

Indicators for Sustainability Assessment in the Procurement of Civil Engineering Services

Nora Pankow, Rainer Bruggemann, Jan Waschnewski, Regina Gnirss, Robert Ackermann, Matthias Finkbeiner

Nora Pankow | TU Berlin | Sustainable Engineering | pankow.nora@gmail.com 12th Partial Order Workshop | Neuchatel 27th October 2018

"Sustainable development meets the needs of the present without compromising the ability of future generations to meet their own needs."

Brundtland Commission 1987

Agenda 2030

- Passed on by the UN in 2015 for a joint solution for global challenges
- Definition of 17 Sustainable Development Goals (SDG) with ecological, economical and social aspects
- Member states declare themselves ready to comply to implement the SDG on a national level and report the progress on an international forum
- Implented into the German Sustainability Strategy in 2017
- \rightarrow Further incorporation into society necessary

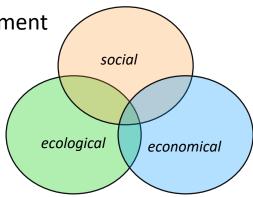


Fig.1 Triple Bottom Line of Sustainability

Berlin Water Company

Tab. 1 Frameworks for the procurment of civic engineering services in the BWB

Regional framework	-	Administrative provision procurement and environment (VwVBU)
		Order and procurement regulations of Berlin
Legal framework	-	Procurement regulations
		Environmental regulations
Company intern framework	-	Sustainability indicators of the company

Implementation of sustainable Indicators

into the procurement of civil engineering service

- 1. How can sutainable Indicators together with other Indicators be implemented?
- 2. How can the developed Multi-Indicator System be assessed?

3 Method Implementation of sustainable Indicators

 \rightarrow How can sustainable indicators be implemented?

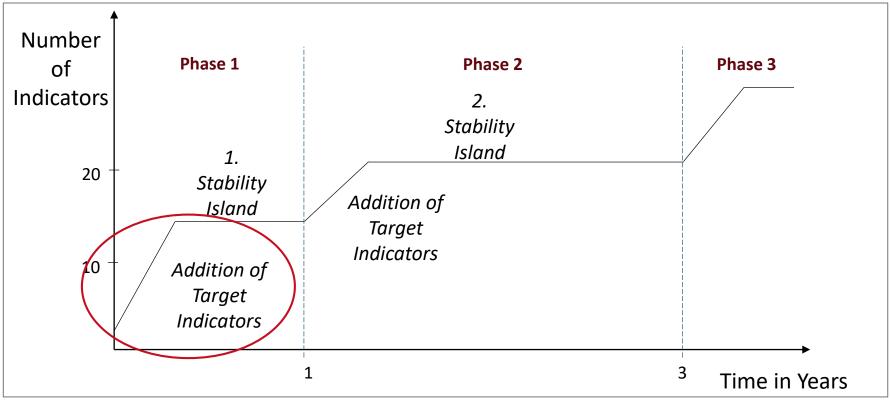
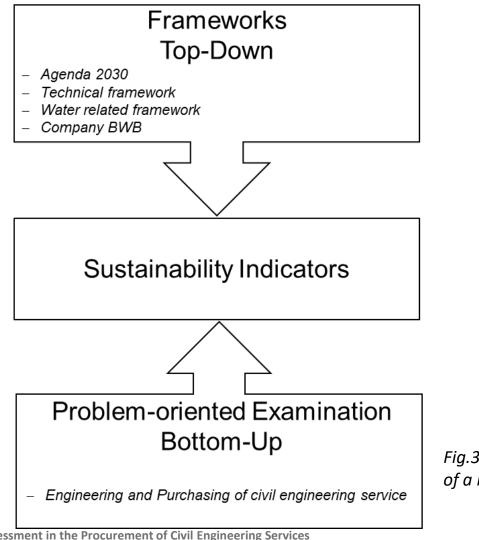


Fig.2 Implementation of Indicators over time

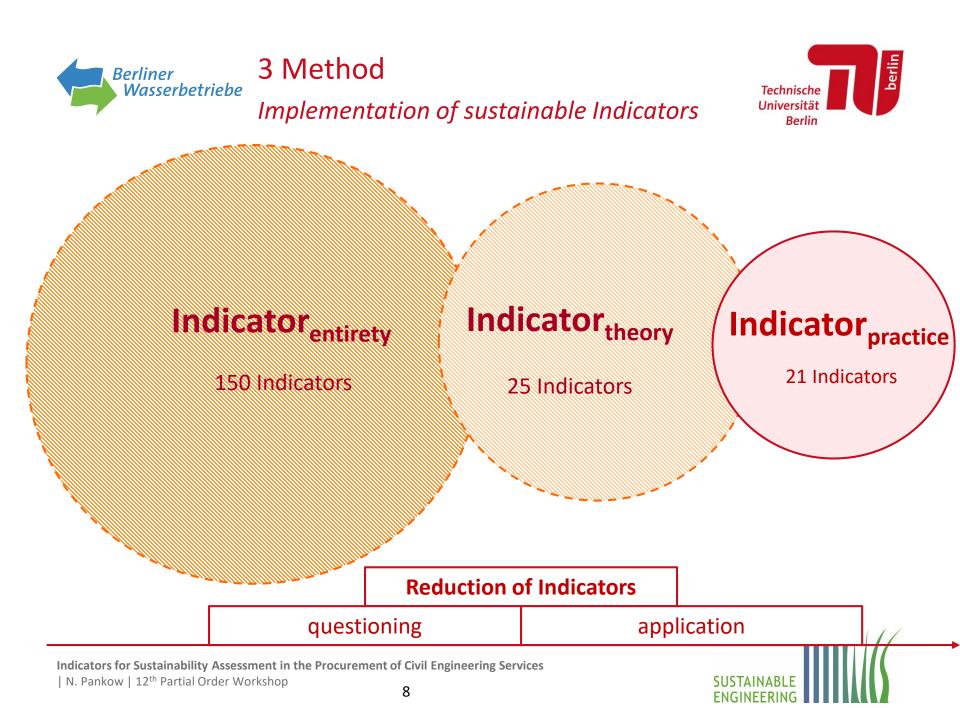


3 Method

Implementation of sustainable Indicators

Fig.3 Method for the development of a Multi-Indicator System

Indicators for Sustainability Assessment in the Procurement of Civil Engineering Services



Tab. 2 Frameworks for a MIS for the procurment of civic engineering services

National framework	- Sustainable Development Goals of Germany	
	- VDI-Indicators of the technical assessment	
	guideline	
Technical framework	- NaCoSi-Indicators for the sustainability	
	controlling of residential water management	
	systems	
Regional framework	- Administrative provision procurement and	
	environment (VwVBU)	
	- Order and procurement regulations of Berlin	
Legal framework	- Procurement regulations	
	- Environmental regulations	
Company intern framework	- Sustainability indicators of the company	
Indicators for Sustainability Assessment in the Procurement of Civil Engineering Services		

Indicator_{entirety}

Indicator_{theory}

Involvement of Employees

- Involvement of professionals from different departments
- Face-to-Face questioning for a general understanding
- **Collective selection round** with scoring of indicators
- Each participant was given 10 points to mark relevant indicators

Indicator_{theory}

Indicator_{practice}

Check on Applicability

- Check of selected indicators
- Screening for a causal relationship to civil engineering and purchasing

Tab.3 Selected Indicators with with appointed sustainable dimensions (social: orange, green: ecological; blue: economical)

cconon	
11	tariff stability
12	Air pollutants (health)
13	worker safety
14	competence management
16	Free space loss
18	acceptance
19	Affected sources of water
110	energy intensity
I11	power consumption
I13	GHG emissions
114	other significant air emissions

115	Biodiversity of water
116	waste
117	Secondary raw Materials
118.1	investment costs
118.2	operating cost
119	Spending research and development
120	creativity
121	Environmental Management External
122	Innovation and adaptability
123	robustness

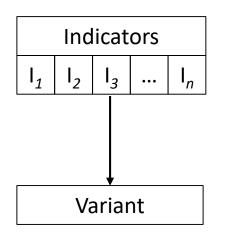


Fig.4 Assessment of a Variant with multiple Indicators

Example of MCDA

Value Benifit Analysis
Dashboard of Sustainability
Partial Order

- Sustainability harbors different protection goals
- Analysis has to consider conflict of objectives
- Systematic assessement of a complex problem with multiple indicators¹
- MCDA support the decision between variants

¹ Steinberg 2002

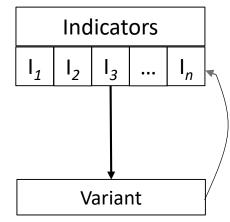
Technische Universität Berlin

- Each indicator is allocated to a partial use value which can be summed to a total value for each variant¹
- The use value comprised a certain weight for each indicator
- Weight can be derived by different methods (e.g. direct ranking)
- Direct ranking method gives each indicator a certain ranking, which determines the weight²

Dashboard of Sustainability

- Developed for the Millennium Development Goals (MDG)³
- The software was developed for the assessment of cities and countries and was also created for non-specialist users⁴
- The tool visualizes the results in a coloured dashboard⁴

¹Zangemeister 1971.



- Non-parametric method were objects are related by the ≤-relation
- A poset is subject to the three axioms of reflexivity, antisymmetry and transitivity⁵
- The sorting of variants or objects using the ≤-relation results in a rating network with characteristic structures, a so-called Hasse Diagram (HD)⁶

Assessment of Indicators with PyHasse

- Indicators were treated as objects and the variants as attributes
- When the indicators are the objects, the variants can be used to characterize the indicators⁷
- For the assessment of the indicators the case examples were analysed in two different analysis

Indicators for Sustainability Assessment in the Procurement of Civil Engineering Services | N. Pankow | 12th Partial Order Workshop 13

⁷ Bruggemann 2018

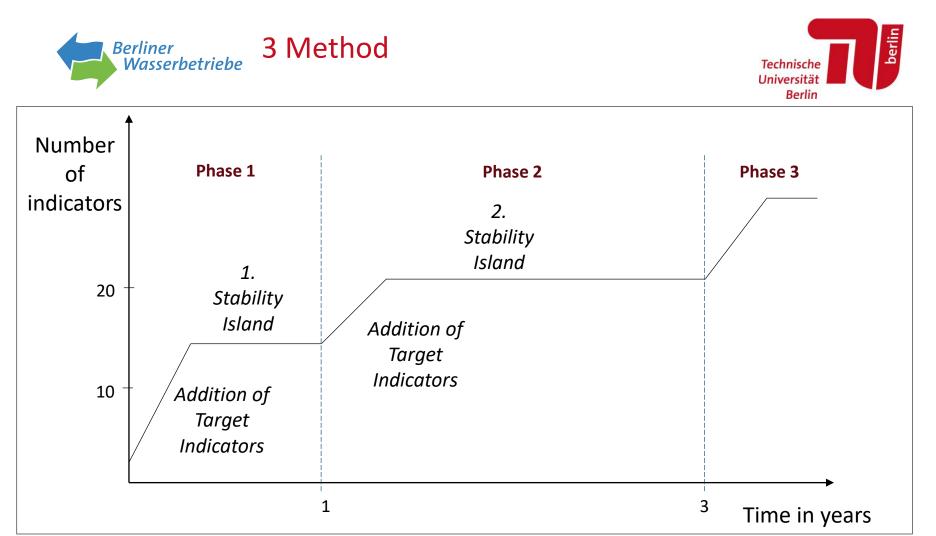
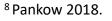


Fig.2 Implementation of Indicators over time

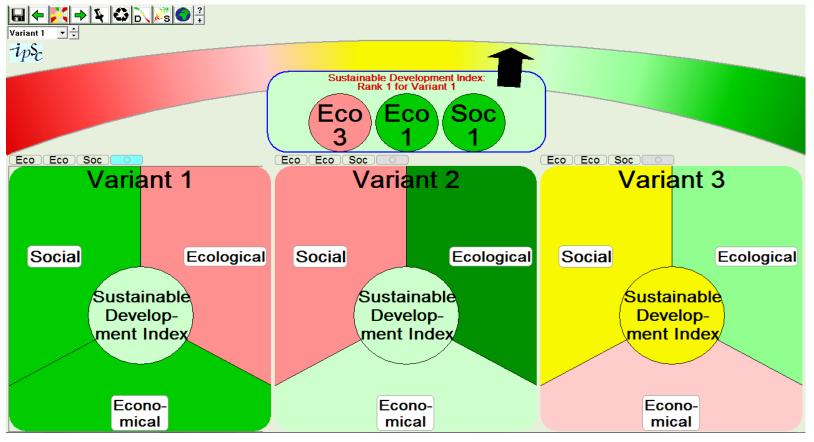

- Case examples were previous projects at the BWB⁸
- In each Case Example different variant were identified⁸:
 - 1. Exhaust Air Treatment in a Wastewater Treatment Plant (WWTP)

-Variant 1 co-treatment in the aeration

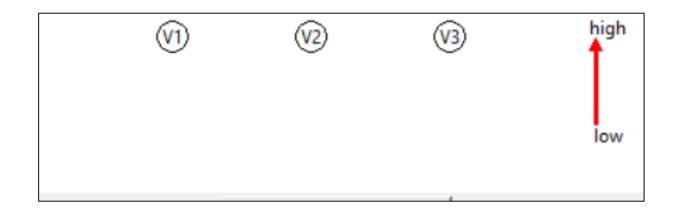
-Variant 2 fume scrubber

-Variant 3 UV treatment

- 2. Renewal of the Digester Chambers for the WWTP
- 3. Treatment of Process Water in WWTP
- 4. Sewer System Rehabilitation with Cured-in-place pipe (CIPP)
- Case Examples were analysed with three MCDAs



social 118.2 ecological economic 118.1



 \rightarrow Variants couldn't be compared

 \rightarrow In HD visualized by antichains

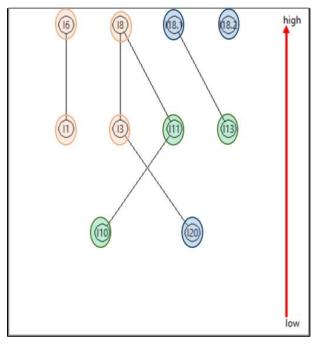


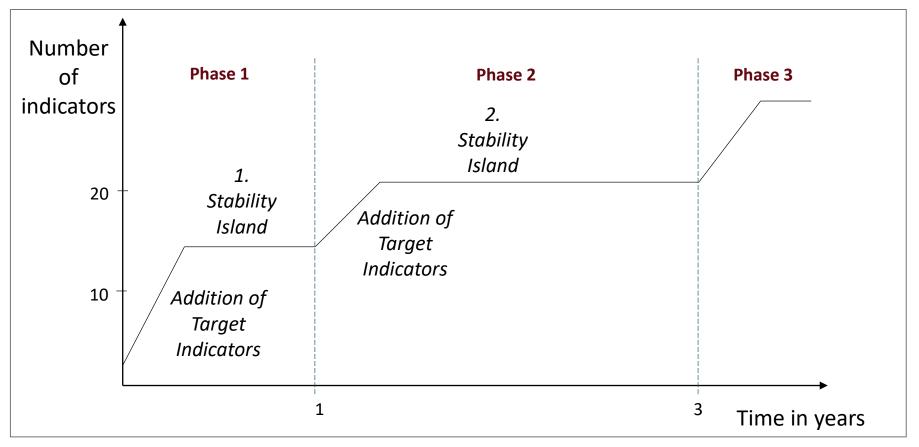
Fig. 10 HD of indicators with the appointed sustainable dimensions of the Exhaust Air Treatment

Seperation of components

 \rightarrow high degree of seperation

Dominance of dimensions

 \rightarrow low degree of dominance



1. How can sutainable Indicators be implemented?

- In addition of various Indicator Sets led to a high number of indicators
- participation of employees significantly reduced the indicators from over 150 to 24 indicators
- Evaluation methods showed practicability and easy to interpret graphics
- Due to the weighting, the value benefit analysis has a subjective value attitude. The Dashboard of Sustainability simplifies the results of the colour representation more strongly, thus losing the statement of transparency.
 - 2. How can the Multi-Indicator System be assessed?
- PyHasse showed an option to asses the MIS without other criteria
- 4 Case Examples aren't statistical stable
- However, the indicator rating used with PyHasse could be further developed

Fig.2 Implementation of Indicators over time

Thank you for your attention!

- Bruggemann, R. (2018): PyHasse. Online verfügbar unter https://www.pyhasse.org/start, zuletzt aktualisiert am 14.02.2018.
- Bruggemann, R.; Patil, Ganapati P. (2011): Ranking and Prioritization for Multi-indicator Systems. Introduction to Partial Order Applications. New York, NY: Springer Science+Business Media, LLC (Environmental and Ecological Statistics, 5).
- Bundesregierung (2016): Deutsche Nachhaltigkeitsstrategie. Neuauflage 2016. Hg. v. Die Bundesregierung. Online verfügbar unter https://www.bundesregierung.de/Content/DE/_Anlagen/2017/01/2017-01-11nachhaltigkeitsstrategie.pdf;jsessionid=AC20D6F985F308DE387921C12C264936.s1t1?__blob=publicationF ile&v=5, zuletzt geprüft am 20.01.2017.
- BWB (2016): Nachhaltigkeitsbericht 2016. Hg. v. Berliner Wasserbetriebe (BWB). Berlin.
- Coen, R. (2000): Konzeptionelle Aspekte von Nachhaltigkeitsindikatorensystemen. In: *TA-Datenbank-Nachrichten* 9, S. 47–53. Online verfügbar unter https://www.tatup-journal.de/downloads/2000/tadn002_coen00a.pdf, zuletzt geprüft am 26.02.2018.
- O'Conner, J. (2003): The Dashboard manuel. Hg. v. United Nations. Online verfügbar unter www.webalice.it./jj2006/MdgDashboard.htm, zuletzt geprüft am 14.02.2018.
- Pankow, N. (2018): Nachhaltige Indikatoren für die Planung nd Vergabe von Ingenieurbauleistungen. Masterarbeit. Technische Universität Berlin, Berlin. Sustainable Engineering.
- Restrepo, G.; Bruggemann, R. (2008): Dominance and separability in posets, their application to isoelectronic species with equal total nuclear charge. In: *J Math Chem* 44 (2), S. 577–602. DOI: 10.1007/s10910-007-9331-x.

- Sachs, J. D. (2012): From Millennium Development Goals to Sustainable Development Goals. In: *The Lancet* 379 (9832), S. 2206–2211. DOI: 10.1016/S0140-6736(12)60685-0.
- Saltelli, A.; Giovannini, E.; Tarantola, S.; Saisana, M.; Hoffman, A.; Nardo, M. (2005): OECD Statistics Working Papers (2005/03).
- Steinberg, C. (2002): Nachhaltige Wasserwirtschaft. Entwicklung eines Bewertungs- und Prüfsystems. Berlin: Erich Schmidt (Initiativen zum Umweltschutz, 36).
- UN (2015): Die Transformation unserer Welt: die Agenda 2030 für nachhaltige Entwicklung. Hg. v. United Nations. New York.
- Wilkens, I. (2012): Multikriterielle Analyse zur Nachhaltigkeitsbewertung von Energiesystemen. Von der Theorie zur Praktischen Anwendung. Dissertation. Technische Universität Berlin, Berlin. Fakultät III-Prozesswissenschaften, zuletzt geprüft am 14.02.2017.
- Zangemeister, C. (1971): Nutzwertanalyse in der Systemtechnik. Eine Methodik zur multidimensionalen Bewertung und Auswahl von Projektalternativen. Teilw. zugl.: Berlin, Univ., Diss., 1970. 2. Aufl. München: Wittemann.
- Žižović, M.; Damljanović, N.; Žižović, M. R. (2017): Multi-Criteria Decision Making Method for Models with the Dominant Criterion. In: *Filomat* 31 (10), S. 2981–2989. Online verfügbar unter http://www.jstor.org/stable/26195029.

1.

WWTP Wassmansdorf

https://www.wassmannsdorf.bwb.de/

2.

http://www.bwb.de/content/language1/html/fuehrungen.php

3.

https://www.welt.de/newsticker/news3/article106244825/Die-heiligen-Hallen-am-Nikolassee.html

