

.

Alterna	atives Assessment Framework	SPLT S
Step 1:	Identify the Chemical of Concern.	
Step 2:	Scoping and Problem Formulation.	
Step 3:	Identify Potential Alternatives.	
Step 4.	Refer Cases with Limited or No Alternatives to Research and Development.	
Step 5.	Assess Physicochemical Properties.	
Step 6.	Assess Human Health and Ecological Hazards, and Assess Comparative Exposure.	
Step 7.	Integration of Information on Safer Alternatives.	
Step 8.	Life Cycle Thinking.	
Step 9.	Optional Assessments: Additional Life Cycle Assessme	ent,
Step 10.	Identify Acceptable Assessments and Refer Cases With No Alternatives to Research and Development.	
Step 11.	Compare or Rank Alternatives.	
Step 12.	Implement Alternatives.	
Step 13.	Research or De Novo Design of Safer Alternatives.	NAS 201

Assessment Calteria		Lead	Comparison Relative to Lead				
Amessi	neur Crueria	(Referenced)	Bismuth	Ceramic	Steel	Tin	Tungsten
	Density	11.34 g/cm					+
Technical and Performance Criteria	Hardness (desirable for "feel" and noise)	Soft Mohrs: 1.5	+	+	+	= (pure) + (alloy)	+
	Malleability (split-shot application)	Yes		50		-	ay
	Low melting point (for home production)	622°F	+	23	4	nto	-
	Corrosion resistant	Yes	-	-	00	-	-
Environmental Criteria	Highly toxic to waterfowl	Yes	+	2001	+	+	+
	Toxic to aquatic species	Yes	+	0,2	+	+	+
	Primary drinking water standards (MCL Action Level)	15 µg/L	artian	7	+ (iron)	+ (FL & MN)	?
Human Health Criteria	Carcinogenicity	ERA D LOA 2B	+	+	+	+	+
	Developmental toxicity	Des (Prop 65)	+	•	+	+	+
	Occupation exposure REL (8-hour TWA)	0.050 mg/m ³	2	+	+	+	+
-	Retail price	Low		-	_/#/+	-	-
Cos	Availability of end product	Excellent	-			-	-

Criteria	Pb	Bi	cer	ste	Sn	W
dens	0	-1	-1	-1	-1	1
hard	0	1	1	1	0	1
mall	0	-1	-1	-1	0	-1
lowm	0	1	-1	-1	1	-1
corr	0	0	0	-1	0	0
hito	0	1	0	1	1	1
toaq	0	1	0	1	1	1
dwst	0	0	0	1	1	0
carc	0	1	1	1	1	1
devt	0	1	1	1	1	1
ocex	0	0	1	1	1	1
repr	0	-1	-1	0	-1	-1
avail	0	-1	-1	-1	-1	-1

The da	ata mat	rix (con	servative	approac	h)	
Criteria	Pb	Bi	cer	ste	Sn	W
dens	0	-1	-1	-1	-1	1
hard	0	1	1	1	0	1
mall	0	-1	-1	-1	0	-1
lowm	0	1	-1	-1	1	-1
corr	0	0	-1	-1	0	0
hito	0	1	-1	1	1	1
toaq	0	1	-1	1	1	1
dwst	0	-1	-1	1	1	-1
carc	0	1	1	1	1	1
devt	0	1	1	1	1	1
ocex	0	-1	1	1	1	1
repr	0	-1	-1	0	-1	-1
avail	0	-1	-1	-1	-1	-1

the flash
The Conclusions
Partial order methodology is useful in the search for alternatives.
Partial order methodology is not specifically complicated and may facilitate assessments
Initially only the very basics of partial ordering is used
Further approaches give further insights
The present study finds Sn (tin) as the optimal alternative
If cost is disregarded a somewhat more clear-cut picture develops

© Awareness Center, 2018

