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Abstract

We prove that the properties of acting metrically properly on some

space with walls or some CAT(0) cube complex are closed by taking

the wreath product with Z. We also give a lower bound for the (equiv-

ariant) Hilbert space compression of H oZ in terms of the (equivariant)

Hilbert space compression of H.

Introduction

A space with walls, as de�ned by Haglund and Paulin [HP98], is a pair (X,W)
where X is a set and W is a set of partitions of X (called walls) into two

classes, submitted to the condition that any two points of X are separated

by �nitely many walls.

The main examples of spaces with walls are given by CAT (0) cube com-

plexes (see [BH99]), i.e. metric polyhedral complexes in which each k-cell

is isomorphic to the euclidean cube [−1/2, 1/2]k, and the gluing maps are

isometries. Indeed, it is a result of Sageev [Sag95] that hyperplanes in a

CAT (0) cube complex endow the set of vertices with a structure of space

with walls (see [CN05b] and [Nic04] for more on the relation between spaces

with walls and CAT (0) cube complexes).

Our �rst result is the following:
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Theorem 0.1 Suppose that a group H acts metrically properly either on

some on some space with walls, or on some CAT (0) cube complex. Then

the wreath product H o Z := (
⊕

Z H) o Z satis�es the same property.

Guentner-Kaminker de�ned the Hilbert space compression and the equivari-

ant Hilbert space compression for any unbounded metric space (endowed with

a group action in the second case) [GK04]. These two numbers are quasi-

isometry invariants. Since we will deal with uniformly discrete1 spaces, the

following de�nitions are equivalent to theirs.

Let (X, d) be a uniformly discrete metric space. We de�ne the Hilbert space

compression of X as the supremum of the numbers α ∈ [0, 1] such that there

exists a Hilbert space H, positive constants C1, C2 and a map f : X → H
with

C1 · d(x, y)α 6 ||f(x)− f(y)|| 6 C2 · d(x, y) ∀x, y ∈ X .

It is denoted by R(X, d). If H is a group acting on (X, d) by isometries, the

equivariant Hilbert space compression of X is the supremum of the numbers

α ∈ [0, 1] such that there exists a Hilbert space H endowed with an action of

H by a�ne isometries, positive constants C1, C2 and a H-equivariant map

f : X → H with

C1 · d(x, y)α 6 ||f(x)− f(y)|| 6 C2 · d(x, y) ∀x, y ∈ X .

It is denoted by RH(X, d). One has trivially RH(X, d) 6 R(X, d).

We may view a group H as a metric space thanks to the word length associ-

ated with some (not necessarily �nite) generating subset S. We denote then

by R(H,S) the Hilbert space compression and by RH(H,S) the equivariant
Hilbert space compression. Note that, in case H is �nitely generated, up

to quasi-isometry the word metric does not depend on the �nite generating

set, see [dlH00, Proposition IV.22]. In this case we write R(H) and RH(H)
for the corresponding compressions. We also use these shorter notations in

the general case if there is no ambiguity about the generating set. It is a

remarkable observation of Gromov (see [dCTV, Proposition 4.4] for a proof)

that R(H) = RH(H) for H �nitely generated and amenable.

The �rst examples of �nitely generated groups whose Hilbert space com-

pression is di�erent from 0 and 1 appeared recently in [AGS]: Thompson's

1That is, there exists a constant δ > 0 such that d(x, y) > δ whenever x 6= y.
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group F and the wreath product Z oZ (see the end of Section 3 for more on

this). Our next Theorem allows in particular to construct more examples.

Given a generating set S for H, if Γ = H o Z, we always take Σ = S ∪ {s}
as generating set for Γ, where s is the positive generator of Z.

Theorem 0.2 Let H be a group, with generating set S and let Γ = H o Z.
The non equivariant and equivariant Hilbert space compressions satisfy:

R(H,S) > R(Γ,Σ) >
R(H,S)

R(H,S) + 1
;

RH(H,S) > RΓ(Γ,Σ) > max
{

RH(H,S)− 1
2

,
RH(H,S)

2RH(H,S) + 1

}
.

In order to select the best bound, we mention that one has t−1/2 > t/(2t+1)
if and only if t > (1 +

√
5)/4 ∼= 0.809... (for t ∈ [0, 1]). Gromov's remark

gives immediately a stronger estimate for the equivariant compression.

Corollary 0.3 Let H be a �nitely generated and amenable group and let

Γ = H o Z. The equivariant Hilbert space compression satis�es:

RH(H) > RΓ(Γ) >
RH(H)

RH(H) + 1
.

The proofs of Theorems 0.1 and 0.2 rest on a similar idea: we express H oZ as

an HNN-extension in two di�erent ways, which provide two di�erent actions

of H o Z on a tree. In Theorem 0.1 we use the product of these two trees,

while in Theorem 0.2 we appeal to the a�ne actions naturally associated

with each of these trees (see section 7.4.1 in [CCJ+01]).

1 Preliminaries: wreath products and trees

Let Λ be a group, H a subgroup and ϑ : H → Λ an injective homomorphism.

The HNN-extension with basis Λ and stable letter t relatively to H and ϑ is

de�ned by HNN(Λ,H, ϑ) =
〈
Λ, t

∣∣ t−1ht = ϑ(h) ∀h ∈ H
〉
.

Our de�nition of graphs and trees are those of [Ser77]. Given an HNN-

extension Γ = HNN(Λ,H, ϑ), the associated Bass-Serre tree is de�ned by

V (T ) = Γ/Λ ; E(T ) = Γ/H t Γ/ϑ(H) ; γH = γtϑ(H) ; γϑ(H) = γt−1H ;

(γH)− = γΛ ; (γH)+ = γtΛ ; (γϑ(H))− = γΛ ; (γϑ(H))+ = γt−1Λ
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where, given an edge e, its origin is denoted by e− and its terminal vertex

by e+. It is a tree [Ser77, Theorem 12]. We turn T to an oriented tree by

setting Ar+(T ) = Γ/H, (γH)− = γΛ, (γH)+ = γtΛ and the Γ-action on

T preserves this orientation. Moreover we remark that the oriented tree is

bi-regular: for each vertex of T the outgoing edges are in bijection with Λ/H

and the incoming edges are in bijection with Λ/ϑ(H).

We turn to wreath products. Let G, H be groups. We set

Λ = H(G) =
⊕
g∈G

H = {λ : G → H with �nite support } .

The group G acts on Λ by automorphisms: (g ·λ)(x) = λ(g−1x). The wreath
product H o G is the semi-direct product Λ o G, with respect to the action

above. The group H embeds in H oG as the copy of index 1G. It is easy to

see that, given generating sets of G and H, their union generates H oG.

In case G = Z, one may express H o Z as an HNN-extension in two ways

(we denote by s the generator of Z in H o Z and by t+, t− the stable letters

of the HNN-extensions)2:

1. Set Λ+ =
⊕

n>0 H and ϑ+ : Λ+ → Λ+ given by ϑ+(λ)0 = 1H and

ϑ+(λ)n = λn−1 for n > 1. One has HNN(Λ+,Λ+, ϑ+) = H o Z and

the isomorphism is given by λ 7→ λ and t+ 7→ s−1;

2. Set Λ− =
⊕

n60 H and ϑ− : Λ− → Λ− given by ϑ−(λ)0 = 1H and

ϑ−(λ)n = λn+1 for n 6 −1. One has HNN(Λ−,Λ−, ϑ−) = H o Z and

the isomorphism is given by λ 7→ λ and t− 7→ s;

Given a wreath product H o Z, we will denote by T+, respectively T−, the

Bass-Serre tree associated to the second, respectively third, HNN-extension

above. We take as base points (when necessary) the vertices Λ+ and Λ−.

We collect now some observations about the H o Z-actions on T+ and T−

which will be relevant in the next sections. Set Γ = H oZ and γ = (λ, n) ∈ Γ.
If λ is nontrivial, we set m = min{k ∈ Z : λk 6= 1H} and M = max{k ∈ Z :
λk 6= 1H}.

Lemma 1.1 If λ = 1, one has dT+(Λ+, γΛ+) = |n| = dT−(Λ−, γΛ−).

2The most common way is probably the following: set ϑ : Λ → Λ; ϑ(λ)n = λn−1.

One has HNN(Λ, Λ, ϑ) = H o Z and the isomorphism is given by λ 7→ λ and t 7→ s−1.

Nevertheless, this expression will be useless in this article.
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The proof is obvious.

Lemma 1.2 If λ 6= 1, the distances dT±(Λ±, γΛ±) are given by formulas:

dT+(Λ+, γΛ+) =

{
|n| if n 6 m or m > 0

n− 2m if n > m and m < 0
;

dT−(Λ−, γΛ−) =

{
|n| if n > M or M 6 0

2M − n if n < M and M > 0
.

In particular, the inequalities dT+(Λ+, γΛ+) > −m, dT−(Λ−, γΛ−) > M ,

dT+(Λ+, γΛ+) > |n| and dT−(Λ−, γΛ−) > |n| hold.

Proof. We prove the �rst equality, leaving the second one, which is very

similar, to the reader. We remark that γ = λsn and that, for any k ∈ Z, the

stabilizer of the vertex tk+Λ+ satis�es

Stab(tk+Λ+) = tk+Λ+t−k
+ = s−kΛ+sk =

⊕
i>−k

H . (1.3)

Suppose �rst that m > 0. Then λ stabilizes the vertex Λ+, so that we get

d(Λ+, γΛ+) = d(λΛ+, λsnΛ+) = d(Λ+, snΛ+) = |n|. If n 6 m, the vertex

snΛ+ = t−n
+ Λ+ is stabilized by λ, so that d(Λ+, γΛ+) = d(Λ+, snΛ+) = |n|.

It remains to treat the case n > m and m < 0. The vertices on the geodesic

from t−m
+ Λ+ to t−n

+ Λ+ are t−m
+ Λ+, t−m−1

+ Λ+, . . . , t−n
+ Λ+. By (1.3), the vertex

t−m
+ Λ+ is stabilized by λ and t−m−1

+ Λ+ is not. Thus, the geodesic from Λ+

to γΛ+ passes through t−m
+ Λ+, so that we get

d(Λ+, γΛ+) = d(Λ+, t−m
+ Λ+) + d(t−m

+ Λ+, γΛ+) = −m + n−m = n− 2m .

The proof is complete. �

Let us now state a formula computing the length of an element of H o Z,
which is a direct consequence of [Par92, Theorem 1.2]. Note that, even if the

theorem was stated for �nitely generated groups, it also applies in our case.

Proposition 1.4 Keep the above notations. Let γ = (λ, n) ∈ Γ = H oZ. In
case λ = 1, one has |γ| = |n|, while in case λ 6= 1, the length of γ satis�es:

|γ| = LZ(γ) +
∑
i∈Z

|λi| ,

where LZ(γ) denotes the length of the shortest path starting from 0, ending
at n and passing through m and M in the (canonical) Cayley graph of Z.
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The length LZ(γ) appearing in Proposition 1.4 can be estimated as follows:

Proposition 1.5 Let γ ∈ Γ = H o Z. The following inequalities hold:

dT±(Λ±, γΛ±) 6 LZ(γ) 6 dT+(Λ+, γΛ+) + dT−(Λ−, γΛ−)

Proof. If γ = (1, n), the result is obvious. We suppose now γ = (λ, n) with
λ 6= 1. The proof is then a distinction of eight cases which are listed in the

following tabular:

n m M dT+ dT− LZ dT+ + dT−

> 0 > 0 > n n 2M − n 2M − n 2M

> 0 > 0 6 n n n n 2n

> 0 < 0 > n n− 2m 2M − n 2M − 2m− n 2M − 2m

> 0 < 0 6 n n− 2m n n− 2m 2n− 2m

< 0 < n 6 0 n− 2m −n n− 2m −2m

< 0 > n 6 0 −n −n −n −2n

< 0 < n > 0 n− 2m 2M − n 2M − 2m + n 2M − 2m

< 0 > n > 0 −n 2M − n 2M − n 2M − 2n

The values of dT±(Λ±, γΛ±) come from Lemma 1.2; those of LZ(γ) are easy
to compute. We now observe that the result is true in the eight cases. �

Combining Propositions 1.4 and 1.5, one obtains immediately:

Corollary 1.6 Let γ = (λ, n) ∈ Γ = H o Z. The following inequalities hold:

dT±(Λ±, γΛ±) +
∑
i∈Z

|λi| 6 |γ| 6 dT+(Λ+, γΛ+) + dT−(Λ−, γΛ−) +
∑
i∈Z

|λi|

2 Metrically proper actions

Let us consider a group G, acting by isometries on a metric space X.

De�nition 2.1 The action is metrically proper if, whenever B is a bounded

subset of X, the set {g ∈ G : g ·B ∩B 6= ∅} is �nite.

From now on, we shall write �proper� instead of �metrically proper�. Let us

recall that the action is proper if and only if the following property holds,

for some z ∈ X:

for any R > 0, the set {g ∈ G : d(z, g · z) 6 R} is �nite. (Propz)
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Let now F = (Xi, bi)i∈I be a family of pointed metric spaces and let p > 1.
We call `p-product of the family the space

`p(F) =

{
x ∈

∏
i∈I

Xi :
∑
i∈I

di(bi, xi)p < +∞

}
.

It is a metric space with metric δ(x, y) =
(∑

i∈I di(xi, yi)p
)1/p

. We set (bi)i∈I

as base point. Consider now the case (Xi, bi) = (X, b) for all i ∈ Z. One has:

`p(I;X, b) := `p(F) =

{
φ : I → X :

∑
i∈I

d(b, φi)p < +∞

}
.

If a group H acts by isometries on X, the group H oG acts by isometries on

`p(G;X, b) in the following way:{
(λ · φ)g = λg · φg for λ ∈

⊕
g∈G H ;

(g · φ)g′ = φg−1g′ for g ∈ G .
(2.2)

Given G in�nite, observe that, even if the action of H is proper, the action

of H o G on `p(G;X, b) is not. Indeed, there is a G-globally �xed point on

`p(G;X, b).

Theorem 0.1 will follow from the following statement.

Proposition 2.3 Let H be a group acting properly on a metric space X,

b ∈ X and p > 1. Then, the action of Γ = H o Z on T+ × T− × `p(Z;X, b),
where the product is endowed with the `p metric, is proper.

Proof. We are going to prove property (Propz) for z = (Λ+,Λ−, (b)i∈Z).
Thus let R > 0 and A = {γ ∈ Γ : d(z, γ · z) 6 R}. Take γ = (λ, n) ∈ A. We

have dT+(Λ+, γΛ+) 6 R, dT−(Λ−, γΛ−) 6 R and
∑

i∈Z d(b, λi · b)p 6 Rp.

By lemmata 1.1 and 1.2, one has M 6 R, m > −R (if M and m are de�ned)

and |n| 6 R. Set B = {h ∈ H : d(b, h · b) 6 R}. It is a �nite set since the

H-action is proper.

Hence, one has |n| 6 R, λi = 1H for |i| > R and λi ∈ B for |i| 6 R. This

leaves �nitely many choices for γ, and proves thus that A is �nite. �

Remark 2.4 The space T+ × T− × `p(Z;X, b) is canonically isometric to

the product `p(F) with I = {+,−} ∪ Z and F given by F(+) = (T+,Λ+),
F(−) = (T−,Λ−) and F(i) = (X, b) for i ∈ Z.

7



Proof of of Theorem 0.1. We recall �rst that a tree is a CAT(0) cube

complex, hence a space with walls.

It is shown in [CMV04, Section 5] that a `1-product of spaces with measured

walls carries the same structure. Moreover, we remark that, particularizing

the construction to spaces with walls, one gets a space with walls. Hence,

we get the conclusion for spaces with walls by proposition 2.3.

Given a CAT(0) cube complex Y , we denote by Y (k) the set of k-cells in Y .

Take now a family F = (Xi, bi)i∈I of CAT(0) cube complexes with bi ∈ X
(0)
i

and set F (0) = (X(0)
i , bi)i∈I for k ∈ N. We are going to construct a subspace

X of `2(F) which is a CAT(0) cube complex.

We de�ne �rst X(0) = `2(F (0)). Since the distance between two distinct

vertices is at least 1, one has

X(0) =
⊕
i∈I

(X(0)
i , bi) :=

{
v ∈

∏
i∈I

X
(0)
i : {i ∈ I : vi 6= bi} is �nite

}
.

For k > 1, we de�ne then the set of k-cells as

X(k) =

{
c ∈

∏
i∈I(X

(0)
i ∪ . . . ∪X

(k)
i ) :∑

i∈I dim(ci) = k and {i ∈ I : ci 6= bi} is �nite

}
.

It is clear that every k-cell, as a subset of `2(F), is isometric to [−1/2, 1/2]k.
If c ∈ X(k), the faces of c are the (k − 1)-cells c′ such that c′j is a face of cj

for some j and c′i = ci for i 6= j. The gluing maps are isometric. Finally,

the space `2(F) inherits the CAT(0) property, so that X is a CAT(0) cube

complex.

Suppose now that H acts on a CAT(0) cube complex Y and take v0 a vertex

of Y . We consider the family F given by I = {+,−}∪Z, F(+) = (T+,Λ+),
F(−) = (T−,Λ−) and F(i) = (Y, v0) for i ∈ Z. The action of H oZ on `2(F)
is proper by proposition 2.3 and the CAT(0) cube complex X constructed

as above is an invariant subset, so that it is endowed with a proper action

of H o Z too. �

Remark 2.5 The same techniques can be used, if H acts properly on some

Hilbert space H, to prove that H oZ acts properly on the Hilbert direct sum

`2(E(T+)) ⊕ `2(E(T−)) ⊕
⊕

i∈ZH. Hence, we recover the known fact that

Haagerup property is preserved by taking wreath products with Z [CCJ+01,

Proposition 6.1.1 and Example 6.1.6]. The interest of our technique is that

we obtain an explicit proper action of H o Z, knowing a proper action of H.
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Remark 2.6 It is known [CMV04, Theorem 1], that a discrete group satis-

�es the Haagerup property if and only if it acts properly on some space with

measured walls. It follows from Remark 2.5 that whenever H acts properly

on a space with measured walls, the same holds for H o Z. Again, our tech-
niques give an explicit action, as Theorem 0.1 is also valid for spaces with

measured walls.

3 Hilbert space compression: Theorem 0.2

We recall that a map f : X → Y between metric spaces is Lipschitz if there

exists C > 0 such that dY (f(x), f(y)) 6 C · dX(x, y) for all x, y ∈ X. Given

a Lipschitz map f : X → H (whose range is a Hilbert space), we set3 Rf

to be the supremum of the numbers α ∈ [0, 1] such that there exists D > 0
with D · dX(x, y)α 6 ||f(x)− f(y)|| for all x, y ∈ X.

Given a generating set S of a group H, we recall our convention to take

Σ = S ∪ {s} as generating set for H o Z, where s is the positive generator of

Z. In order to simplify notations, we do not mention explicitly S and Σ in

this section.

The goal of this section is to prove Theorem 0.2. The key result in this way

is the following:

Proposition 3.1 Let H be a group (with a generating set S) and Γ = H oZ.
Suppose that maps f : H → H and f± : V (T±) → H± are Lipschitz with

Rf+ = Rf− > 0 and Rf > 0. Then consider the map

σ : Γ → H′ := H+ ⊕H− ⊕
⊕
i∈Z

H ,

where, given γ = (λ, n) ∈ H oZ, we set σ(γ)± = f±(γΛ±) and σ(γ)i = f(λi)
for i ∈ Z. It satis�es Rσ > Rf ·Rf±/(Rf +Rf±) and Rσ > min{Rf± , Rf − 1

2}

Moreover, if f is H-equivariant and if f± are Γ-equivariant (with respect

to some actions by a�ne isometries), then there exists a H-action by a�ne

isometries on H′ such that σ is Γ-equivariant.

Proof. We show �rst that σ is Lipschitz (the reader could remark that it

is trivial if H is a �nitely generated group; however, this case is also covered

3It does not coincide with the asymptotic compression of f de�ned in [GK04].
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by the proof below). Let us take C,C+, C− > 0 such that

||f(s)− f(t)|| 6 C · |s−1t| ∀s, t ∈ H ;

||f±(u)− f±(v)|| 6 C± · dT±(u, v) ∀u, v ∈ V (T±) .

Let x, y ∈ Γ. We set γ = x−1y and write x = (ξ, p), y = (η, q), γ = (λ, n) in
H o Z = Λ o Z (so that n = q − p and λi = ξ−1

i−pηi−p). One has then(∑
i∈Z

||σ(x)i − σ(y)i||2
) 1

2

6
∑
i∈Z

||f(ξi)− f(ηi)|| 6
∑
j∈Z

C · |λj | 6 C · |γ| .

Moreover, using Corollary 1.6 for the last step, it comes:

||σ(x)± − σ(y)±|| 6 C± · dT±(xΛ±, yΛ±) = C± · dT±(Λ±, γΛ±) 6 C± · |γ| .

Thus, we get �nally ||σ(x)− σ(y)|| 6 (C+ + C− + C) · |x−1y|, which proves

that σ is Lipschitz, as desired.

We now turn to the estimation of Rσ, Fix any α, β such that 0 < α < Rf

and 0 < β < Rf± . There exists constants C,C+, C− > 0 such that:

||f(s)− f(t)|| > C · |s−1t|α ∀s, t ∈ H ;

||f±(u)− f±(v)|| > C± · dT±(u, v)β ∀u, v ∈ V (T±) .

We notice �rst that σ is injective. More precisely, for any x, y ∈ Γ, one has

x 6= y =⇒ ||σ(x)− σ(y)|| > min{C,C+, C−} . (3.2)

Indeed, we express x = (ξ, p) and y = (η, q) as above. If p 6= q, we obtain

||σ(x)±− σ(y)±|| > C± · dT±(xΛ±, yΛ±)β > C± and if ξi 6= ηi for some i, we

obtain ||σ(x)i − σ(y)i|| > C · |ξ−1
i ηi|α > C.

Let us take x, y and γ as above. According to Corollary 1.6, one (at least)

of the following cases occurs. We treat them separately. As the case x = y

is trivial, we assume x 6= y, that is |γ| > 1, in what follows.

(a) Case dT+(Λ+, γΛ+) > 1
3 |γ|: We obtain

||σ(x)− σ(y)|| > ||σ(x)+ − σ(y)+|| > C+ · dT+(xΛ+, yΛ+)β

= C+ · dT+(Λ+, γΛ+)β >
C+

3β
|x−1y|β .
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(b) Case dT−(Λ−, γΛ−) > 1
3 |γ|: We obtain the same way

||σ(x)− σ(y)|| > ||σ(x)− − σ(y)−|| >
C−
3β

|x−1y|β .

(c) Case
∑

i∈Z |λi| > 1
3 |γ|: We establish two independant estimates.

First, for all i ∈ Z, one has ||σ(x)i − σ(y)i|| = ||f(ξi) − f(ηi)|| >

C|ξ−1
i ηi|α = C|λi+p|α. Hence, using Cauchy-Schwarz inequality for

the third step below and α 6 1 for the fourth one, we obtain

||σ(x)− σ(y)|| >

(∑
i∈Z

||σ(x)i − σ(y)i||2
) 1

2

> C

∑
j∈Z

|λj |2α

 1
2

>
C√

M −m + 1

M∑
j=m

|λj |α >
C√

M −m + 1

 M∑
j=m

|λj |

α

By Proposition 1.4, one has |γ| > M −m + 1, so that we obtain

||σ(x)− σ(y)|| > C√
|γ|

(
1
3
|γ|
)α

>
C

3α
|γ|α−

1
2 . (∗)

This is our �rst estimate for case (c).

Second, we �x any ζ ∈ ]0, 1[ . Then, either there exists k ∈ Z such that

|λk| > (1
3 · |γ|)

ζ , or one has M −m + 1 > (1
3 · |γ|)

1−ζ . We distinguish

the two subcases:

• if there exists k ∈ Z such that |λk| > (1
3 · |γ|)

ζ , we have

||σ(x)− σ(y)|| > ||σ(x)k−p − σ(y)k−p|| > C · |ξ−1
k−pηk−p|α

= C · |λk|α >
C

3αζ
|γ|αζ ;

• in case M − m + 1 > (1
3 · |γ|)

1−ζ , having LZ(γ) > M − m by

de�nition, Proposition 1.5 gives

dT+(Λ+, γΛ+) + dT−(Λ−, γΛ−) > LZ(γ) >

(
1
3
· |γ|

)1−ζ

− 1 .

Thus, ∃ s ∈ {+,−} such that dTs(Λs, γΛs) > 1
2(1

3 · |γ|)
1−ζ− 1

2 . For

|γ| > 4, there exists K > 0 such that dTs(Λs, γΛs) > K · |γ|1−ζ ,

so that ||σ(x)− σ(y)|| > CsK
β · |x−1y|β(1−ζ) as in cases (a)-(b).
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Otherwise, for |γ| 6 3, equation (3.2) gives

||σ(x)− σ(y)|| > (min{C,C+, C−}) · 3−β(1−ζ) · |γ|β(1−ζ) .

Hence, there exists C ′
ζ > 0 with ||σ(x)−σ(y)|| > C ′

ζ · |x−1y|β(1−ζ).

Consequently, setting mζ = min {αζ, β(1− ζ)}, it comes

||σ(x)− σ(y)|| > min
{

C

3αζ
, C ′

ζ

}
· |γ|mζ . (∗∗ζ)

The largest value for mζ is obtained for αζ = β(1−ζ), that is ζ = β
α+β .

It gives mζ = αβ
α+β . This is our second estimate for case (c).

As one has β > αβ/(α + β), combination of cases (a)-(c) gives

||σ(x)− σ(y)|| > C ′′ · |x−1y|
αβ

α+β ∀x, y ∈ Γ

||σ(x)− σ(y)|| > C ′′ · |x−1y|min{β,α− 1
2
} ∀x, y ∈ Γ

for some C ′′ > 0. Hence, we get Rσ > αβ/(α+β) and Rσ > min{β, α− 1
2} for

all α, β satisfying 0 < α < Rf and 0 < β < Rf± . This implies immediately

Rσ > Rf ·Rf±/(Rf + Rf±) and Rσ > min{Rf± , Rf − 1
2}.

To conclude the proof of Proposition 3.1, we pass now to the last statement.

We thus suppose that f is H-equivariant and f± are Γ-equivariant (with

respect to some actions by a�ne isometries). To establish the Γ-equivariance
of σ, we only have to de�ne a Γ-action (by a�ne isometries) on ⊕i∈ZH and

check the Γ-equivariance with respect to it.

The Γ-action on
⊕

i∈ZH = `2(Z,H, 0) is de�ned by equation (2.2). To

check the equivariance, we set γ = (λ, n) and g = (µ, p) with λ, µ ∈ H(Z)

and n, p ∈ Z. We have (γ ·σ(g))i = λi · f(µi−n) and σ(γg)i = f(λiµi−n) and
we get (γ · σ(g))i = σ(γg)i for all i by H-equivariance of f . �

Theorem 0.2 will be obtained by applying Proposition 3.1 with good em-

beddings of the trees T±. We explain now how to embed a tree in a Hilbert

space with high values of the constant �Rf �. First, the following result can

be obtained by a straightforward adaptation of [GK04, Proposition 4.2].

Proposition 3.3 Let T = (V,E) be a tree. Then R(V ) = 1.

More precisely, if we denote by EG the set of geometric (or unoriented) edges

of T and if we �x a base vertex v0, then for any ε ∈ ]0, 1/2[ we may consider

12



the map

fε : V −→ `2(EG) ; x 7−→
d(v0,x)∑

k=1

kεδek(x) ,

where the ek(x)'s are the consecutive edges on the unique geodesic from v0

to x and δe is the Dirac mass at e. It is a Lipschitz map with Rfε > 1/2+ ε.

We refer to the proof of [GK04, Proposition 4.2] for this fact.

To prove the �equivariant� part of Theorem 0.2, we need some explicit

equivariant embeddings into Hilbert spaces. Let T = (V,E) be a tree. We

recall from Section 7.4.1 in [CCJ+01] how to embed equivariantly T in a

Hilbert space. We recall that we denote by e 7→ e the �orientation-reversing�

involution on E, and we endow `2(E) with the scalar product:

〈ξ|η〉 =
1
2

∑
e∈E

ξ(e)η(e).

De�ne a map c : V × V → `2(E) : (x, y) 7→ c(x, y) with

c(x, y) =
∑

e∈(x→y)

δe − δe

where δe is the Dirac mass at e and the summation is taken over coherently

oriented edges in the oriented geodesic from x to y. The map c satis�es, for

every x, y, z ∈ V :

c(x, y) + c(y, z) = c(x, z); (3.4)

‖c(x, y)‖2 = d(x, y). (3.5)

Moreover if a group G acts on T , then for every g ∈ G:

c(gx, gy) = π(g)c(x, y) (3.6)

where π is the permutation representation of G on `2(E).

Fix now a base-vertex v0 ∈ V . De�ne a map

ιT,v0 : V → `2(E) : v 7→ c(v0, v)

and, for g ∈ G, an a�ne isometry αv0(g) of `2(E):

αv0(g)ξ = π(g)ξ + c(v0, gv0).

Using equations (3.4) � (3.6) above, the following lemma is immediate.
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Lemma 3.7 1. For all g, h ∈ G : αv0(gh) = αv0(g)αv0(h), so that αv0

de�nes an a�ne isometric action of G on `2(E);

2. the map ιT,v0 is G-equivariant with respect to the action αv0 on `2(E);

3. one has ||ιT,v0(x) − ιT,v0(y)|| =
√

d(x, y) for all x, y ∈ V , so that

RιT,v0
= 1/2.

It is an immediate consequence that RG(V ) > 1/2.

Proof of Theorem 0.2. The inequalities R(H) > R(Γ) and RH(H) >

RΓ(Γ) are trivial.

One has R(V (T±)) = 1 by Proposition 3.3, so that Proposition 3.1 gives

R(Γ) > R(V (T±)) ·R(H)/(R(V (T±)) + R(H)) = R(H)/(R(H) + 1).

Finally, one has RΓ(V (T±)) > 1/2 by Lemma 3.7, so that we obtain

RΓ(Γ) >
RΓ(V (T±)) ·RH(H)
RΓ(V (T±)) + RH(H)

>
RH(H)

2RH(H) + 1

RΓ(Γ) > min
{

RΓ(V (T±)), RH(H)− 1
2

}
= RH(H)− 1

2

by Proposition 3.1. �

4 Hilbert space compression: examples

We begin this section with known results about the compression of groups

of the form H o Z. Let us �rst state a generalization of [AGS, Theorem 3.9]

which gives upper bounds for many of them.

Proposition 4.1 Let G be a �nitely generated group with growth function

satisfying κ(n) < nk for some k > 0 and let H be a group. We assume the

generating set of H chosen such that the word metric is unbounded. Then,

the Hilbert space compression of Γ = H oG satis�es

R(Γ,Σ) 6
1 + k/2
1 + k

,

where Σ is the union of the generating sets of G and H. In particular, with

G = Z, we get R(H o Z) 6 3/4.

The proof is a straightforward adaptation of [AGS, Theorem 3.9].
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Remark 4.2 If H is �nitely generated, the hypothesis �the word metric is

unbounded� means exactly that H is in�nite.

Lower bounds, were found by Tessera [Tes, Corollary 14]. In particular:

Proposition 4.3 Let H be a �nitely generated group. If H has polynomial

growth, one has R(H o Z) > 2/3.

Together, Propositions 4.1 and 4.3 give immediately:

Corollary 4.4 If H is an in�nite group with polynomial growth, then one

has R(H o Z) ∈ [2/3, 3/4].

In a similar spirit, Proposition 4.1 and our Theorem 0.2 imply immediately:

Corollary 4.5 Let H be an in�nite, �nitely generated group.

a) If R(H) = 1, then R(H o Z) ∈ [1/2, 3/4].

b) If R(H) = RH(H) = 1/2, then R(H oZ) ∈ [1/3, 1/2] and RHoZ(H oZ) ∈
[1/4, 1/2] (in particular, if RHoZ(H oZ) < 1/3, then H is non-amenable).

�

The interest of part (a) in Corollary 4.5 stems from the fact that numer-

ous groups satisfy R(H) = 1: among amenable groups, we mention poly-

cyclic groups and lamplighter groups F o Z with F �nite [Tes, Theorem 1];

among (usually) non-amenable groups, we cite hyperbolic groups [BS, Theo-

rem 4.2], groups acting properly co-compactly on �nite-dimensional CAT (0)
cube complexes [CN05a], co-compact lattices in connected Lie groups, irre-

ducible lattices in higher rank semi-simple Lie groups [Tes, Theorem 2].

Our excuse for isolating (b) in Corollary 4.5 is a remarkable result by Ar-

jantseva, Guba and Sapir [AGS, Theorem 1.8]: for Thompson's group F ,

one has R(F ) = RF (F ) = 1/2.
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