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Abstract

We give a survey of amenability for locally compact groups, and
we illustrate the role of amenability in the proof of Margulis’ super-
rigidity theorem on finite-dimensional representations of lattices in
semisimple Lie groups.
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1 Introduction

Amenability was introduced in 1929 by J. von Neumann [vN29] for discrete
groups, and in 1950 by M. Day [Day50] for general locally compact groups.
Originating from harmonic analysis and representation theory, amenability
extended to a well-established body of mathematics, with applications in:
dynamical systems, operator algebras, graph theory, metric geometry,. . . One
definite advantage of amenability for groups is the equivalence of various,
apparently remote, characterizations. So in Chapter 1 we survey the classical
theory of amenability for a locally compact group G, (our basic reference
being Appendix E in [BHV]) and we establish the equivalence between:

• G is amenable, in the sense that every action of G by homeomorphisms
on a compact space X, fixes some probability measure on X;

• any affine G-action on a compact convex set (in a locally convex Haus-
dorff space) has a fixed point;

• G admits an invariant mean;

• (Reiter’s property (P1)) For every compact subset Q ⊂ G and ε > 0,
there exists f ∈ L1(G)1,+ such that

max
x∈Q

‖λG(x)f − f‖ ≤ ε;

• (Reiter’s property (P2)) The left regular representation λG almost has
invariant vectors;

• the representation ∞λG almost has invariant vectors.

In Chapter 2, we digress on ergodic theory for group actions on measure
spaces. The goal of the chapter is to establish Moore’s ergodicity theorem,
stating that if Γ is a lattice in a non-compact simple Lie group G, and H is
a non-compact closed subgroup of G, then Γ acts ergodically on G/H . We
deduce it from the Howe-Moore vanishing theorem, stating that coefficients
of unitary representations of G having no non-zero fixed vector, go to zero
at infinity of G. Our basic reference for that chapter is [BM00].

In Chapter 3, we explain how amenability is used in the proof of Margulis’super-
rigidity theorem. Although semisimple Lie groups are very far from being
amenable, they contain a co-compact amenable subgroup (namely a minimal
parabolic subgroup) and this fact, together with Moore’s ergodicity theorem,
plays a crucial role in super-rigidity. References for this Chapter are [Mar91]
and [Zim84].

2



The presentation follows rather closely the CIME course taught at San
Servolo in June 2004. I thank heartily Andrea D’Agnolo and Massimo Pi-
cardello for bringing me to that magical place.

2 Amenability for locally compact groups

2.1 Definition, examples, and first characterizations

For a compact spaceX, we denote byM(X) the space of probability measures
on X.

Definition 1 A locally compact group G is amenable if, for every compact
space X endowed with a G-action, there exists a G-fixed point in M(X) (i.e.
G fixes a probability measure on X)

Example 1 : Compact groups are amenable.

Indeed, let dg be normalized Haar measure on the compact group G. Let G
act on the compact space X. Pick any μ ∈ M(X). Then ν =

∫
G
(g∗μ) dg is

a fixed point in M(X).

Example 2 : SL2(R) is not amenable.

To see this, let SL2(R) act by fractional linear transformations on P 1(R) =
R ∪ {∞}. Then SL2(R) fixes no measure at all on P 1(R). Indeed look at
subgroups

N =

{(
1 ∗
0 1

)}
(= translations on R);

A =

{(
a 0
0 a−1

)
: a > 0

}
(= dilations on R);

The only N -invariant measures on P 1(R) are of the form s dx+ t δ∞ (where
dx is Lebesgue measure on R). Among these, the only A -invariant measures

are the t δ∞’s. But those are not w-invariant, where w =

(
0 1
−1 0

)
(so

that w(x) = −1
x

).

Proposition 1 The following are equivalent:

i) G is amenable;
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ii) Any affine action of G on a (non-empty) convex, compact subset of a
Hausdorff, locally convex topological vector space, has a fixed point.

Proof: (ii) ⇒ (i) : If X is a compact space, then M(X) is a convex
subset of C(X)∗ (space of all Borel measures on X), and M(X) is compact
in the weak-∗ topology.

(i) ⇒ (ii) : Let C be a compact convex subset in E. To each μ ∈ M(C),
we associate its barycentre b(μ) ∈ C: this is the unique point in C such that,
for every f ∈ E∗:

f(b(μ)) =

∫
C

f(c) dμ(c)

(formally: b(μ) =
∫

C
c dμ(c)). If μ =

∑
i λiδci

is an atomic measure, i.e. a
convex combination of Dirac masses, then b(μ) =

∑
i λici, and this can be

extended to M(C) using density of atomic measures in M(C) (see Theorem
3.27 in [Rud73] for details). Clearly b commutes with affine maps of C:
b(T∗μ) = T (b(μ)). In particular, if μ is a G-fixed probability measure on C,
then b(μ) is a G-fixed point in C. �

Here is the famous Markov-Kakutani theorem.

Theorem 1 Every abelian group is amenable.

Proof: Let G be an abelian group, acting on a compact convex subset
C in E. For g ∈ G, define An(g) : C → C by

An(g)x =
1

n+ 1

n∑
i=0

gix.

Let G be the semi-group generated by the An(g)’s (n ≥ 0, g ∈ G). For every
γ ∈ G, the set γ(C) is convex compact.

Claim:
⋂

γ∈G γ(C) �= ∅
It is enough to see that γ1(C) ∩ . . . ∩ γm(C) �= ∅, for γ1, . . . , γm ∈ G. Set

γ = γ1γ2 . . . γm ∈ G. Since G is abelian: γ(C) ⊂ γi(C) for i = 1, . . . , m,
proving the claim.

Take x0 ∈
⋂

γ∈G γ(C). We claim that x0 is G-fixed.
For every n ≥ 0, g ∈ G, there exists x ∈ C such that An(g)x = x0. For

f ∈ E∗:

|f(x0 − gx0)| = |f(
1

n+ 1
(

n∑
i=0

gix −
n∑

i=0

gi+1x))|

=
1

n+ 1
|f(x− gn+1x)| ≤ 2K

n + 1
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where K = max{|f(c)| : c ∈ C}. So f(x0) = f(gx0) for every f ∈ E∗,
therefore x0 = gx0. �

Definition 2 A mean on G is a linear form m on L∞(G), such that:

i) m(1) = 1;

ii) m(f) ≥ 0 for every f ∈ L∞(G), f ≥ 0

Example 3 If μ is a Borel probability measure on G, absolutely continuous
with respect to Haar measure, then m(f) =

∫
G
f dμ defines a mean on G.

There are some important differences between probability measures and
means:

1. means make up a convex compact subset in L∞(G)∗ (for the weak-∗

topology);

2. for A ∈ B (the Borel subsets of G), let χA be the characteristic function
on G; let m be a mean on G, set m(A) = m(χA). The map m : B →
[0, 1] : A �→ m(A) satisfies:

(i) m(G) = 1;

(ii) If A1, . . . , An are pairwise disjoint, thenm(A1∪. . .∪An) = m(A1)+
. . .+m(An).

This second property is finite additivity (as opposed to σ-additivity).

In other words, we may think of a mean as a probability measure which
is only finitely additive.

Proposition 2 The following are equivalent:

i) G is amenable;

ii) G admits an invariant mean.

Proof: (i) ⇒ (ii) Follows from compactness and convexity of the set of
means.

(ii) ⇒ (i) Let G act on a compact space X. Fix x0 ∈ X. For f ∈ C(X),
set φf(g) = f(gx0). The map

φ : C(X) → L∞(G) : f �→ φf

is G-equivariant. So if m is an invariant mean on G, then μ(f) = m(φf)
defines a G-invariant linear functional on C(X). This μ is positive, unital,
so by the Riesz representation theorem it is a probability measure on X. �
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Example 4 The free group F2 on two generators a, b is not amenable.

To see it, assume by contradiction that F2 is amenable. Let m be an invariant
mean. Set

A = {w ∈ F2 : w starts with a non-zero power (positive or negative)of a}.

Then A∪aA = F2, so m(A)+m(aA) ≥ 1 and m(A) = m(aA), so m(A) ≥ 1
2
.

On the other hand A, bA, b2A are pairwise disjoint, so m(A) + m(bA) +
m(b2A) ≤ 1; with m(A) = m(bA) = m(b2A), this gives m(A) ≤ 1

3
, a contra-

diction.

2.2 Stability properties

Proposition 3 Every closed subgroup of an amenable group is amenable.

We postpone the proof until the end of section 2.5.

Proposition 4 :

i) Every quotient of an amenable group is amenable.

ii) Let 1 → N → G→ G/N → 1 be a short exact sequence, with N closed,
amenable in G. The following are equivalent:

• G is amenable;

• G/N is amenable.

Proof: (i) Every action of G/N can be seen as an action of G.
(ii) Assume that G/N is amenable. Let G act affinely on a non-empty,

compact convex subset C. Since N is amenable, the set CN of N -fixed
points is convex, compact and non-empty. Since N is normal, the set CN

is G-invariant, and the G-action factors through G/N . We conclude by
amenability of G/N . �

Example 5 Solvable groups are amenable.

This is proved by induction on the length of the derived series.

Example 6 Borel subgroups are amenable. More precisely, if G = KAN
is a semisimple Lie group, and P = MAN is a minimal parabolic subgroup,
then P is amenable.
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Example 7 Non-compact semisimple Lie groups are not amenable.

Indeed, upon replacing G by G/Z(G), we may assume that G has trivial
centre. By root theory, G has a closed subgroup isomorphic to (P )SL2(R),
so G is not amenable.

Proposition 5 A connected Lie group G is amenable if and only if G is an
extension of a solvable group by a compact group.

Proof: Let G = RS be a Levi decomposition (with R closed, normal,
solvable, and S semisimple). Then G is amenable if and only if S/(R∩ S) is
amenable, if and only if S is compact. �

2.3 Lattices in locally compact groups

Definition 3 A discrete subgroup Γ ⊂ G is a lattice if G/Γ carries a G-
invariant probability measure. A lattice Γ is uniform, or co-compact, if
G/Γ is compact.

Example 8 1) Γ = Zn is a uniform lattice in G = Rn;

2) The discrete Heisenberg group

Γ = H(Z) =

⎧⎨
⎩
⎛
⎝ 1 m p

0 1 n
0 0 1

⎞
⎠ : m,n, p ∈ Z

⎫⎬
⎭

is a uniform lattice in the Heisenberg group G = H(R);

3) Γ = Z2 ��
� 2 1

1 1

�
�

n Z is a uniform lattice in

SOL = R2
��
� et 0

0 e−t

�
�

R;

4) Γ = SLn(Z) (n ≥ 2) is a non-uniform lattice in G = SLn(R);

5) Γ = Spn(Z) (n ≥ 1) is a non-uniform lattice in G = Spn(R);

6) The free group F2 can be embedded as a non-uniform lattice in SL2(R).
E.g.,

F2 � 〈
(

1 2
0 1

)
,

(
1 0
2 1

)
〉

is of index 12 in SL2(Z);
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7) Let Γg be the fundamental group of a closed Riemann surface of genus
g ≥ 2. Then Γg embeds as a uniform lattice in G = PSL2(R).

More examples of lattices will be given in section 4.5.

Proposition 6 Let Γ be a lattice in G. The following are equivalent:

i) G is amenable;

ii) Γ is amenable.

Proof of (ii) ⇒ (i): LetG act affinely on a compact convex subset C. Let
μ be an invariant probability measure on G/Γ. Since Γ is amenable, the set
CΓ is closed, convex, non-empty. For x0 ∈ CΓ, the orbit map G → C : g �→
g.x0 is (right) Γ-invariant, so factors through G/Γ. So x =

∫
G/Γ

y.x0 dμ(y) ∈
C, and this x is a G-fixed point, by G-invariance of μ. �

2.4 Reiter’s property (P1)

We denote by λG the left regular representation of G on the space of all
functions G→ C. We set L1(G)1,+ = {f ∈ L1(G) : f ≥ 0, ‖f‖1 = 1}.

Theorem 2 The following are equivalent:

1. G is amenable;

2. (Reiter’s property (P1), see [Rei52]) For every compact subset Q ⊂ G
and ε > 0, there exists f ∈ L1(G)1,+ such that

max
x∈Q

‖λG(x)f − f‖1 ≤ ε.

Proof: (ii) ⇒ (i) Using the assumption, we find a net (fi)i∈I in L1(G)1,+

such that limi∈I ‖λG(x)fi − fi‖1 = 0 for every x ∈ G. Let m be any weak-∗

limit point of the fi’s in the set of means on G. Then m is a G-invariant
mean on G.

(i) ⇒ (ii) Recall that, for f ∈ L1(G), φ ∈ L∞(G):

(f 
 φ)(x) =

∫
G

f(y)φ(y−1x) dy =

∫
G

f(y)(λG(y)φ)(x) dy

so that f 
 φ ∈ L∞(G).
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Let m be an invariant mean on G. Since m is continuous on L∞(G), we
have

m(f 
 φ) = m(φ) (1)

if f ∈ L1(G)1,+.
Since L1(G)1,+ is weak-∗ dense in the space of all means on G, there exists

a net (fi)i∈I such that for every φ ∈ L∞(G):

lim
i∈I

∫
G

fi(y)φ(y) dy = m(φ).

For every f ∈ L1(G)1,+, we also have, because of (1):

lim
i∈I

∫
G

fi(y)(f 
 φ)(y) dy = m(φ).

From this, we deduce limi∈I(f 
 fi − fi) = 0 in the weak topology of L1(G).
Consider now the space E of all functions L1(G)1,+ → L1(G), endowed

with the pointwise norm topology. The set

Σ = {(f 
 g − g)f∈L1(G)1,+
: g ∈ L1(G)1,+}

is convex in E, and its weak closure contains 0, by the previous observation.
Since the weak closure of Σ coincides with its closure in the pointwise topol-
ogy (a general fact from functional analysis, see Theorem 3.12 in [Rud73]),
there exists a net (gj)j∈J in L1(G)1,+ such that limj∈J ‖f 
 gj − gj‖1 = 0 for
every f ∈ L1(G)1,+. Since ‖gj‖1 = 1, this convergence is uniform on norm-
compact subsets of L1(G)1,+. One such subset is {λG(x)f : x ∈ Q}. So fix
f0 ∈ L1(G)1,+, and find j ∈ G large enough so that ‖λ(x)(f0 
 gj)− gj‖1 ≤ ε

2

for x ∈ Q ∪ {1}. Set fQ,ε = f0 
 gj: then fQ,ε ∈ L1(G)1,+ and

‖λG(x)fQ,ε − fQ,ε‖1

≤ ‖λG(x)(f0 
 gj) − gj‖1 + ‖gj − (f0 
 gj)‖1 ≤ ε

for every x ∈ Q. �

2.5 Reiter’s property (P2)

Definition 4 A unitary representation π of G almost has invariant vec-
tors, or weakly contains the trivial representation if, for every compact
subset Q of G and every ε > 0, there exists a non-zero ξ ∈ Hπ such that

max
g∈Q

‖π(g)ξ − ξ‖ ≤ ε‖ξ‖.
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For a unitary representation π, we denote by ∞π the (Hilbert) direct sum
of countably many copies of π.

Theorem 3 The following are equivalent:

i) G is amenable;

ii) (Reiter’s property (P2), see [Rei64]) The left regular representation λG

almost has invariant vectors.

iii) The representation ∞λG almost has invariant vectors.

Proof: (i) ⇒ (ii) Fix a compact subset Q ⊂ G and ε > 0. As G is
amenable, by Reiter’s property we find f ∈ L1(G)1,+ such that ‖λG(x)f −
f‖1 ≤ ε. Set g =

√
f . Then g ∈ L2(G) and ‖g‖2 = 1. Moreover, using

|a− b|2 ≤ |a2 − b2| for a, b ≥ 0, we get

‖λG(x)g − g‖2
2 ≤

∫
G

|g(x−1y)2 − g(y)2| dy

= ‖λG(x)f − f‖1 ≤ ε.

(ii) ⇒ (iii) Obvious, since λG is a subrepresentation of ∞λG.
(iii) ⇒ (i) We assume that ∞λG almost has invariant vectors and prove

in 3 steps that G satisfies Reiter’s property (P1), hence is amenable. So fix
a compact subset Q ⊂ G, and ε > 0; find a sequence (fn)n≥1 of functions,

fn ∈ L2(G),
∑∞

n=1 ‖fn‖2
2 = 1, such that

∑∞
n=1 ‖λG(x)fn − fn‖2

2 < ε2

4
for

x ∈ Q.

1) Replacing fn with |fn|, we may assume that fn ≥ 0.

2) Set gn = f 2
n, so that gn ∈ L1(G),

∑∞
n=1 ‖gn‖1 = 1, gn ≥ 0. For x ∈ Q,

we have:

∞∑
n=1

‖λG(x)gn − gn‖1 =

∞∑
n=1

∫
G

|fn(x−1y)2 − fn(y)2| dy

=
∞∑

n=1

∫
G

|fn(x−1y) − fn(y)|(fn(x
−1y) + fn(y)) dy

≤
( ∞∑

n=1

∫
G

|fn(x−1y) − fn(y)|2 dy
)1

2

×
( ∞∑

n=1

∫
G

(fn(x−1y) + fn(y))2 dy

)1
2
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≤
( ∞∑

n=1

‖λG(x)fn − fn‖2
2

) 1
2

×
(

2

∞∑
n=1

∫
G

(fn(x−1y)2 + fn(y)2) dy

)1
2

= 2

( ∞∑
n=1

‖λG(x)fn − fn‖2
2)

) 1
2

< ε

where we have used consecutively the Cauchy-Schwarz inequality, (a+
b)2 ≤ 2(a2 + b2) for a, b > 0, and the fact that

∑∞
n=1 ‖fn‖2

2 = 1.

3) Set F =
∑∞

n=1 gn. Then F ≥ 0 and ‖F‖1 =
∑∞

n=1 ‖gn‖1 = 1. More-
over, for x ∈ Q:

‖λG(x)F − F‖1 ≤
∞∑

n=1

‖λG(x)gn − gn‖1 < ε

by the previous step. This establishes property (P1) for H . �

Finally we reach a result left unproved in section 2.2:

Corollary 1 Closed subgroups of amenable groups are amenable.

Proof: Let H be a closed subgroup of the amenable group G. Choose
a measurable section s for G → H\G; so every g ∈ G is written uniquely
g = hs(y), with h ∈ H, y ∈ H\G. This gives an H-equivariant measurable
identification G � H × H\G, inducing a unitary map L2(G) → L2(H) ⊗
L2(H\G) intertwining λG|H and λH ⊗ 1. Choosing an orthonormal basis of
L2(H\G), we identify λH ⊗ 1 with the direct sum of [G : H ] copies of λH ,
which we embed as a subrepresentation in ∞λH . This means that ∞λH

almost has invariant vectors, hence H is amenable by Theorem 3. �

2.6 Amenability in Riemannian geometry

In the Introduction, we mentioned that amenability became relevant in var-
ious fields of mathematics. In this section, independent of the rest of the
Chapter, we substantiate this claim and indicate how amenability enters
Riemannian geometry.

Let N be a complete Riemannian manifold. It carries a Laplace operator

ΔN = d∗d = −div ◦ grad.
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This operator is self-adjoint on L2(N), so it has a non-negative spectrum,
and we denote by λ0(N) the bottom of its spectrum:

λO(N) = inf{λ ≥ 0 : λ ∈ SpecL2(N)ΔN}.

The following result was obtained by R. Brooks [Bro81].

Theorem 4 Let M be a compact Riemannian manifold. Let M̃ be the uni-
versal cover of M , and π1(M) its fundamental group. The following are
equivalent:

i) π1(M) is amenable;

ii) λ0(M̃) = 0. �

Since π1(M) only depends of the topological structure of M , this shows
in particular that the property λ0(M̃) = 0 does not depend on the choice of
a Riemannian structure on M .

Example 9 1. λ0(R
n) = 0, which gives another proof of the amenability

of Zn.

2. If H2 denotes the Poincaré disk, with the metric of constant curvature
−1, then λ0(H

2) = 1
4
, which gives another proof of the non-amenability

of the surface group Γg, g ≥ 2.

3 Measurable ergodic theory

3.1 Definitions and examples

In this section, the context will be the following:

• G is a locally compact, σ-compact group;

• (X,μ) is a standard measure space;

• G is acting on (X,μ), i.e. we are given a measurable map G×X → X :
(g, x) �→ gx which is an action such that, for every g ∈ G, the measure
g∗μ is equivalent to μ (i.e. they have the same null sets); when this
happens, we say that μ is quasi-invariant.

Definition 5 The measure μ is invariant if g∗μ = μ for every g ∈ G;
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Definition 6 The action of G on (X,μ) is ergodic if every G-invariant
measurable subset A is either null or co-null (i.e. μ(A) = 0 or μ(X−A) = 0).

Example 10 (invariant measures on homogeneous spaces, see section 9 in
[Wei65]) Let L be a closed subgroup of G; there always exists a quasi-invariant
measure on G/L; there exists an invariant measure on G/L if and only if
the restriction to L of the modular function of G, coincides with the modular
function of L. Since the action of G on G/L is transitive, it is trivially
ergodic.

Example 11 (irrational rotation) Take X = S1, μ = normalized Lebesgue
measure. Fix θ ∈ R − Q. Let G = Z act on S1 by powers of the irrational
rotation T of angle 2πθ:

T (z) = e2πiθz.

This action is measure-preserving, and ergodic.

To check ergodicity, it is convenient to appeal to Fourier series: if A ⊂ S1 is
T -invariant, let χA be its characteristic function, and

χA(z) =

+∞∑
n=−∞

anz
n

be its Fourier expansion in L2(S1). Then

T ∗(χA)(z) = χA(T−1z) =

+∞∑
n=−∞

e−2πinθanz
n.

By T -invariance, we must have an = e−2πinθan for every n ∈ Z, so an = 0
for n �= 0, as θ is irrational; thus χA is constant, i.e. either χA = 0 and
μ(A) = 0, or χA = 1 and μ(A) = 1.

Example 12 (linear action on tori) The linear action of SLn(Z) on Rn

leaves Zn invariant, so descends to an action on the n-torus Tn = Rn/Zn.
Let μ be normalized Lebesgue measure on Tn: since Lebesgue measure is
SLn(R)-invariant on Rn, the measure μ is SLn(Z)-invariant on Tn. This
action is ergodic.

To check ergodicity of this action, we use n-variable Fourier series: if
A ⊂ Tn is SLn(Z)-invariant, let χA be its characteristic function, and

χA(z1, . . . , zn) =
∑
r∈Zn

arz
r

13



(where zr = zr1
1 . . . zrn

n ) be its Fourier expansion in L2(Tn). For g ∈ SLn(Z),
one has

(gχA)(z) = χA(g−1z) =
∑
r∈Zn

arz
tg−1r =

∑
r∈Zn

a tgrz
r.

Since A is SLn(Z)-invariant, we have a tgr = ar for every r ∈ Zn and g ∈
SLn(Z); i.e. ar is constant on SLn(Z)-orbits on Zn. Notice that non-trivial
orbits are infinite. Since (ar)r∈Zn ∈ �2(Zn), we must have ar = 0 for r �= 0.
So χA is constant and we conclude as in Example 11.

Note that in example 12, SLn(Z) can be replaced by any subgroup with
infinite non-trivial orbits on Zn. For n = 2, one can for example take the

infinite cyclic subgroup generated by

(
2 1
1 1

)
.

Definition 7 A Borel space is countably separated if there exists a count-
able family of Borel subsets separating points (i.e. two distinct points can be
put in two disjoint subsets of the countable family).

For example, Rn is countably separated since we can take the collection of
balls with rational centres and rational radii as a countable family separating
points.

Proposition 7 Let S be countably separated. If the G-action on (X,μ) is
ergodic, any measurable G-invariant map f : X → S, is almost everywhere
constant.

Proof: Let (Aj)j≥1 be a sequence of Borel subsets separating points in
S. Let Pn be the partition of S generated by A1, . . . , An. For every B ∈ Pn,
the set f−1(B) is G-invariant, so it is either null or co-null; moreover there
exists a unique Bn ∈ Pn such that f−1(Bn) is co-null. The sequence (Bn)n≥1

is decreasing, and the intersection
⋂∞

n=1Bn is reduced to one point s, as the
Aj ’s separate points in S. So f(x) = s almost everywhere. �

The converse of Proposition 7 holds in the finite measure-preserving case.
The following result, due to Koopman [Koo31], is known today under the
name “Koopmanism”.

Proposition 8 Let G act on the probability space (X,μ), preserving μ. The
following are equivalent:

i) The action is ergodic;

ii) Any G-invariant function in L2(X,μ) is constant almost everywhere.
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iii) Set L2
0(X,μ) = {f ∈ L2(X,μ) :

∫
X
f dμ = 0} (the orthogonal of con-

stants in L2(X,μ)). The representation of G on L2
0(X,μ) has no non-

zero fixed vector.

Proof: (i) ⇒ (ii) : Follows from Proposition 7.
(ii) ⇒ (iii): Obvious.
(iii) ⇒ (i) : If a Borel subset A is G-invariant, set

ξA(x) =

{
1 − μ(A) if x ∈ A
−μ(A) if x /∈ A

ξA is a G-invariant function in L2
0(X,μ), so ξA = 0; this gives the result. �

Example 13 Proposition 8 false in infinite measure. Indeed, let Z act by
translation on R: the action is not ergodic (why?). However the only Z-
invariant function in L2(R) is the constant 0.

3.2 Moore’s ergodicity theorem

We have seen that, if L is a closed subgroup of G, then the action of G on
G/L is trivially ergodic. A more interesting situation arises by considering
H,L, two closed subgroups of G. Question: when is the H-action on G/L
ergodic? Moore’s theorem gives the answer.

Theorem 5 The following are equivalent:

i) The H-action on G/L is ergodic;

ii) The L-action on H\G is ergodic.

Example 14 Let Γ = SL2(Z) act by fractional linear transformations on the
real projective line P1(R) � S1. Is the action ergodic? Write P1(R) = G/P ,

where G = SL2(R) and P =

{( ∗ ∗
0 ∗

)}
. By Theorem 5, ergodicity of Γ

on G/P (situation with no invariant measure) is equivalent to ergodicity of
P on Γ\G (situation with a finite invariant measure).

Later we will see that these actions are ergodic.

Lemma 1 Let H be a closed subgroup of G; let (X,μ) be a G-space. The
following are equivalent:

15



i) H acts ergodically on X;

ii) G acts ergodically (via the diagonal action) on X ×G/H.

Proof: (i) ⇒ (ii) Contraposing, assume that G is not ergodic on X ×
G/H . So find A ⊂ X × G/H , neither null nor co-null, G-invariant. Let
p : X × G/H → G/H be the second projection, set Ay = p−1(y) ∩ A for
y ∈ G/H . Since p is G-equivariant, one has Agy = gAy. Since G acts
transitively on G/H , this implies (by Fubini) that AeH is neither null nor
co-null. But AeH is an H-invariant subset in X, so H is not ergodic on X.

(ii) ⇒ (i) Contraposing, assume that H is not ergodic on X. So find
B ⊂ X, neither null nor co-null, H-invariant. Choosing a measurable section
s for G→ G/H , we may define

A = {(x, y) ∈ X ×G/H : x ∈ s(y)B}.

The set A is then G-invariant: indeed, for g ∈ G and (x, y) ∈ A, we must
check that gx ∈ s(gy)B. But s(gy) = gs(y)h for some h ∈ H so gx ∈
gs(y)B = gs(y)hB = s(gy)B. One sees easily that A is neither null or co-
null. �

Proof of Theorem 5: By lemma 1, the action of H on G/L is ergodic
if and only if the action of G on G/L × H\G is ergodic, if and only if the
action of L on H\G is ergodic. �

Definition 8 Let Γ be a lattice in a semisimple Lie group G. Say that Γ is
irreducible if, for any normal subgroup N of positive dimension in G, the
image of Γ in G/N is dense.

This definition is designed to eliminate examples of the form Γ = Γ1 ×Γ2

in G = G1 ×G2, with Γi a lattice in Gi (i = 1, 2).

Example 15 Let σ be the non-trivial element of Gal(Q(
√

2)/Q):

σ(r + s
√

2) = r − s
√

2.

Then SLn(Z[
√

2]) sits as a non-uniform irreducible lattice in SLn(R) ×
SLn(R), via the embedding g �→ (g, σ(g)).

Here is Moore’s ergodicity theorem [Moo66]:
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Theorem 6 Let G be a connected, semisimple Lie group with finite centre.
Let Γ be an irreducible lattice in G, and H a closed subgroup in G. If H is
not compact, then Γ acts ergodically on G/H.

In the next section, we will deduce this result from the Howe-Moore
vanishing theorem. Notice that Theorem 6 implies, in Example 14, that the
action of Γ on G/P is ergodic.

3.3 The Howe-Moore vanishing theorem

Let π be a (strongly continuous) unitary representation of a locally compact
group G, on a Hilbert space H. Denote by Hπ(G) the space of fixed vectors
in H.

Definition 9 π is a C0-representation if all coefficients of π vanish at
infinity on G, i.e. limg→∞〈π(g)ξ|η〉 = 0 for every ξ, η ∈ H.

Example 16 The left regular representation λG of G on L2(G) is C0.

Indeed, if ξ, η ∈ L2(G) have compact support in G, then so does g �→
〈λG(g)ξ|η〉. By density of Cc(G) in L2(G), we conclude that every coeffi-
cient vanishes at infinity.

Example 17 C0-representations have no finite-dimension subrepresentation.

The reason is: if σ is a finite-dimensional unitary representation, then the
identity 1 = | det σ(g)| prevents σ from being C0). Observe that this implies
in particular that a C0-representation has no non-zero fixed vector.

Here is the Howe-Moore theorem ([HM79], Theorem 5.1).

Theorem 7 Let G =
∏

iGi be a semisimple Lie group with finite centre and
simple factors Gi’s, and let π be a unitary representation of G. Assume that
Hπ(Gi) = 0 for every i. Then π is C0.

From this we deduce Moore ergodicity.

Proof of Theorem 6: Let H be a closed non-compact subgroup of G.
To prove that Γ is ergodic on G/H , by lemma 1 it is enough to prove that
H is ergodic on G/Γ. So let π be the representation of G on L2

0(G/Γ). Take
a function on G/Γ which is Gi-invariant, lift to a left-Gi, right-Γ invariant
function on G, and project to a right-Γ invariant function on Gi\G. Since
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Γ is irreducible, the image of Γ in Gi\G is dense, hence this function must
be a.e. constant. This shows that π(Gi) has no non-zero invariant function
in L2

0(G/Γ). By Howe-Moore (Theorem 7), π is a C0-representation. So π|H
is C0 as well, in particular (by Example 17) π|H has no non-zero invariant
vector. By Proposition 8 (valid since we have a finite invariant measure on
G/Γ), H is ergodic on G/Γ. �

We will give a complete proof of the Howe-Moore theorem in the case
of SL2(R), and then indicate briefly how to pass from SL2(R) to a more
general semisimple Lie group.

Let G be a locally compact group, and let α = (an)n≥1 be a sequence in
G. Set

U+
α = {g ∈ G : 1 is an accumulation point of (a−1

n gan)n≥1}

and let N+
α be the subgroup generated by U+

α .
The following result is known as Mautner’s phenomenon.

Proposition 9 Let π be a (strongly continuous) unitary representation of G.
Let ξ, ξ0 be vectors in H such that limn→∞ π(an)ξ = ξ0 in the weak topology.
Then π(x)ξ0 = ξ0 for every x ∈ N+

α .

Proof: Fix x ∈ U+
α . Let (ank

)k≥1 be a subsequence of α such that
limn→∞ a−1

nk
xank

= 1. For every η ∈ H:

|〈(π(x)ξ0 − ξ0)|η〉| = |〈π(x)ξ0|η〉 − 〈ξ0|η〉|

= lim
k→∞

|〈π(xank
)ξ|η〉 − 〈π(ank

)ξ|η〉|

= lim
k→∞

|〈π(a−1
nk
xank

)ξ|π(a−1
nk

)η〉 − 〈ξ|π(a−1
nk

)η〉|

≤ lim
k→∞

‖π(a−1
nk
xank

)ξ − ξ‖.‖η‖ = 0

by Cauchy-Schwarz. �

Example 18 Let G be SL2(R), an =

(
etn 0
0 e−tn

)
, with tn → +∞. It is

easy to see that N+
α = N =

{(
1 ∗
0 1

)}
.

Lemma 2 Let π be a unitary representation of G = SL2(R). If a vector
ξ ∈ H is N-invariant, then it is G-invariant.
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Proof: For a vector η ∈ H of norm 1, consider φη(g) = 〈π(g)η|η〉, the
associated coefficient function. For any closed subgroup H ⊂ G, the vector
η is H-fixed if and only if φ|H = 1, if and only if φ is H-bi-invariant (by the
equality case of the Cauchy-Schwarz inequality).

Here, ξ is N -invariant, so φξ =: φ is N -bi-invariant.

1st step: ξ is P -invariant. Indeed, by right N -invariance, φ descends to a

function φ̃ on G/N � R2 − {0}, which is continuous and constant on orbits
of N . In particular, φ̃ is constant on lines parallel to the horizontal axis, and
distinct from this axis. By continuity, φ̃ is equal to 1 on the horizontal axis.

Observing that this axis (minus {0}) is the P -orbit of

(
1
0

)
, we get that

φ|P = 1, i.e. ξ is P -fixed.

2nd step: Since φ is P -bi-invariant, φ descends to a function φ on G/P �
P1(R), which is continuous and constant on P -orbits. But there are exactly
two P -orbits, namely {0} and its complement. By continuity we have φ ≡ 1,
so φ ≡ 1 and ξ is G-fixed. �

Proof of Theorem 7, case G = SL2(R): Set

A+ =

{
at =

(
et 0
0 e−t

)
: t ≥ 0

}

and K = SO(2). In view of the Cartan decomposition G = KA+K, to show
vanishing of coefficients it is enough to show that, for every ξ, η ∈ H one has
limt→+∞〈π(at)ξ|η〉 = 0. By compactness of closed balls in Hilbert spaces for
the weak topology, we find an accumulation point ξ0 of the π(at)ξ’s:

lim
n→∞

π(atn)ξ = ξ0

in the weak topology. By Mautner’s phenomenon (Proposition 9) and exam-
ple 18, ξ0 must be N -fixed. By lemma 2, the vector ξ0 is also G-fixed. By
assumption this implies ξ0 = 0, so the only weak accumulation point of the
π(at)ξ’s is 0. In other words w − limt→∞ π(at)ξ = 0, which amounts to the
desired result. �

Let us conclude by indicating how one can pass from SL2(R) to more
general semisimple groups, say SL3(R). Here

A =

⎧⎨
⎩
⎛
⎝ et1 0 0

0 et2 0
0 0 et3

⎞
⎠ : t1 + t2 + t3 = 0

⎫⎬
⎭ .
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Let π be a unitary representation of SL3(R), without non-zero fixed vector.
Embed SL2(R) into SL3(R) in the three standard ways:⎛

⎝ ∗ ∗ 0
∗ 0

0 0 1

⎞
⎠ ,

⎛
⎝ ∗ 0 ∗

0 1 0
0 ∗

⎞
⎠ ,

⎛
⎝ 1 0 0

0 ∗ ∗
0 ∗ ∗

⎞
⎠ .

Claim: For each of these 3 copies of SL2(R), the restriction π|SL2(R) has no
non-zero fixed vector.

Taking this claim for granted, we see (by the Howe-Moore theorem in the
case of SL2(R)) that π|SL2(R) is a C0-representation. Since A is generated
by its intersections with the three embeddings of SL2(R), we get for a ∈ A:

lim
a→∞

〈π(a)ξ|η〉 = 0

i.e. π is C0.

Proof of the Claim: Assume that π|SL2(R) has a non-zero fixed vector
ξ, say for the first embedding of SL2(R). We are going to show that ξ is
fixed under SL3(R).

We use the fact that SL3(R) is generated by elementary matrices Uij(t) (t ∈

R, i �= j). Let us show that ξ is U13(R)-invariant. Take u =

⎛
⎝ 1 0 x

0 1 0
0 0 1

⎞
⎠,

and α = (an)n≥1, with an =

⎛
⎝ etn 0 0

0 e−tn 0
0 0 1

⎞
⎠, for some sequence tn → +∞.

Then u ∈ N+
α . Since π(an)ξ = ξ, we have π(u)ξ = ξ by the Mautner phe-

nomenon (Proposition 9). �

4 Margulis’super-rigidity theorem

4.1 Statement

Recall that the real rank of a semisimple Lie groupG, denoted by R−rk(G),
is the dimension of a maximal split torus in G. For example:

R − rk(SLn(R)) = n− 1;

R − rk(SO(p, q)) = min{p, q}.

Theorem 8 (see [Mar91], Theorem 5.6) Take:

20



• G, a connected, semisimple real algebraic group, with no compact fac-
tor, and R− rk(G) ≥ 2;

• Γ an irreducible lattice in G(R);

• k a local field of characteristic 0 (i.e. k = R, C or a finite extension
of Qp) and H a simple, connected, algebraic k-group.

Assume that π : Γ → H(k) is a homomorphism with Zariski dense image.
Then:

i) If k = R and H(R) is not compact, then π extends to a rational ho-
momorphism G→ H defined over R (hence induces G(R) → H(R));

ii) If k = C, then either π(Γ) is compact, or π extends to a rational
homomorphism G→ H;

iii) If k is totally disconnected, then π(Γ) is compact.

4.2 Mostow rigidity

One of the most spectacular applications of Theorem 8 is Mostow’s rigidity
theorem [Mos73].

Theorem 9 Let G,G′ be connected semi-simple Lie groups with trivial cen-
tre, no compact factors, and suppose Γ ⊂ G, Γ′ ⊂ G′ are lattices. Assume
Γ irreducible in G and R − rk(G) ≥ 2. Let π : Γ → Γ′ be an isomorphism.
Then π extends to an isomorphism G→ G′.

In other words, the lattice determines the ambient Lie group.

Proof, from Theorem 8: For each simple factor H ′
i of G′, find a struc-

ture of a simple real algebraic group such that H ′
i = H ′

i(R)o. By the Borel
density theorem [Bor60], Γ′ is Zariski-dense in G′ = G′(R)o =

∏
iH

′
i(R)o.

Similarly, write G = G(R)o. By Theorem 8 (case k = R), applied to each
factor H ′

i, we may extend π to a rational homomorphism G → G′. Since
π(G) is an algebraic subgroup of G

′, by Zariski-density we deduce π(G) = G
′

and from that: dimR π(G) = dimRG
′, so π(G) = G′ by connectedness. Set

N = Ker π. Assume N �= {1}. Since G has no center, then dimRN > 0.
Since Γ is an irreducible lattice, the image of Γ is dense in G/N , which im-
plies that π(Γ) is dense in G′, contradicting discreteness of Γ′. �

We may rephrase the Mostow rigidity theorem as follows.
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Let M,M ′ be locally symmetric Riemannian manifolds, with finite vol-
ume, irreducible (in the sense that neither M nor M ′ is locally a Riemannian
product), with rank ≥ 2. If π1(M) � π1(M

′), then M is isometric to M ′ (up
to a rescaling of metrics).

4.3 Ideas to prove super-rigidity, k = R

Lemma 3 Suppose P ⊂ G and L ⊂ H are proper real algebraic subgroups,
and there exists a rational Γ-equivariant map φ : G/P → H/L defined over
R (where Γ acts on H/L via π - explicitly: φ(γ.x) = π(γ).φ(x)). Then π
extends to a rational homomorphism G→ H defined over R. �

Proof: Idea: look at the graph of π:

gr(π) = {(γ, π(γ)) : γ ∈ Γ} ⊂ G×H,

and show that the Zariski closure gr(π)
Z

is the graph of a homomorphism.

1st step: The projection of gr(π)
Z

on the first factor G, is onto: this
follows from the Borel density theorem.

2nd step: We have to show that, if (g, h1), (g, h2) ∈ gr(π)
Z
, then h1 = h2.

For this, let R(G/P,H/L) be the set of all rational maps G/P → H/L.
Let G×H act on R(G/P,H/L) by

((g, h).ψ)(x) = h.ψ(g−1x)

(ψ ∈ R(G/P,H/L)). By assumption, our φ is Γ-equivariant. In terms of the
G×H-action, this means that φ is gr(π)-invariant. Since φ is rational, this

implies that φ is gr(π)
Z
-invariant. In particular, for every x ∈ G/P :

h1.φ(g−1x) = h2.φ(g−1x)

i.e. h−1
1 h2 fixes φ(G/P ) pointwise.

On the other hand, π(Γ) stabilizes φ(G/P ), so π(Γ) also stabilizes φ(G/P )
Z
.

By Zariski density of π(Γ), we deduce that H stabilizes φ(G/P )
Z
. Since H

acts transitively on H/L, this implies that φ(G/P )
Z

= H/L (i.e. φ(G/P ) is
Zariski-dense in H/L).

As a consequence, h−1
1 h2 fixes H/L pointwise, so h−1

1 h2 ∈ ⋂h∈H hLh
−1.

The latter is a proper normal subgroup of H . Since H is assumed to be
simple, this subgroup is {1}, i.e. h−1

1 h2 = 1. This concludes the proof. �
We will apply this when P is a minimal parabolic subgroup of G, defined

over R.
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Example 19 G = SLn, G(R) = SLn(R), P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

∗ . . . . . . ∗
0

. . .
...

...
. . .

...
0 . . . 0 ∗

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Set P0 = P ∩G(R)o. Then G(R)o/P0 is Zariski dense in the flag variety
G/P . So, if we have a rational map φ : G/P → H/L defined on a Zariski
dense subset of G(R)o/P0, which is Γ-equivariant as a map G(R)o/P0 →
H/L, then φ is Γ-equivariant.

It is therefore enough to find a proper real algebraic subgroup L ⊂ H and
a rational Γ-equivariant map G(R)o/P0 → H/L, defined on a Zariski-dense
subset of G(R)o/P0. This will be done in two steps.

1st step: There is a proper real algebraic subgroup L ⊂ H and a mea-
surable Γ-equivariant map φ : G(R)o/P0 → H(R)/L(R).

2nd step: Any such measurable Γ-equivariant map agrees almost every-
where with a rational map.

We shall not elaborate on the second step, and refer instead to Chapter
5 in [Zim84]. Note however that it is here that R − rk(G) ≥ 2 is used! The
proof of the 1st step appeals to the following result of Furstenberg (Theorem
15.1 in [Fur73]), which will be proved in the next subsection.

Recall that, for a compact space X, we denote by M(X) the set of prob-
ability measures on X.

Proposition 10 Let X be a compact, metrizable Γ-space. There exists a
measurable Γ-equivariant map ω : G/P → M(X), i.e. ω(γx) = γω(x) for all
γ ∈ Γ and almost all x ∈ G/P .

Proof of the 1st step above: Let Q be a proper parabolic subgroup of
H , defined over R. Then X = H(R)/Q(R) is a compact metrizable Γ-space.
By Proposition 10, we find ω : G/P → M(X) measurable and Γ-equivariant.
We then argue as follows:

• the orbit space H(R)\M(X) is countably separated (this is a result of
Zimmer [Zim78]);

• Let ω : G/P → H(R)\M(X) be the composition of ω with the quotient
map M(X) → H(R)\M(X). Then ω(γx) = ω(x) a.e. in x ∈ G/P . By
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Moore’s ergodicity theorem 6, Γ acts ergodically on G/P . By Proposi-
tion 7, the map ω is almost everywhere constant on G/P . This means
that ω takes values essentially in a unique orbit H(R)μ0 ∈M(X).

• For every μ ∈ M(X), the stabilizer of μ in H(R) is the set of real
points of a proper, real algebraic subgroup of H . This is another result
of Furstenberg [Fur63].

Set then L = StabH(μ0). The map H(R)μ0 → H(R)/L(R) is H(R)-
equivariant. Composing, we get a Γ-equivariant measurable map φ : G/P →
H(R)/L(R), defined on a Γ-invariant co-null set. �

4.4 Proof of Furstemberg’s Proposition 10 - use of

amenability

We give Margulis’proof (see Theorem 4.5 in [Mar91]).

Denote by dg the Haar measure on G. Let Γ ×G act on G×X by

(γ, g)(h, x) = (γhg−1, γx).

The projection p : G×X → G is (Γ×G)-equivariant. Let Q be the set of non-
negative Borel measures μ on G×X such that p∗(μ) = dg and (γ, 1)∗μ = μ
for every γ ∈ Γ. We make 3 observations.

• Q is non-empty. Indeed, fix D a Borel fundamental domain for Γ on G:
for every g ∈ G, there exists a unique γg ∈ Γ such that g ∈ γgD. Fix
x0 ∈ X and define φ : G → G×X : g �→ (g, γgx0). Then (γ, 1)φ(g) =
(γg, γγgx0) = φ((γ, 1)g). So φ is measurable, Γ-equivariant, and p◦φ =
IdG. So φ∗(dg) ∈ Q.

• Q is convex (clear) and compact in the weak-∗ topology. Indeed, if
(Kn)n≥1 is an increasing sequence of compact subsets of G such that
G =

⋃∞
n=1Kn. SinceX is compact, so isKn×X, and therefore elements

in Q are uniformly bounded on Kn ×X, namely μ(Kn ×X) ≤ ∫
Kn
dg

for μ ∈ Q. So Q is bounded; since it is also weak-∗ closed, by Tychonov
it is weak-∗ compact.

• Q is (Γ × G)-invariant. This is because (γ, h)∗(dg) = dg, since G is
unimodular.

Since P is amenable, there exists τ ∈ Q which is ({1} × P )-invariant, hence
also (Γ × P )-invariant, by definition. As p∗(τ) = dg, we may disintegrate τ
over G:

τ =

∫
G

(δg ⊗ νg) dg
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where νg ∈ M(X) and the field g �→ νg is measurable, and unique up to
modification on a null set. Now

(γ, p)∗(τ) =

∫
G

(δγgp−1 ⊗ γ∗νg) dg (h = γgp−1)

=

∫
G

(δh ⊗ γ∗νγ−1hp) dh.

By uniqueness: νg = γ∗νγ−1gp for almost every g ∈ G. In particular νgp = νg

for almost every g ∈ G and every p ∈ P . So we may define a measurable
map

ω : G/P →M(X) : gP �→ νg

which is Γ-equivariant. �

4.5 Margulis’arithmeticity theorem

Recall that two subgroups H1, H2 in the same group, are commensurable if
their intersection H1 ∩H2 has finite index both in H1 and H2.

Definition 10 Let G be a real, linear, semisimple Lie group with finite cen-
tre. A lattice Γ in G is arithmetic if there exists a semisimple algebraic
Q-group H and a surjective continuous homomorphism φ : H(R)0 → G,
with compact kernel, such that φ(H(Z) ∩ H(R)0) is commensurable with Γ
(here H(R)0 is the connected component of identity in H(R)).

Example 20 Let Φ be a quadratic form in n + 1 variables, with signature
(n, 1), and coefficients in a number field k ⊂ R. We denote by SOΦ the
special orthogonal group of Φ: this is a simple algebraic group defined over
k. Set Γ = SOΦ(O), where O is the ring of integers of k.

a) Φ = x2
1 + . . . + x2

n − x2
n+1; here k = Q and H = SOΦ, so that

Γ = SO(n, 1)(Z) is a non-uniform arithmetic lattice in SOΦ(R) =
SO(n, 1).

b) Φ = x2
1 + . . .+ x2

n −
√

2x2
n+1; here k = Q(

√
2) and H = SOΦ ×SOσ(Φ),

where σ is the non-trivial element of Gal(k/Q). Then Γ = SOΦ(Z[
√

2])
is a uniform arithmetic lattice in SOΦ(R) � SO(n, 1).

c) Φ = x2
1 + . . .+ x2

n − δx2
n+1 where δ > 0 is a root of a cubic irreducible

polynomial over Q, having two positive roots δ, δ′ and one negative root
δ′′. Here k = Q(δ); let σ, τ be the embeddings of k into R defined by
σ(δ) = δ′ and τ(δ) = δ′′. Then H = SOΦ × SOσ(Φ) × SOτ(Φ) and Γ is
an irreducible, uniform, arithmetic lattice in SOΦ(R) × SOσ(Φ)(R) �
SO(n, 1) × SO(n, 1).
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Margulis’arithmeticity theorem is another spectacular application of super-
rigidity (Theorem 8).

Theorem 10 (see Chapter IX in [Mar91]) Let G be a connected semisimple
Lie group with trivial centre, no compact factors, and R − rk(G) ≥ 2. Let
Γ ⊂ G be an irreducible lattice. Then Γ is arithmetic. �

Non-arithmetic lattices are known to exist in SO(n, 1) for every n ≥ 2
(Gromov - Piatetskii-Shapiro [GPS88]), and in SU(n, 1) for 1 ≤ n ≤ 3
(Deligne-Mostow [DM86]).

For other rank 1 groups, i.e. Sp(n, 1) and the exceptional group F4(−20),
super-rigidity and arithmeticity of lattices have been established by Corlette
[Cor92] and Gromov-Schoen [GS92].

For a wealth of material on arithmetic groups, see [Bor69] and [WM].
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