Problem orientable evaluations as L-subsets

Adalbert Kerber¹

Neuchatel 26.6.2018

æ

¹kerber@uni-bayreuth.de, Dep. of Math.

Suppose

- We consider evaluations as sets over a *lattice*.
- E.g.: G. Restrepo's evaluation of 40 refrigerants using *parameters ODP*, *GWP* and *ALT*, normalized so that the values are in [0, 1].
- The lattice is $L = [0, 1]^3$, since with a refrigerant *ref* we associate the following triple of real numbers between 0 and 1:

 $(ODP(ref); GWP(ref); ALT(ref)) \in [0, 1]^3.$

refrigerants	values of (ODP; GWP; ALT)
ref ₁	(0, 19607843; 0, 31621622; 0, 01406219)
ref ₂	(0, 16078431; 0, 72432432; 0, 0312497)
ref ₃	(0,00980392;0,12027027;0,00374969)
ref ₄	(0,00431373;0,00513514;0,00040594)
÷	

The evaluation associates with ref₄ the truth value

tv(*ref*₄ *has* (*ODP*; *GWP*; *ALT*))

= (0,00431373; 0,00513514; 0,00040594).

In formal terms: this evaluation is a mapping

 $\mathcal{E} : \{\textit{ref}_1,\textit{ref}_2,\ldots\} \times \{(\textit{ODP};\textit{GWP};\textit{ALT})\} \rightarrow [0,1]^3,$

with, e.g., the value

 $\mathcal{E}(ref_4, (ODP; GWP; ALT))$

= (0,00431373; 0,00513514; 0,00040594).

The values are elements of the lattice $L = [0, 1]^3$.

・ロト・日・・日・・日・ つくぐ

The general case:

- An *evaluation* \mathcal{E} of objects $o_i \in O$ w.r.t. attributes $a_k \in A$ and over L is a mapping

 $\mathcal{E} \colon O \times A \to L \colon (o_i, a_k) \mapsto \mathcal{E}((o_i, a_k)) = tv(o_i \text{ has } a_k),$

— i.e. we consider an *L*-subset \mathcal{E} of $O \times A$, containing (o_i, a_k) with the *truth value* $tv(o_i \text{ has } a_k) \in L$.

Example: Evaluations of objects o_i w.r.t. attributes a_k ,

Consider

$$L^{O\times A} := \{ \mathcal{E} \mid \mathcal{E} \colon O \times A \to L \},\$$

the set of all *L*-subsets of $O \times A$, for a given lattice *L*.

— In case $L = [0, 1]^3$, an *L*-subset of $O \times A$ is an association of a triple of parameter values to every element $(o, a) \in O \times A$.

We can *choose a set theory and its logic* over L on $L^{O \times A}$, allows problem–orientation.

- On *L*-subsets S, S' of a set *X* we introduce *L*-inclusion as follows:

$$\mathcal{S} \subseteq_L \mathcal{S}' \iff \forall x \in X \colon \mathcal{S}(x) \leq \mathcal{S}'(x).$$

- Intersections of two such *L*-subsets can be defined, using *t*-norms $\tau : L \times L \rightarrow L$, mappings with symmetry, monotony, associativity and side condition $\tau(x, 1_L) = x$. They yield τ -intersections \mathcal{I} on L^X :

$$\mathcal{I}(\mathbf{x}) = (\mathcal{M} \cap_{\tau} \mathcal{N})(\mathbf{x}) = \tau(\mathcal{M}(\mathbf{x}), \mathcal{N}(\mathbf{x})).$$

The most important *t*-norms:

— The standard norm s is defined as

$$s(x,y)=x\wedge y.$$

— The *drastic* norm is

$$d(x,y) = \begin{cases} x & y = 1_L, \\ y & x = 1_L, \\ 0_L & \text{otherwise.} \end{cases}$$

— And if L = [0, 1] there is the *algebraic product a* and the *bounded difference b*:

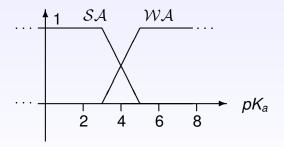
$$a(x, y) = x \cdot y, \ b(x, y) = Max\{0, x + y - 1\}.$$

In particular the following is true:

$$d(x,y) \leq \tau(x,y) \leq s(x,y).$$

Example: Models SA, WA of *strong* and *weak* acid

may look like that:



▲ロと▲母と▲目と▲目と 目 のへの

If we chose (e.g., in a possibly problem-oriented way) the *t*-norm $\tau = s$,

an acid with pK_a -value 4 is both strong and weak, while, if $\tau = d$, $(SA \cap_d WA)(r) = 0$ (but SA(4) = WA(4) = 0.5). We use a notion of truth, based on τ and its residuum: — $\tau^* : L \times L \to L$ is a *residuum* of τ , iff

$$\tau(\mathbf{X},\mathbf{Y}) \leq \nu \iff \mathbf{X} \leq \tau^*(\mathbf{Y},\nu).$$

If $\tau(\alpha, \bigvee M) = \bigvee_{\beta \in M} \tau(\alpha, \beta)$ holds, then

$$\tau^{\star}(\alpha,\beta) = \bigvee \{\gamma \mid \tau(\alpha,\gamma) \leq \beta\}.$$

In this case τ is called a *residual t*-norm. *This yields a logic* corresponding to *L* and τ , namely τ^* .

Examples of residua for L = [0, 1]:

$$s^{\star}(\alpha,\beta) = \begin{cases} 1 & \text{if } \alpha \leq \beta, \\ \beta & \text{otherwise,} \end{cases}$$
$$d^{\star}(\alpha,\beta) = \begin{cases} \beta & \text{if } \alpha = 1, \\ 1 & \text{otherwise,} \end{cases}$$
$$a^{\star}(\alpha,\beta) = \begin{cases} \beta/\alpha & \text{if } \alpha \neq 0, \\ 1 & \text{otherwise,} \end{cases}$$
$$b^{\star}(\alpha,\beta) = \text{Min}\{1, 1 - \alpha + \beta\}.$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

We have choices, can use a problem orientation

— Choose a suitable lattice *L* as set of values, pick a suitable residual *t*-norm τ obtaining a set theory. Its residuum τ^* gives the corresponding logic. Apply that to $\mathcal{E} \in L^{O \times A}$, the evaluation considered, and get a basis of the implications (see below)!

Exploration

For the exploration of the evaluation \mathcal{E} we can use that object *o* has attribute *a* if and only if $\mathcal{E}(o, a) > 0$. We put

$$\mathcal{A}'(o) = \tau^*(\mathcal{A} \Rightarrow \mathcal{E}) = \bigwedge_{a \in \mathcal{A}} \tau^*(\mathcal{A}(a), \mathcal{E}(o, a)),$$

and we evaluate $\mathcal{A} \in L^{A}$ implies $\mathcal{B} \in L^{A}$ in \mathcal{E} by:

$$au^{\star}(\mathcal{A} \Rightarrow \mathcal{B}) = \bigwedge_{o \in O} au^{\star}(\mathcal{A}'(o), \mathcal{B}'(o)).$$

 $\mathcal{A} \Rightarrow \mathcal{B}$ holds in \mathcal{E} if and only if $\tau^*(\mathcal{A} \Rightarrow \mathcal{B}) = 1$, i.e., iff $\mathcal{A}' \subseteq_L \mathcal{B}'$. Defining *pseudo-contents*, by

 $\mathcal{P} \neq \mathcal{P}''$ and for each pseudo-content $\mathcal{Q} \subset_L \mathcal{P} \colon \mathcal{Q}'' \subseteq_L \mathcal{P}$, we get the *Duquenne/Guigues-basis which implies every attribute implication following from* \mathcal{E} ,

$$\mathbb{P} = \{\mathcal{P} \Rightarrow (\mathcal{P}'' \setminus \mathcal{P}) \mid \mathcal{P} \text{ pseudo-content}\}.$$

Adding substructures and using simplified binary parameters *nODP**, *nGWP**, *nALT**, ..., obtain:

ε	nODP*	nGWP*	nALT*	nC	CI	F	Br	1	ether	CO_2	NH_3	
1	1	0	0	0	1	1	0	0	0	0	0	-
2	0	1	0	0	1	1	0	0	0	0	0	
6	0	0	0	1	1	1	0	0	0	0	0	
7	0	0	0	1	1	1	0	0	0	0	0	
8	0	1	1	0	0	1	0	0	0	0	0	
16	Ō	0	0	1	Ō	0	Ō	Ō	Ō	Ō	Ō	
21	Ō	Ō	Ō	0	Ō	Ō	Ō	Ō	Ō	1	Ō	
22	1	Ō	Ō	Ō	1	1	1	Ō	Ō	0	Ō	
23	Ó	1	1	1	Ó	1	Ó	Õ	Õ	Õ	Õ	
29	ŏ	1	1	1	õ	1	Õ	Õ	1	õ	õ	
29 32	ŏ	Ó	Ó	Ó	ĭ	Ó	ŏ	ŏ	Ó	õ	ŏ	
33	1	ŏ	Õ	ĭ	1	ĭ	ŏ	ŏ	õ	õ	ŏ	
35	1	õ	1	i	1	1	Õ	Õ	õ	õ	õ	
36	ò	ŏ	ò	ò	ò	i	ŏ	ĭ	õ	õ	ŏ	
37	ŏ	ŏ	õ	ĭ	ŏ	ò	ŏ	ò	1 1	õ	ŏ	
38	ŏ	õ	õ	ò	õ	ŏ	ŏ	ŏ	Ō	õ	ĭ	
39	ŏ	õ	õ	ĭ	ŏ	ĭ	ŏ	ŏ	ĭ	ŏ	ò	
40	Ő	Õ	õ	i	Õ	1	0́	- Ŏ	• 🗗 🖡 • 🖹	► • 0 ≣ ►	Ŭ ſ	2

The Duquenne/Guigues basis of it yields all what follows,

it can be obtained online, using CONEXP-1.3.

$$\{nODP^*\} \implies \{CI, F\}$$

$$\{nGWP^*\} \implies \{F\}$$

$$\{nALT^*\} \implies \{F\}$$

$$\{nALT^*, CI, F\} \implies \{nODP^*, nC\}$$

$$\{nGWP^*, nC, F\} \implies \{nALT^*\}$$

$$\{Br\} \implies \{nODP^*, CI, F\}$$

$$\{I\} \implies \{F\}$$

$$\{ether\} \implies \{nC\}$$

$$\{nALT^*, nC, F, ether\} \implies \{nGWP^*\}$$

◆ロ▶★舂▶★臣▶★臣▶ 臣 のなぐ

In order to explore your evaluation of objects $o \in O$ according to given attributes $a \in A$ do the following:

- Choose a suitable set theory, i.e. a residual τ and its τ^{\star} ,
- use Brüggemann's PyHasse in order to obtain partial orders and their visualizations by Hasse diagrams,
- evaluate, using CONEXP if it is binary, the Duquenne/Guigues basis is a set of *hypotheses* on possibly interesting bigger sets $\Omega \supset O$ of objects. Try to prove (or at least to check) these!

[1] R. Brüggemann, A. Kerber: Fuzzy Logic and Partial Order; First Attempts with the new PyHasse-Program L_eval. MATCH, Commun. Math. Comput. Chem. 80:745-768, 2018.

 [2] R. Brüggemann, A. Kerber, G. Restrepo: Ranking Objects Using Fuzzy Orders with an Application to Refrigerants. MATCH Commun. Math. Comput. Chem. 66:581–603, 2011.

[3] R. Brüggemann, K. Voigt: Analysis of partial orders in environmental systems applying the new software PyHasse. In J. Wittmann und M. Flechsig (Eds.): Simulation in Umwelt- und Geowissenschaften. Workshop Potsdam 2009, pp. 43–55. Shaker–Verlag, Aachen, 2009.

References II

[4] B. Ganter, R. Wille: Formal concept analysis (mathematical foundations). Springer, Berlin x+286 pp. (1996). [ISBN 3-540-60868-0].

[5] S. Pollandt: Fuzzy-Begriffe. Springer-Verlag, 1997.

[6] G. Restrepo: Assessment of the environmental acceptability of refrigerants by discrete mathematics: cluster analysis and Hasse diagram technique. Doctoral thesis, 2008, University of Bayreuth, Germany, available via http://opus.ub.uni-

bayreuth.de/frontdoor.php?source_opus=393&la=de.

[7] S. A. Yevtushenko: System of data analysis *concept explorer*. *Proceedings of the 7th National Conference on Artificial Intelligence*, Russia, K II-2000: 127–134, 2000. Software: http://sourceforge.net/projects/conexp