

Probability and Stochastic Processes

Objectives

The student is able to master the basic tools from probability theory and stochastic processes that are useful in numerous applications

Contents

- Probability space Random events sigma fields- Probability Conditioning and Independence.
- Countable state space Random variables Law of Random variables- Usual laws (Binomial, Poisson, Geometrical)
- Real random variables and random vectors Laws and densities Usual laws (exponential, Gaussian).
- 4. Convergence of random sequences Law of large numbers Monte-Carlo Methods
- Gaussian vectors Convergence in distribution Limit central Theorem Statistical applications.
- 6. Random iterative models Elementary Markov chains theory Branching processes –

Evaluation

According curriculum 2009-2010:

- CC: 2-hour written test during the last week of the semester (70% of the grade) and exercises (30 % of the grade).
- Reexamination session (september) : 2h written test

Textbooks

Characteristics

- 6 ECTS credits
- Compulsory course for master in statistics
- Autumn Semester
- Course : 2 hours / Exercises : 2 hours
- Prerequisite : calculus

Teaching team

Prof. Michel Benaim
Institut de Mathématiques,
Université de Neuchâtel

 Regis Houssou, assistant-doctorant Institut de Mathématiques Université de Neuchâtel

Exercises

