k=1}^{p}\left[\begin{array}{c}
w_{k} \\
\cdot
\end{array} \delta_{i j, k} \quad \text { where } \quad \delta_{i j, k}=\left\{\begin{array}{cc}
1 & \text { if } x_{i k} \triangleright x_{i k} \\
\begin{array}{cc}
0.5 & \text { if } x_{i k} \triangleq x_{j k} \\
0 & \text { if } x_{i k} \triangleleft x_{j k}
\end{array}
\end{array} \text { and } \sum_{k=1}^{p} w_{k}=1\right.\right.
$$

... where the main differences with respect to the Hasse approach are ...

Tournament table

A tournament matrix can be derived from any data matrix $\mathbf{X}(\mathrm{N}, \mathrm{p})$, where N is the number of objects and p the number of variables, i.e. the considered criteria.

$\mathbf{X} \rightarrow \mathbf{T}_{\mathbf{w}}$

The general expression for this transform is defined by comparing objects pairwise:

$$
t_{i j}^{\mathrm{W}}=\sum_{k=1}^{p} w_{k} \cdot \delta_{i j, k} \quad \text { where } \quad \delta_{i j, k}=\left\{\begin{array}{cl}
1 & \text { if } x_{i k} \triangleright x_{j k} \\
0.5 & \text { if } x_{i k} \triangleq x_{j k} \\
0 & \text { if } x_{i k} \triangleleft x_{j k}
\end{array} \text { and } \sum_{k=1}^{p} w_{k}=1\right.
$$

A set of thresholds are also derived from the tournament table:

$$
\mathbf{X} \rightarrow \mathbf{T}_{\mathbf{W}} \rightarrow\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}
$$

Tournament table

Analyzing thresholds of the tournament table

$$
0.5 \leq t^{*} \leq 1
$$

The following transforms are performed

Power-Weakness Ratio

For any squared asymmetrical matrix, the Perron-Frobenius theorem guarantees the existence of a positive eigenvalue associated with an eigenvector \mathbf{e} having positive values.

Tournament table Tw

Kendall (1955) proposed to use the eigenvector values to rank the objects, thus also removing possible lost of transitivity:

$$
\mathbf{T}_{\mathrm{w}} \rightarrow \mathbf{e}
$$

Ramanujacharyulu (1964) proposed to use also the eigenvector values calculated on the transpose of Tw:

$$
\mathbf{T}_{\mathrm{w}}^{\mathrm{T}} \rightarrow \mathbf{e}^{*}
$$

Power-Weakness Ratio

... then the PWR of the i-th object was defined as:

$$
P W R_{i}=\frac{e_{i}}{e_{i}^{*}}
$$

Indeed, the first eigenvector awards good players able to win with other good players, while the second eigenvector characterizes bad players which loss with other bad players.

Power-Weakness Ratio

Tournament table $\mathbf{T}_{\mathbf{1}}$. For each $t_{i j}: 1$ if the P_{i} player won over $\mathrm{P}_{j}, 0$ if P_{j} won, 0.5 if they drew the match.

$\mathbf{T}_{\mathbf{1}}$	P1	P2	P3	P4	P5
P1	0	1	1	0.5	0
P2	0	0	1	0.5	0.5
P3	0	0	0	1	1
P4	0.5	0.5	0	0	0.5
P5	1	0.5	0	0.5	0

Results of PWR scoring on table $\mathbf{T}_{\mathbf{1}}$. Entries of the Perron-Frobenius eigenvector calculated on tournament table (\mathbf{e}_{PF}) and on its transpose ($\left.\mathbf{e}_{\mathrm{PF}}^{*}\right)$ for each player are also reported.

Players	$e_{\text {PF }}$	$e_{\text {PF }}{ }^{*}$	PWR
P1	0.529	0.370	1.368
P2	0.430	0.442	0.976
P3	0.426	0.414	1.025
P4	0.364	0.535	0.714
P5	0.471	0.459	1.023

Eigenvector (T_{w}) Eigenvector $\left(\mathrm{T}^{\top}{ }_{\mathrm{w}}\right)$

Tw transform

thresholds

PWR ranks

PWR Diagrams

Hasse transform

$$
\left[\mathbf{H}^{\mathrm{R}}\left(t^{*}\right)\right]_{i j}=\left\{\begin{array}{rl}
+1 & \text { if } t_{i j}^{\mathrm{W}} \geq t^{*} \\
-1 & \text { if } t_{i j}^{\mathrm{W}} \leq 1-t^{*} \\
0 & \text { otherwise }
\end{array} \quad 0.50<t^{*} \leq 1\right.
$$

Summary

Comparisons of classification methods

- 32 data sets
- Validation procedure: leave-one-out
- Parameter: Non-Error-Rate (NER\%)

10 CLASSIFIERS

N3	PLS-DA
BNN	CAIMAN
KNN	CART
LDA	SVM/LIN
QDA	SVM/RBF

Comparisons of classification methods

Id	Data set	N3	BNN	KNN	LDA	QDA	PLSDA	CART	CAIMAN	$\begin{aligned} & \text { SVM } \\ & \text { /LIN } \end{aligned}$	$\begin{aligned} & \text { SVM } \\ & / \mathrm{RBF} \end{aligned}$
1	IRIS	96.0	96.7	96.7	98.0	97.3	90.2	94.0	98.0	97.3	97.3
2	WINES	96.2	98.6	97.7	99.1	99.5	99.5	86.2	98.7	99.1	99.5
3	PERPOT	99.0	99.0	99.0	85.0	92.0	86.0	97.0	97.0	87.0	100.0
4	ITAOILS	96.2	95.2	94.7	94.7	95.9	95.9	87.2	82.8	94.7	95.9
5	SULFA	77.4	73.8	73.8	45.2	69.4	74.0	81.5	58.7	50.0	88.7
6	DIABETES	73.6	71.1	70.5	72.7	69.6	75.1	68.8	73.5	72.3	72.8
7	BLOOD	67.9	62.2	62.3	53.7	54.5	68.7	62.1	59.3	50.0	64.1
8	VERTEBRAL	80.8	81.6	80.2	80.7	84.0	82.1	76.9	56.0	83.3	84.3
9	SEDIMENTS	88.9	88.9	89.9	66.9	69.4	79.4	84.3	61.1	50.5	69.9
10	BIODEG	84.5	85.3	85.4	77.0	78.6	79.9	79.6	65.6	81.5	83.8
11	DIGITS	74.2	72.3	73.6	74.0	68.6	41.0	65.2	77.3	74.9	74.5
12	APPLE	94.0	92.3	91.9	91.9	87.6	95.4	92.1	83.9	94.4	92.3
13	TOBACCO	92.3	92.3	92.3	84.6	80.8	88.5	96.2	92.3	92.3	92.3
14	SCHOOL	95.3	96.6	96.2	90.8	95.2	89.4	86.8	95.0	94.0	96.4
15	BANK	86.9	91.2	86.9	86.5	88.5	84.9	86.5	88.5	88.5	88.9
16	HIRSUTISM	88.3	90.1	90.0	55.4	81.4	84.1	70.5	52.9	72.7	93.8
17	THIOPHENE	83.3	83.3	83.3	79.2	79.2	90.5	58.3	83.3	83.3	83.3
18	SUNFLOWERS	92.3	90.4	91.2	87.8	90.8	92.7	82.1	88.9	90.8	96.9
19	VINAGRES	100.0	91.7	95.8	100.0	87.5	100.0	67.3	100.0	100.0	100.0
20	CHEESE	76.1	78.3	78.1	78.8	82.9	84.7	63.9	77.5	76.2	85.6
21	ORUJOS	98.2	98.4	98.2	92.6	94.1	93.9	88.4	62.5	95.7	98.2
22	MEMBRANE	94.4	94.4	94.4	88.9	94.4	96.7	91.7	94.4	91.7	94.4
23	METHACYCLINE	82.5	86.7	82.5	45.8	81.7	55.8	65.8	80.0	54.2	82.5
24	SIMUL4	100.0	100.0	100.0	28.1	100.0	46.9	90.6	93.8	34.4	100.0
25	VEGOIL	99.0	100.0	99.0	98.0	82.2	99.0	99.3	89.9	99.3	100.0
26	CRUDEOIL	89.2	84.8	87.9	85.2	73.6	89.7	64.9	78.4	85.3	84.8
27	SAND	93.9	94.9	93.9	93.9	93.9	93.9	81.9	93.9	94.9	94.9
28	HEMOPHILIA	85.6	85.6	82.8	85.6	83.9	85.6	78.9	86.7	86.7	85.6
29	COFFEE	100.0	100.0	100.0	100.0	92.9	100.0	100.0	100.0	100.0	100.0
30	OLITOS	89.1	73.6	70.4	83.1	80.0	94.0	58.0	77.2	87.6	87.6
31	FISH	92.6	92.9	92.9	96.4	85.2	100.0	88.7	89.0	100.0	100.0
32	HEARTHDISEASE	69.9	65.2	63.2	68.8	66.2	69.7	66.1	67.3	68.0	68.0

Comparisons of classification methods

Principal Component Analysis

Comparisons of classification methods

Minimum Spanning Tree

Regularized Hasse diagrams

$\mathrm{t}^{*}=0.92$

$$
t^{*}=0.81
$$(8) (B)

(8) (9)
$\mathbf{t}^{*}=\mathbf{0 . 7 3}$

$$
t^{*}=0.58
$$

PWR diagrams ($\mathbf{t}^{*}=0.5$)

PWR diagrams ($\mathbf{t}^{*}=0.6$)

PWR diagrams ($\mathbf{t}^{*}=0.8$)

Anilines data set

45 anilines described by 4 criteria:

1. log Kow (octanole-water partition coeff.)
2. log VP (vapor pressure)
3. Biodegradability (1: yes; 2: no)
4. PNEC (Predicted No-Effect Concentration)

Study focused on:

1. Hasse diagram (HD)
2. From HD to MonteCarlo ranking
3. From HD to Average ranking

Anilines Hasse diagrams

Figure 3. Hasse diagram of the 45 anilines based on the 4 descriptors given in table 2. The single compounds are identified through their ID (cf. table 2).

Anilines: PWR diagram ($\mathbf{t}^{\star}=0.5$)

PWR
Equal weights
score

Anilines: PWR diagram $\left(\mathbf{t}^{\star}=0.88\right)$

PWR
Equal weights

Anilines: ranks comparison

Conclusions

$>$ Possibility to weight the criteria
$>$ Threshold selection offers different opportunities to rank the objects
> The Hasse transform from tournament table produces a family of regularized Hasse diagrams, thus also allowing a reduction of incomparabilities
$>$ PWR is able to rank objects by a well founded theory
> PWR can remove inconsistencies from the tournament table
> PWR diagrams introduce a quantitative axis
> PWR diagrams can recover several incomparabilities present in the Hasse diagrams
> Statistical analysis can be performed on both the family of regularized-Hasse diagrams and the set of PWR rankings

