Leibniz Centre for Agricultural Landscape Research (ZALF)

Identifying drivers of land degradation in Xilingol, China, from 1975–2015

Reporter: Batunacun, Ph.D researcher. Supervisor: Ralf Wieland

Date: 27 Oct 2018

Outlines

Land degradation

Drivers Collection

Partial Order Theory

Results & Discussion

Land degradation

Xilingol, Inner Mongolia, China 120° E 124° E 128° E 96° E 100° E 104° E 108° E 112° E 116° E Z 540 Russia 51° N Hulunbeier Mongolia 51° N Z China 18° Z 48° Ginganmeng aerhi Z 450 Z Changchur 450 Tongliao Shenyang Chifena t2° N Wulanchabu Legend Baotou cities Z Alashanmeng Eerd 🗌 county boundary 🤶 Wuhai Z study area 390 elevation (m) Shi jiazhuang Taivi 1941 250 500 Z Jinan 740 36° 1 km 100° E 120° E 96° E 104° E 108° E 112° E 116° E

Photo source: Batu, 2015

Xilingol, Inner Mongolia, China

Land degradation

Mining Livestock Road Urban/rural

.

Degradation Grassland degradation Surface water loss Woodland loss

Land degradation

Compare and rank the LD drivers at county level in two periods of 1975-2000 and 2000-2015.

- Analyse temporal and spatial LD drivers dynamic in Xilingol.
- Summarize the ecological policies and discuss possible policy for the future.

Drivers Collection

Indicators

Population Livestock

Temperature Precipitation Water bodies

Urban Rural Road Mine

Drivers

Drivers Collection

	Categories	Indicators		
	Human disturbance	Population Livestock		
Drivers	Water condition	Temperature Precipitation Water bodies		
	Urbanization /Industrialization	Urban Rural Road Mine		

Drivers Collection

	Categories	Indicators	Measures
	Human disturbanc	e Population Livestock	→ Density
Drivers	Water condition	Temperature Precipitation Water bodies	→Annual averag →Annual total
	Urbanization /Industrialization	Urban Rural Road Mine	Euclidean Distance

- Features of Partial Order Theory (POR)
- ➢ POR conceptualises the comparison of element.
- Possess more than one attribute.
- ➢ Rank the drivers of land degradation in Xilingol.

- Features of Hasse Diagram Technique (HDT) \succ Visualization of POR.
- \blacktriangleright Posets: The projects and their indicators. Data matrix: Q

 $Q(N \times R)$

Land degradation: Objects Drivers: Indicators

Data organization.

Partial order sets: Posets

Obects/		Urbani	zati	on	Water	condi	tion	Human	dis	turbance
Indicators	Urban	Rural	Road	Mining	Water	Temp	Pre	Рор		Livestock
County 1	V11				••••	,				V1n
County 2	V21									V2n
••••										
County 12	V121				•••••	•				V12n

Normalization and Orientation.

> Normalization:

Normalized value between [0,1]

> Orientation:

Defined as "Strong" and "Weak" Strong: Strong effects on LD process. Weak: Small effect on LD process.

- Hasse Diagram Technique (HDT)
- HDT, exemplified by urbanisation drivers between 2000 and 2015.

• Human disturbance 1975-2000

1975-2000 Human disturbance input data					
coun ty	1975_ро pD	2000_po pD	1978she epD	2000she epD	
			-		
DW	0.01	0.02	0.12	0.40	
EL	0.02	0.05	0.00	0.00	
DL	0.38	0.44	0.73	0.79	
TP	1.00	1.00	1.00	0.53	
ZL	0.11	0.11	0.73	0.38	
ZXB	0.18	0.18	0.75	0.85	
SY	0.03	0.04	0.12	0.24	
SZ	0.00	0.00	0.12	0.15	
XW	0.04	0.04	0.18	0.87	
XL	0.10	0.14	0.01	0.46	
XH	0.08	0.08	0.42	1.00	
AB	0.01	0.01	0.09	0.44	

Notes:

popD: population density sheepD: livestock density

• Human disturbance 1975-2000

1975-2000 Human disturbance input data						
coun ty	1975_ро pD	2000_po pD	1978she epD	2000she epD		
DW	0.01	0.02	0.12	0.40		
EL	0.02	0.05	0.00	0.00		
DL	0.38	0.44	0.73	0.79		
TP	1.00	1.00	1.00	0.53		
ZL	0.11	0.11	0.73	0.38		
ZXB	0.18	0.18	0.75	0.85		
SY	0.03	0.04	0.12	0.24		
SZ	0.00	0.00	0.12	0.15		
XW	0.04	0.04	0.18	0.87		
XL	0.10	0.14	0.01	0.46		
XH	0.08	0.08	0.42	1.00		
AB	0.01	0.01	0.09	0.44		

Dominant livestock chain

With both high population and livestock

Water condition

Urbanization

1975-2000

Order ranking for all drivers in 1975 and 2000

- Human disturbance: dominant driver in eight county.
- Water condition: dominant driver in six county.
- Urbanization: dominant driver in four county.

Order ranking for all drivers in 2000 and 2015

- Human disturbance: dominant driver in eight five county.
- > Water condition: dominant driver in **six three** county.
- Urbanization: dominant driver in four seven county.

Order ranking for all drivers in 2000 and 2015

- > Human disturbance: dominant driver in **eight five** county.
- > Water condition: dominant driver in **six three** county.
- Urbanization: dominant driver in four seven county.
- Drivers group remained unchanged area: TP and DL.
- > No dominant driver area: EL.
- Urbanisation increased and has now become more dominant than human disturbance after 2000.
- Water conditions as a driver causing LD in almost all counties.

batunacun@zalf.de

Eberswalder Straße 84 15374 Müncheberg Germany

Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015. *Land use policy* (Under review).

