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Preface

These notes are intended for a general mathematical audience. In par-
ticular we have in mind that they could be used as a course for undergrad-
uates. They contain an explicit construction of highly connected but sparse
graphs known as expander graphs. Besides their interest in combinatorics
and graph theory, these graphs have applications to computer science and
engineering. Our aim has been to give a self-contained treatment. Thus the
relevant background material in graph theory, number theory, group theory
and representation theory, is presented. The text can be used as a brief
introduction to these modern subjects, as well as an example of how such
topics are synthesised in modern mathematics. Prerequisites include linear
algebra together with elementary algebra, analysis and combinatorics.
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Chapter 0

An overview

In this book, we shall consider graphs X = (V, F), where V is the set of
vertices and E the set of edges of X. We shall assume that X is undirected;
most of the time, X will be finite. A path in X is a sequence vy vy... v of
vertices, where v; is adjacent to v; 1 (i.e., {v;, viy1} is an edge). A graph X
is connected if every two vertices can be joined by a path.

For F' C V, the boundary OF is the set of edges connecting F' to V — F.
Consider for example the graph in Figure 1 (this is the celebrated Petersen
graph): it has 10 vertices and 15 edges; three vertices have been surrounded
by squares: this is our subset F'; the seven “fat” edges are the ones in JF.

Figure 1:

The ezpanding constant, or isoperimetric constant of X, is:

. o
) = int{

:FQV:O<|F|<—I-00}.
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6 CHAPTER 0. AN OVERVIEW

If we view X as a network transmitting information (where information
retained by some vertex propagates, say in one unit of time, to neighbouring
vertices), then h(X) measures the “quality” of X as a network: if h(X) is
large, information propagates well. Let us consider two extreme examples
to illustrate this.

0.1. Example. The complete graph K,, on m vertices is defined by requir-
ing every vertex to be connected to any other, distinct vertex: see Figure 2

form=25

Figure 2:

It is clear that, if |F'| = £, then |0F| = £(m —{), so that h(Ky) =m—[3] ~

m

5 -

0.2. Example. The cycle C, on n vertices: see Figure 3 for n = 6. If F'
is a half-cycle, then |0F| = 2, so h(Cy,) < ﬁ ~ %; in particular hA(Cp) — 0
2

for n — +o0.

Figure 3:

From these two examples, wee see that the highly connected complete
graph has a large expanding constant that grows proportionately with the
number of vertices. On the other hand, the minimally connected cycle graph
has a small expanding constant that decreases to zero as the number of



vertices grows. In this sense, h(X) does indeed provide a measure of the
“quality”, or connectivity of X as a network.

We say that a graph X is k-regular if every vertex has exactly k neigh-
bours; so that the Petersen graph is 3-regular, K, is (m — 1)-regular, and
Cy, is 2-regular.

0.3. Definition. Let (X,;);>1 be a family of graphs X, = (Vj,, Ep,)
indexed by m € N. Furthermore, fix k¥ > 2. Such a family (X,,)m,>1 of
finite, connected, k-regular graphs is a family of expanders if |Vp,| — +o0
for m — 400, and if there exists € > 0 such that h(X,,) > ¢ for every m > 1.

Because an optimal design for a network should take economy of trans-
mission into account, we include the assumption that X,, is k-regular in
Definition 0.3. This assures that the number of edges of X,,, grows linearly
with the number of vertices. Without that assumption, we could just take
X = K, for good connectivity. However, note that K, has W edges,
which quickly becomes expensive when transmission lines are made either of
copper or of optical fibers. Hence, the “optimal” network for practical pur-
poses arises from a graph that provides the best connectivity from a minimal
number of edges.

Indeed such expander graphs have become basic building blocks in many
engineering applications. We cite a few such applications, taken from Reingold-
Vadhan-Wigderson [55]: to network designs (Pippenger [53]), to complexity
theory (Valiant [66]), to derandomization (Naor-Naor [50]), to coding theory
(Sipser-Spielman [63]), and to cryptography (Goldreich et al. [30]).

0.4. Main problem. Give explicit constructions for families of expanders.

We shall solve this problem algebraically, by appealing to the adjacency
matriz A of the graph X = (V, E); it is indexed by pairs of vertices x,y of
X, and A,y is the number of edges between z and y.

When X has n vertices, A is an n-by-n, symmetric matrix, which com-
pletely determines X. By standard linear algebra, A has n real eigenvalues,
repeated according to multiplicities, that we list in decreasing order:

In section 1.1 we shall prove
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0.5. Proposition. If X is a k-regular graph on n vertices, then
po=k>py > > 1> —k.
Moreover:

a) po > p1 if and only if X is connected.

b) Suppose X is connected. The equality p,—1 = —k holds if and only if
X is bicolourable (a graph X is bicolourable if it is possible to paint
the vertices of X in two colours, in such a way that adjacent vertices
have distinct colours).

It turns out that the expanding constant can be estimated spectrally by
means of a double inequality (due to Alon-Milman [3] and Dodziuk [22])
that we shall prove in section 1.2.

0.6. Theorem. Let X be a finite, connected, k-regular graph. Then

ETI < n(X) < 2k (k— gm).

This allows for an equivalent formulation of 0.4.

0.7. Rephrasing of the main problem. Give explicit constructions for
families (X, )m;,>1 of finite, connected, k-regular graphs with the following
properties: (i) |Vi,| — +o0 for m — +o0, and (ii) there exists ¢ > 0 such
that k — p1(X,) > € for every m > 1.

Therefore, to have good quality expanders, the spectral gap k — p1(Xom)
has to be as large as possible. However, the spectral gap cannot be too large
as was observed independently by Alon-Boppana, Burger [10], Serre [62];
(see also Grigorchuk-Zuk [31]). In fact, we have the bound implied by the
following result:

0.8. Theorem. Let (X,,);,>1 be a family of finite, connected, k-regular
graphs with |V,,| — 400 as m — +00. Then
liminf pq(X;) >2VE—1.
o

m—+

This asymptotic threshold will be discussed in section 1.3 and proved
in section 1.4. Now Theorem 0.8 singles out an extremal property on the
eigenvalues of the adjacency matrix of a k-regular graph; this motivates the
definition of a Ramanujan graph.



0.9. Definition. A finite, connected, k-regular graph X is Ramanujan if,
for every eigenvalue u of A other than + &, one has

lp| <2vE-1.

So, if for some k£ > 3 we succeed in constructing an infinite family of
k-regular Ramanujan graphs, we will get a solution of our main problem 0.7
(hence also of 0.4) which is optimal from the spectral point of view.

0.10. Theorem. For the following values of k, there exist infinite families
of k-regular Ramanujan graphs:

e k =p+ 1, p an odd prime (Lubotzky-Phillips-Sarnak [42]; Margulis
[46]);

e k =3 (Chiu [14));
e k=q+1, q a prime power (Morgenstern [48]).

Our purpose in this book is to describe the Ramanujan graphs of Lubotzky-
Phillips-Sarnak and Margulis. While the description of these Ramanujan
graphs (given in section 4.2) is elementary, the proof that they have the
desired properties is not. For example, the proofs in [42] and [41] make free
use of the theory of algebraic groups, modular forms, theta correspondences,
and the Riemann Hypothesis for curves over finite fields. Our aim here is to
give elementary and self-contained proofs of most of the properties enjoyed
by these graphs, results the reader will find in sections 4.3 and 4.4. Actually,
our elementary methods will not give us the full strength of the Ramanujan
bound for these graphs, though they do have that property. Nevertheless, we
will be able to prove that they form a family of expanders with a quite good
explicit asymptotic estimate on the spectral gap. This estimate is strong
enough to provide explicit solutions to two outstanding problems in graph
theory that we now describe.

0.11. Definition. Let X be a graph.

a) The girth of X, denoted by g(X), is the length of the shortest circuit
in X.

b) The chromatic number of X, denoted by x(X), is the minimal number
of colours needed to paint the vertices of X in such a way that adjacent
vertices have different colours.
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The problem of the existence of finite graphs with large girth and at the
same time large chromatic number has a long history (see [7]). The problem
was first solved by Erdos [24], whose solution shows that the “random graph”
has this property; this construction is recalled in section 1.7. (This paper was
the genesis of the “random method” and theory of random graphs, see the
monograph [4].) We shall see in section 4.4 that the graphs X?:¢ presented
in Chapter 4, provide explicit solutions to this problem.

0.12. Definition. Let (X,,);>1 be a family of finite, connected, k-regular
graphs, with |V,,| = 400 as m — 4o00. We say that this family has large
girth if, for some constant C' > 0, one has g(X,,) > (C + o(1)) log,_1 |Vl
where o(1) is a quantity tending to 0 for m — +oc.

It is easy to see that, necessarily, C' < 2. By counting arguments, Erdos
and Sachs [25] proved the existence of families of graphs with large girth,
and with C = 1. In the appendix, we give a beautiful explicit construction

due to Margulis [45], leading to C' = } ﬁgjﬁ) = 0.415.... In section 4.3,

we shall see that the graphs X?-¢, with p not a square modulo ¢, provide a
family with large girth and C = % which, asymptotically, is the largest girth
known.

We claimed above that our constructions are “elementary”: since there
is no general agreement on the meaning of this word, we feel committed to
clarify it somewhat. In 1993, the first two authors wrote up a set of unpub-
lished Notes that were circulated under the title “An elementary approach to
Ramanujan graphs”. In 1998-99, the third author based an undergraduate
course on these Notes; in the process he was able to simplify the presentation
even further. This gave the impetus for the write-up of the present text. We
assume that our reader is familiar with linear algebra, congruences, finite
fields of prime order, and some basic ring theory. The relevant number the-
ory is presented in Chapter 2, and the group theory, including representation
theory, in Chapter 3.

Other than these topics, we have attempted to present here a self-contained
treatment of the construction and proofs involved. To do this we have bor-
rowed some of our exposition from well-known sources, adapting and tailor-
ing those to give a more concise presentation of the contexts and specific
theoretical tools we need. In all such cases, we hope that we have pro-
vided clear and complete attribution of sources for those readers who wish
to pursue any topic more broadly.

There is some novelty in our approach.
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e The graphs XP? depend on two distinct, odd primes p,q. In the lit-
erature, it is commonly assumed that p = 1 (mod. 4), for simplicity.
We give a complete treatment of both the case p = 1 (mod. 4) and the
case p = 3 (mod. 4).

e As in [42], [44] and [57], we give two constructions of the graphs X7+¢
one is based on quaternion algebras and produces connected graphs by
construction; however it gives little information about the number of
vertices; the other describes the X?¢ as Cayley graphs of PGLs(q) or
PSLa(g), from which the number of vertices is obvious, but connect-
edness is not. The isomorphism of both constructions, in the original
paper [42] (and also in Proposition 3.4.1 in [57]) depends on fairly deep
results of Malisév [43] on the Hardy-Littlewood theory of quadratic
forms. The proof in Theorem 7.4.3 of [41], appeals to Kneser’s strong
approximation theorem for algebraic groups over the adeéles. In our ap-
proach here, we first give a priori estimates on the girth of the graphs
obtained by the first method, showing that the girth cannot be too
small. We then apply a result of Dickson [20], re-proved in section 3.3,
that up to two exceptions, proper subgroups of PSLa(g) are metabelian,
so that Cayley graphs of proper subgroups must have small girth. This
is enough to conclude that our Cayley graphs of PGL2(q) or PSLo(q),
must be connected.

e The proof we give here that the XP?s with fixed p, form a family
of expanders, depends on a result going back to Frobenius [27], and
proved in section 3.5: any non-trivial representation of PSLs(g) has
degree at least %. As a consequence, the multiplicity of any non-
trivial eigenvalue of XP7 is at least g;—l Using the fact that g;—l is
fairly large compared to ¢, the approximate number of vertices, we
deduce that there must be a spectral gap.

The idea of trying to exploit this feature of the representations of
PSLy(q) was suggested by J. Bernstein and D. Kazhdan, see Brooks [8],
and also [58]. In Sarnak-Xue [59], this lower bound for the multiplicity
is combined with some upper bound counting arguments, to rule out
exceptional eigenvalues of quotients of the Lobachevski upper half-
plane by congruence subgroups in co-compact arithmetic lattices in
SLy(R). Our proof of the spectral gap in these notes, is based on
similar ideas. This method has also been used recently by Gamburd
[29] to establish a spectral gap property for certain families of infinite
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index subgroups of SLa(Z).

Most of the exercices were provided by Nicolas Louvet, who was the third
author’s teaching assistant: we heartily thank him for that. We also thank
J. Dodziuk, F. Labourie, F. Ledrappier and J.-P. Serre for useful comments,
conversations, and correspondence.

The draft of this book was completed during a stay of the first author at
the University of Roma La Sapienza, and of the third author at THES, in the
fall of 1999. It was also at IHES that the book was typed, with remarkable
efficiency, by Mrs Cécile Gourgues. We thank her for her beautiful job.



Chapter 1

Graph theory

1.1 The adjacency matrix and its spectrum

We shall be concerned with graphs X = (V, E), where V is the set of vertices,
E is the set of edges. As stated in the introduction, we always assume our
graphs to be undirected, and most often we will deal with finite graphs.

We let V' = {v1,v2,...} be the set of vertices of X. Then the adjacency
matriz of the graph X is the matrix A indexed by pairs of vertices v;,v; € V.
That is, A = (A;;), where

A;; = number of edges joining v; to v; .

We say that X is simple if there is at most one edge joining adjacent vertices;
hence X is simple if and only if A;; € {0,1} for every v;,v; € V.

Note that A completely determines X and that A is symmetric because
X is undirected. Furthermore, X has no loops if and only if A;; = 0 for
every v; € V.

1.1.1. Definition. Let k£ > 2 be an integer. We say that the graph X is
k-regular if, for every v; € V' : 3. A;j = k.
v; €V

If X has no loop, this amounts to saying that each vertex has exactly k
neighbours.

Assume that X is a finite graph on n vertices. Then A is an n-by-n
symmetric matrix; hence it has n real eigenvalues, counting multiplicities,
that we may list in decreasing order:

Mo = p1 >t 2 1 -

13



14 CHAPTER 1. GRAPH THEORY

The spectrum of X is the set of eigenvalues of A. Note that ug is a simple
eigenvalue, or has multiplicity 1, if and only if ug > p1.

For an arbitrary graph X = (V, E), consider functions f : V' — C from
the set of vertices of X to the complex numbers, and define

CWV)={f:V—=C: > |f(v)]* < +oc}.

veEV

The space £?(E) is defined analogously.

Clearly, if V' is finite, say |V| = n, then every function f : V — C is in
22(V). We can think of each such function as a vector in C* on which the
adjacency matrix acts in the usual way:

Ay Ap ... A

R DT

. . . f(UZ)
Af = Azl A22 PR AZ'IL :

M . . fU

Ami Ay oo Apn (vn)

Aqr f(v1) + Ara f(v2) + -+ - + A1y f(vp)

— An f(Ul)+A¢2f(U.2)+"'+Ainf(Un)

Ant f(vl) + Ao f(U2) +o 4 App f(Un)

n
Hence (Af)(vi) = Aij; f(v;). It is very convenient, both notationally and
i=1

conceptually, to forget about the numbering of vertices and to index matrix

entries of A directly by pairs of vertices. So we shall represent A by a matrix

(Azy)zyev, and the previous formula becomes (Af)(z) =3 Ay f(y), for
yev

every x € V.

1.1.2. Proposition. Let X be a finite k-regular graph with n vertices.
Then

a) po = k;
b) |pil <kfor 1 <i<n—1;

¢) po has multiplicity 1 if and only if X is connected.
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Proof. We prove (a) and (b) simultaneously by noticing first that the con-
stant function f = 1 on V is an eigenfunction of A associated with the
eigenvalue k. Next, we prove that, if 4 is any eigenvalue, then |u| < k.
Indeed, let f be a real-valued eigenfunction associated with u. Let z € V be
such that

|f ()] = max [f(y)].

yev
Replacing f by —f if necessary, we may assume f(z) > 0. Then

F@) = 1f @) pl =D Auy fy)

yev

< f(@) Y Ay = fl2) k.

yev

< D Ay lf(y)l

yev

Cancelling out f(z) gives the result.

To prove (c), assume first that X is connected. Let f be a real-valued
eigenfunction associated with the eigenvalue k. We have to prove that f is
constant. As above, let © € V' be a vertex such that |f(z)| = max |f(y)|-

As f(z) = % =3 % f(y), we see that f(z) is a convex combination

Yyev
of real numbers which are, in modulus, less than |f(x)|. This implies that

f(y) = f(x) for every y € V such that A, # 0, that is, for every y adjacent
to z. Then, by a similar argument, f has the same value f(z) on every
vertex adjacent to such a y, and so on. Since X is connected, f must be
constant.

We leave the proof of the converse as an exercise. O

Proposition 1.1.2 (c) shows a first connection between spectral properties
of the adjacency matrix, and combinatorial properties of the graph. This is
one of the themes of this chapter.

1.1.3. Definition. A graph X = (V, E) is bipartite, or bicolourable, if
there exists a partition of the vertices V' = V; U V_ such that, for any two
vertices z,y with Agy # 0, if z € Vi (resp. V_), then y € V_ (resp. V,).

In other words, it is possible to paint the vertices with two colours, in
such a way that no two adjacent vertices have the same colour. Bipartite
graphs have very nice spectral properties characterized by the following:
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1.1.4. Proposition. Let X be a connected, k-regular graph on n vertices.
The following are equivalent:

i) X is bipartite;
ii) the spectrum of X is symmetric about 0;

iii) pn_1 = —F.

Proof. i) = ii) Assume that V' = V, U V_ is a bipartition of X. To show
symmetry of the spectrum, we assume that f is an eigenfunction of A with
associated eigenvalue p. Define

[ fz) ifzeV
9(=) _{—f(w) ifx € Vj

It is then straightforward to show that (Ag)(z) = —p g(z) for every z € V.
ii) = iii) This is clear from Proposition 1.1.2.
iii) = i) Let f be a real-valued eigenfunction of A with eigenvalue —k.

Let z € V be such that |f(z)| = max |f(y)|- Replacing f by —f if necessary,
y

we may assume f(z) > 0. Now

floy= A _ 5 A gy s Ao gy,

k yev yev k

So f(z) is a convex combination of the — f(y)’s which are, in modulus, less
than |f(z)|. Therefore, —f(y) = f(x) for every y € V such that Ay, # 0,
that is, for every y adjacent to z. Similarly, if z is a vertex adjacent to
any such y, then f(z) = —f(y) = f(x). Define Vy = {y € V : f(y) > 0},
V_={y €V : f(y) <0}; because X is connected, this defines a bipartition
of X. O

Thus, every finite, connected, k-regular graph X has largest positive
eigenvalue ug = k; if, in addition, X is bipartite, then the eigenvalue p,_1 =
—k also occurs (and only in this case). These eigenvalues k and —k, if
the second occurs, are called the trivial eigenvalues of X. The difference
k — p1 = po — p1 is the spectral gap of X.

Exercises on section 1.1.
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. For the complete graph K, and the cycle C,,, write down the adjacency

matrix and compute the spectrum of the graph (with multiplicities).
When are these graphs bipartite?

. Let Dy, be the following graph on 2n vertices: V =Z/nZ x {0,1}; E =

H{@@9), 0+ 1,5) i € Z/nZ,j € {0,1}} U{{(:,0),(5,1)} : i € Z/nZ}.
Make a drawing, and repeat exercise 1 for D,,.

. Show that a graph is bipartite if and only if it has no circuit with odd

length.

. Let X be a finite, k-regular graph. Complete the proof of Proposi-

tion 1.1.2 by showing that the multiplicity of the eigenvalue k is equal
to the number of connected components of X [Hint: look at the space
of locally constant functions on X].

. Let X be a finite, simple graph without loop. Assume that, for some

r > 2, it is possible to find a set of r vertices all having the same
neighbours. Show that 0 is an eigenvalue of A, with multiplicity at
least r — 1.

. Let X be a finite, simple graph without loop, on n vertices, with

n—1
eigenvalues pug > p1 > --+ > ptp—1- Show that > u; = 0, that
=
n—1 anl
> p? is twice the number of edges in X, and that Y. u? is 6 times
=0 =0

the number of triangles in X.

. Let X = (V, E) be a graph, not necessarily finite. We say that X has

bounded degree if there exists N € N such that, for every x € V, one

has 3 Ay < N. Show that, in this case, for any f € £2(V) one has
Yyev

1/2 1/2
IAfll2 = (Z I(Af)($)|2) <SN-fllz=N- (Z If(w)\2> ;
eV eV

that is, A is a bounded linear operator on the Hilbert space ¢2(V)
[Hint: use the Cauchy-Schwarz inequality].
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1.2 Inequalities on the spectral gap

Let X = (V,E) be a graph. For F C V, we define the boundary OF of
F' to be the set of edges with one extremity in F' and the other in V — F.
In other words, OF is the set of edges connecting F' to V — F. Note that
OF =0(V — F).

1.2.1. Definition. The isoperimetric constant, or expanding constant of
the graph X, is

. OF|
MX) = inf {min{|F|, Vv — F[}

:FQV,O<|F|<+OO}.

Note that, if X is finite on n vertices, this can be rephrased as h(X) =
min {IFF . Fcvo<|F <3}
1.2.2. Definition. Let (X,,);,>1 be a family of finite, connected, k-regular
graphs with |[V,,| = +00 as m — +o00. We say that (X,,)m>1 is a family of
expanders if there exists € > 0 such that h(X,,) > ¢ for every m > 1.

1.2.3. Theorem. Let X = (V,E) be a finite, connected, k-regular graph
without loops. Let p; be the first non-trivial eigenvalue of X (as in sec-
tion 1.1). Then

—— < h(X) <2k (k—p).

Proof. a) We begin with the first inequality. We endow the set E of edges
with an arbitrarily chosen orientation, allowing one to associate, to any edge
e € E, its origin e~ and its extremity e™. This allows us to define the
simplicial coboundary operator d : £?(V) — (2(E) where, for f € ¢2(V) and
ec kE:

df(e) = fe*) = fle).

Endow £2(V) with the hermitian scalar product

(flg)=>_ fl=) g(x)

zeV

and /2(E) with the analogous one. So we may define the adjoint (or conjugate-
transpose) operator d* : £2(E) — £2(V), characterised by (df | g) = (f | d*g)
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for every f € £2(V), g € 2(E). Define a function § : V x E — {-1,0,1} by

1 ifr=et
5($,€):{—1 ifx=e"
0 otherwise.

Then one checks easily that, for e € E and f € ¢2(V):
df(e) = d(w,e) f(w);
eV
while for v € V and g € £2(E):
d*g(z) = Z d(z,e)gle).
ecE

We then define the combinatorial Laplace operator A = d*d : £2(V) — £2(V).
It is easy to check that
A=k-1d— A;

in particular, A does not depend on the choice of the orientation. For an
orthonormal basis of eigenfunctions of A, the operator A takes the form

0
k— O
O k_,unfl

the eigenvalue 0 corresponding to the constant functions on V. Therefore, if
f is a function on V with >~ f(z) =0 (i.e. f is orthogonal to the constant
eV

functions in ¢2(V)), we have

Idf13 = (df | df) = (Af [ f) > (k=) I3
We apply this to a carefully chosen function f. Fix a subset F' of V' and set
_[|[V-F| ifzeF
ﬂ@_{qﬂ ifreV-F.
Then 3. f(z) =0and [|f|lZ = |F||V - F|*+|V - F||F|* = |F||V - F||V].
(S
Moreover:

ae) = {

0 if e connects two vertices either in F or in V — F
+ |V| if e connects a vertex in F' with a vertex in V' — F.
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Hence ||df||3 = |V'|?|0F|. So the previous inequality gives
[VI?[0F| > (k — m) |F| [V = F||V]
hence OF| Vo P
T 2 (k=)
|F| V]

If we assume | F| < %, we get % > ki1 hence by definition h(X) > £

b) We now turn to the second inequality, which is more involved. Fix a
non-negative function f on V, and set

By=) [f(e")’— f(e7)].

eckE

Denote by 8, > 8,1 > -+ > 1 > [y the values of f, and set
Li={zeV:f(x)>8} (i=0,1,...,r).

Note that Ly = V (hence 0Ly = (). To have a better intuition of what is
happening, consider the following example on Cfg, the cycle graph with 8
vertices.

with f(v1) = f(vs) = 4, f(v2) = flve) = flvr) =1, flvs) = 2, flua) =
f(Ug):3,SOthatﬁ3:4>,82:3>,81:2>ﬁ0:1. Then

Lo = {v1,v2,v3,v4,v5, 06,07, 8} ;

Ly = {vi,vs,v4,v5,08};

L2 = {’U17’U47’U5”08};

Ly = {vi,vs};

0Ly = 0;

oL, = {{01’7]2}?{“2?”3}7{7)577]6}’{“7;@8}}; |8L1| =4;
0Ly = {{vi,v2},{vs,va}, {vs,ve}, {v7,v8}}; |OLa| = 4;

0Ly = {{v1,ve},{va,vs},{vs,v6},{vs,v1}}; |OL3| =4.
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Geometrically, one can envision the graph broken into level curves as follows:
Ly consists of all vertices on or inside the outer level curve corresponding to
Bo = 1; Ly consists of all vertices on or inside the level curve corresponding
to f1 = 2; and so forth. Then any JL; consists of those edges that reach
“downward” from inside L; to a vertex with a lower value. From the diagram
we see clearly that, for example 0Ly = {{v1,v2}, {vs, va}, {vs,v6}, {v7,vs}}.
Coming back to the general case, we now prove the following result about
the number By.

1st step. By = E |0Ls| (87 — B7_).

To see this, we denote by E the set of edges e € E such that f(e*) #

f(e7). Clearly By = % |f(et)? — f(e7)?|. Now, an edge e € Ef connects
ecEy

some vertex z with f(z) = B, to some vertex y with f(y) = Bj()
index these two index values so that i(e) > j(e). Therefore

Bf = Z(z(e ﬁ2 )

eEEy

_ 2 2 2 2 2 2
= Z (Bite) = Bitey=1 T Bie)=1 — =+ = Bi(e)11 + Bite)y+1 — Bjte)

eEEf
= > Z (87 — Bi-1)
eEE; (=j(e)+1

Referring to the diagram of level curves, we see that as a given edge e
connects a vertex z, with f(z) = By, to a vertex y with f(y) = Bj(), it
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crosses every level curve 3, between those two. In the expression for By,
this corresponds to expanding the term Zz( &) 6]2( ¢) by inserting the zero
difference —f32 + (% for each level curve f; crossed by the edge e. This
means that, in the above summation for By, the term ﬁ% — ﬂz?fl appears for
every edge e connecting some vertex x with f(z) = 8; and 7 > £, to some
vertex y with f(y) = ; and j < £. In other words, it appears for every edge
e € 0Ly, which establishes the first step.

2nd step. By < v2k [|df |2 ]| ]l2-
Indeed
By = D_If(eN) + fle)l-If(eh) — f(e)]

ecE
1/2

IA

1/2
lZ(f(eﬂ + f(e_))2] lZ(f(eﬂ —fe)?

ecE ecE

1/2
s\ﬁlzxﬂwﬁ+ﬂfﬂﬂ Il

ecE

1/2
- wﬂ[E:ﬂmﬂ ldfl = VF 1712 11df

eV

by the Cauchy-Schwarz inequality and the elementary fact that (a + b)% <

2(a? + b?).

3rd step. Recall that the support of f is suppf = {x € V : f(z) # 0}.
v

Assume that |supp f| < % Then By > h(X) | f]|3-

To see this, notice that Sy = 0 and that |L;| < J%l fori=1,...,r, so
that |0L;| > h(X) |L;| by definition of h(X). So it follows from the first step
that

r

By > MX)Y_ |Li| (87 - i)
i=1

= W(X) [|Lel B2+ (ILr 1| = |Lel) B2y + -+ + (L] = | La]) B3]

r—1
= h(X) [|Lr\ﬁf+z |Li = Lita| 57

=1

but since L; — L;41 is exactly the level set where f takes the value §;, the
term in brackets is exactly ||f]|3.
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Coda. We now apply this to a carefully chosen function f. Let g be a real-
valued eigenfunction for A, associated with the eigenvalue k — ;. Set V' =
{z € V :g(z) >0} and f = max{g,0}. By replacing g by —g if necessary,
we may assume |V 1| < J%l (note that V™ # 0 because Y. g(z) = 0 and

eV
g #0). Forz € V', we have (sinceg <0onV —VT)

(Af)z) = kf(z) =D Ay f(y) =kg(z) = Y Asyg(y)

yev yev+
< — > Az g(y) = (Ag)(x) = (k — m) g().
yev

Using this pointwise estimate, we get
ldflI3 = (AF 1 F) = D (AN(@)g(z) < (k—m) Y 9(@)? < (k—m)[If]3-
eVt eVt

Combining the second and third steps, we get

RX)|IFI3 < By < V2K |ldfll2 (| £ll2 < /2% (k — pa) I£13,

and the result follows by cancelling out. O

From 1.2.2 and 1.2.3, we immediately deduce:

1.2.4. Corollary. Let (X,,;),>1 be a family of finite, connected, k-regular
graphs without loops, such that |V,,| =& +oco0 as m — +oo. The family
(Xm)m>1 is a family of expanders if and only if there exists ¢ > 0 such that
k — p1 (X)) > € for every m > 1.

This is the spectral characterization of families of expanders: a family
of k-regular graphs is a family of expanders if and only if the spectral gap
is bounded away from zero. Moreover, it follows from 1.2.3 that, the bigger
the spectral gap, the better “the quality” of the expander.

Exercises on section 1.2.

1. How was the assumption “X has no loop” used in the proof of 1.2.37

2. Let X be a finite graph without loop. Choose an orientation on the
edges; let d, d* and A = d*d be the operators defined in this section.
Check that, for f € £2(V), z € V:

Af(z) = deg(x) f(z) — (Af)()
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where deg(z) is the degree of z, i.e. the number of neighbouring vertices
of z.

3. Using the example given for a function f on the cycle graph Cy, verify
that By satisfies the first two steps in the proof of the second inequality
of 1.2.3.

4. Show that the multiplicity of the eigenvalue pg = K is the number of
connected components of X.

1.3 Asymptotic behaviour of eigenvalues in fami-
lies of expanders

We have seen in Corollary 1.2.4 that the quality of a family of expanders can
be measured by a lower bound on the spectral gap. However, it turns out
that, asymptotically, the spectral gap cannot be too large. All the graphs in
this section are supposed to be without loops.

1.3.1. Theorem. Let (X,,),>1 be a family of connected, k-regular, finite
graphs, with |V;,| = 400 as m — 400. Then
liminf pq(X;) >2VE—1.

m—+00
A stronger result will actually be proved in section 1.4. There is an

asymptotic threshold, analogous to Theorem 1.3.1, concerning the bottom
of the spectrum. Before stating it, we need an important definition.

1.3.2. Definition. The girth of a connected graph X, denoted by g(X),
is the length of the shortest circuit in X. We will say that g(X) = +o0 if X
has no circuit, that is, if X is a tree.

For a finite, connected, k-regular graph, let ;(X) be the smallest non-
trivial eigenvalue of X.

1.3.3. Theorem. Let (X,,)m,>1 be a family of connected, k-regular, finite
graphs, with ¢g(X,,) = 400 as m — +00. Then
limsup pu(Xp,) < —2vVk—1.

m—+00

Theorems 1.3.1 and 1.3.3 single out an extremal condition on finite k-
regular graphs, leading to the main definition.
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1.3.4. Definition. A finite, connected, k-regular graph X is a Ramanujan
graph if, for every non-trivial eigenvalue p of X, one has |u| <2k — 1.

Assume that (X,)m>1 is a family of k-regular Ramanujan graphs without
loop, such that |V,;,| = 400 as m — +o00. Then the X,,’s achieve the biggest
possible spectral gap, so provide a family of expanders which is optimal from
the spectral point of view.

All known constructions of infinite families of Ramanujan graphs involve
deep results from number theory and/or algebraic geometry. As explained in
Chapter 0, our purpose in this book is to give, for every odd prime p, a con-
struction of a family of (p+1)-regular Ramanujan graphs. The original proof
that these graphs satisfy the relevant spectral estimates, due to Lubotzky-
Phillips-Sarnak [42], appealed to Ramanujan’s conjecture on coefficients of
modular forms with weight 2: this explains the chosen terminology. Note
that Ramanujan’s conjecture was established by Eichler [23].

Exercise on section 1.3.

a) A tree is a connected graph without loops. Show that a k-regular
tree Ty must be infinite, and that it exists and is unique up to graph
isomorphism.

b) Let X be a finite k-regular graph. Fix a vertex zy and, for r < 9(2—X),

consider the ball centered at zy and of radius r in X. Show that it
is isometric to any ball with the same radius in the k-regular tree T}.
Compute the cardinality of such a ball.

c¢) Deduce that, if (X, )m>1 is a family of connected k-regular graphs such
that |Vj,| = +00 as m — 400, then

9(Xm) < (2+0(1)) logy_y Vi
where o(1) is a quantity tending to 0 as m — +oc.

d) Show that, if k& > 5, one has actually in c):

9(Xm) <242 log_q |Vinl-

1.4 Proof of the asymptotic behaviour

In this section we prove a stronger result than that stated in Theorem 1.3.1.
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The source of the inequality in Theorem 1.3.1 is the fact that the number
of paths of length m from a vertex v to v, in a k-regular graph, is at least
the number of such paths from v to v in a k-regular tree. To refine this ob-
servation, we count paths without backtracking, and to do this we introduce
certain polynomials in the adjacency operator.

Let X = (V, E) be a k-regular, simple graph, with |V| possibly infinite.
Recall that we defined a path in X in the overview. We refine that definition
now. A path of length r without back-tracking in X is a sequence

e = (x9,%1,...,Ty)
of vertices in V such that z; is adjacent to z;41 (i = 0,...,r — 1) and
Ziy1 # xi—1 (1=1,...,7—1). The origin of e is xy, the extremity of e is z,.

We define, for r € N, matrices A, indexed by V x V| which generalise the
adjacency matrix and which are polynomials in A:

(A;)zy = number of paths of length 7, without backtracking,

with origin & and extremity y.

Note that Ag = Id and that Ay = A, the adjacency matrix. The relationship
between A, and A is the following:

1.4.1. Lemma. a) A? = A, +k-1d;
b) forr >2:A1A, = A A1 = Ar+1 + (k‘ - 1) A_q.

Proof. a) For z,y € V, the entry (A%),, is the number of all paths of length
2 between = and y. If z # y, such paths cannot have backtracking, hence
(A2)zy = (A2)zy. If z = y, we count the number of paths of length 2 from
to x, and since X is simple: (A2)y, = k.

b) Let us prove that A, A1 = A1+ (k—1) A1 for r > 2. For z,y € V,
the entry (A;A1)gy is the number of paths (o = z,z1,..., 2y, 2p41 = y) of
length r + 1 between x and y, without backtracking except possibly on the
last step (i.e. (xg,21,-..,2,) has no backtracking). We partition the set of
such paths into two classes according to the value of z, 1:

e if z,_1 # y, then the path (zo, ..., z,11) has no backtracking and there
are (A;41)zy such paths;

e if .1 = y, then there is backtracking at the last step, and there are
(k —1)(Ay—1)4y such paths.
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We leave the proof of A1 A, = A1+ (k —1) A,_; as an exercise. O

From Lemma 1.4.1, we can compute the generating function of the A,’s,
that is, the formal power series with coefficients A,. It turns out to have a
particularly nice expression; namely, we have the following

1.4.2. Lemma.

= 1—¢?
DA = o ne
r=0 - t+( - )t

(This must be understood as follows: in the ring End £2(V)[[t]] of formal
power series over End /2(V), we have

(i A, t’") (Id — At + (k- 1)#?1d) = (1 —#*)1d.)
r=0

Proof. This is an easy check using Lemma 1.4.1. O

In order to eliminate the numerator 1 —¢? in the right hand side of 1.4.2,
we introduce polynomials T;,, in A given by:

Tm= > Apa (meN).
0<r<2

The generating function of the T;,’s is readily computed:

1.4.3. Lemma.
1

o0
S Tnt™ = .
— 1—At+ (k—1)#

Proof.

00 00 00

Z Tit™ = Z Ap_opt™ = Z Z Ap_op t™

m=0 m=0 OSTS% r=0 m>2r
00 00 00

— Z t27‘ Z Am—2fr tm—2r — <Z t27‘> <Z AE té)
r=0 m>2r r=0 £=0
1 112 1

1-2 1-At+ (k-1 1-At+ (k—1)8
by Lemma 1.4.2. O
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1.4.4. Definition. The Chebyshev polynomials of the 2nd kind are defined
by expressing sin(m+1)6 a5 5 polynomial of degree m in cos 6:

sin 6
sin(m + 1) 6

U (cos ) = e~

(m €N).

For example Uy(z) = 1, Uy (x) = 2z, Us(x) = 42% — 1,... Using trigono-
metric identities, we see that these polynomials satisfy the following recur-
rence relation

Unt1(z) =22 Up(z) — Up—1(2) -
As in Lemma 1.4.2, from this recurrence relation, we compute the generating
function of the U,,’s, namely:

1

o
Z Un(@)t" = —F—F——.
=0 1—-2xt+1¢
Performing a simple change of variables, we then compute the generating
X

function of the related family of polynomials (k — 1)% Up, (m)

s m x 1
k-=1)2Up|——me)t"= .
mZ:O( )2 U (2\/1;—1) 1—at+(k—1)t2

Comparing with Lemma 1.4.3, we immediately get the following expression
for the operators T}, as polynomials of degree m in the adjacency matrix:

1.4.5. Proposition. For m € N: Ty, = (k — 1)z Uy, ( o

i)
2vEk—1/"
Assume that X = (V, E) is a finite, k-regular graph on n vertices, with
spectrum
po=k>p1 > > pin-1.
In Proposition 1.4.5, we are going to estimate the trace of 7}, in two different
ways. This will lead to the trace formula for X.

First, working in a basis of eigenfunctions of A, we have from Proposi-
tion 1.4.5:

n—1

T Ty, = (k—1)% ;0 Un (2\/%) .

On the other hand, by definition of T},,:

TrTy = Z TrAm727' = Z Z (Am72r)ww-

0<r<2 zEV 0<r<
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For z € V, denote by f;, the number of paths of length £ in X, without
backtracking, with origin and extremity x; in other words fr, = (A¢)ze-
Then we get the trace formula

1.4.6. Theorem.

R L =)

zeV 0<r<%

for every m € N.

We say that X is vertez-transitive if the group Aut X of automorphisms
of X, acts transitively on the vertex-set V. Specifically, this means that for
every pair of vertices z and y, there exists & € Aut X such that a(z) = y.
Under this assumption, the number f;, does not depend on the vertex z,
and we denote it simply by fy.

1.4.7. Corollary. Let X be a vertex-transitive, finite, k-regular graph on
n vertices. Then for every m € N:

S fmear=(k-1)% ]ZOU<\/_> O

0<r<m

The value of the trace formula 1.4.6 is the following only looking at the
right hand side (called the spectral side) (k—1)% Z Un (2 \/—) it is not

obvious that it defines a non-negative integer. As we shall now explain, the
mere positivity of the spectral side has non-trivial consequences. We first
need a somewhat technical result about the Chebyshev polynomials.

1.4.8. Proposition. Let L > 2 and ¢ > 0 be real numbers. There exists
a constant C' = C'(e, L) > 0 with the following property: for any probability
measure v on [—L, L] such that [%, Uy, (£) dv(z) > 0 for every m € N, we
have

vi2—¢ L] >C

(thus, v gives a measure at least C' to the interval [2 — ¢, L]).

Proof. It is convenient to introduce the polynomials X,,(z) = Up (5);
they satisfy X,,(2cosf) = sin(m+1) ¢

s — and the recursion formula X, 1(z) =
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x X (x) — Xm 1( )- It is clear from the first relation that the roots of
X, are 2cos 7 (¢ =1,...,m). In particular the largest root of X, is

Q= 208 The proof is then in several steps.

+1
k
1st step. For k < /7: X3 Xy = > Xgyo—om-
m=0

We prove this by induction over k. Since Xy(z) =1 and X;(z) = x, the
formula is obvious for £ = 0,1 (for £ = 1, this is nothing but the recursion
formula). Then, for & > 2, we have by induction hypothesis:

XXy = (2 Xp_1 — Xi_2) Xy
= & (Xppe1+ Xerea+ -+ X pys + Xopr1)
— (Xkge2+ Xpgoat -+ Xo pya+ Xpp12)
= (Xpse+ Xpro—2) + (Xpo—2 + Xpto-a)
+oo+ (X gra + X gro) + (X pro+ Xo k)
(Xpqo—2+ Xpyo—at -+ Xo—pra+ Xo_py2)
= Xpyo+ Xpqoo+ -+ Xopgo + Xop -

2nd step.

X m—
Z mlzam X(-T)

T —

Indeed:

(z — am) (ZXm 1—i(am) Xi(z ))

m—1

= Xp—1(am) X1(z) + Z Xn—1-i(om) (Xiv1(7) + Xi—1(z))
m—1
- Z Xm—l—z'(am) (6799 Xz(x)
i=0

= (Xm 2(am)_Xm 1(am) am) Xo(2)
+ Z m—i am +Xm i— 2(am) ame—l—z'(am)) Xz(x)

+ (Xl(am) — am Xo(am)) Xm—1(z) + Xo(am) Xm(z) .

m—2

Now Xo(am) = 1 and Xy () — am Xo(ay,) = 0; in the summation >
i=1
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all the coefficients are 0, by the recursion formula. Finally, X,,_o(ay,) —
Xm—1(am) @y = —Xm(ay,) = 0, by definition of ay,.

2m—1

3rd step. Set Y,,(z) = %}ﬁ; then Y, = Y y; X;, with y; > 0.
" i=0

m—1
Indeed, by the 2nd step we have Y, = > X,,—1-i(am) X; X;n. Now
=0

observe that the sequence am = 2cos 15 increases to 2. So for j<m:

Xj(am) > 0 (since oy, > @ and «; is the largest root of X;). This means
that all coefficients are positive in the previous formula for Y,,,. By the first
step, each X; X,, is a linear combination, with non-negative coefficients, of
Xo,X1,--.,Xom_1, so the result follows.

4th step. Fix ¢ > 0, L > 2. For every probability measure v on [—L, L]
such that ffL Xm(z)dv(z) > 0 for every m € N, we have v[2 — ¢, L] > 0.

Indeed, assume by contradiction that v[2 — e, L] = 0, i.e. the support
of v is contained in [—L,2 — ¢]. Take m large enough to have a,,, > 2 — €.
Since Yp,(x) < 0 for z < ay,, we then have [%, Yy, (z)dv(z) < 0. On
the other hand, by the 3rd step and the assumption on v, we clearly have
[ Yo(z)dv(z) > 0. So [%, Yi(z)dv(z) = 0, which implies that v is
supported in the finite set F;, of zeroes of Y,,; as above we have F,, =
{2cos ng;jfl : 1 < £ < m}. But this holds for every m large enough. And
clearly, since m + 1 and m + 2 are relatively prime, we have Fy, N Fp, 11 = 0,
so that supp v is empty. But this is absurd.

Coda. Fix e > 0, L > 2. Let f be the continuous function on [—L, L]
defined by

flz)y=<1 ifz>2-5

{O ifz<2-—c¢
2 : .
Zz—2+¢) if2-e<2z<2-5;

on [2—¢,2 — 5], the function f linearly interpolates between 0 and 1. For
every probability measure v on [—L, L], we then have

v[2—e L] > /_LLf(g;)du(x) >y [2— %L] .

Let o be the set of probability measures v on [—L, L] such that [*, X,,(z)
dv(z) > 0 for every m > 1. For v € p, we have by the 4th step ffL f(z)dv(x)
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> 0. But g is compact in the weak topology and, since f is continuous, the
map

L
p — RY :VH[Lf(x)du(x)

is weakly continuous. By compactness there exists C(e, L) > 0 such that
IE f(z)dv(z) > Cle, L) for every v € p. A fortiori v[2 — ¢, L] > C(e, L),
and the proof is complete. (Note that, in the final step, the need for introduc-
ing the function f comes from the fact that the map p — Rt : v~ v [2—¢, L]
is, a priori, not weakly continuous; however it is bounded below by a con-
tinuous function, to which the compactness argument applies.) O

Coming back to the spectra of finite connected, k-regular graphs, we now
reach the promised improvement of Theorem 1.3.1: it shows that not only
the first non-trivial eigenvalue becomes asymptotically larger than 2k — 1,
but actually there is a positive proportion of eigenvalues in any interval

[(2—5)\/kT1,k].

1.4.9. Theorem. For every ¢ > 0, there exists a constant C = C(e, k) > 0
such that, for every connected, finite, k-regular graph X on n vertices, the
number of eigenvalues of X in the interval [(2 —e)Vk—1, k] is at least C'-n.

n—1
Proof. Take L = —£— > 2 and v = % > & u; (where §, is the Dirac
h j=0 Vk—1
measure at a € [—L, L], that is, the probability measure on [—L, L] such
that ffo(a:)déa(w) = f(a), for every continuous function f on [—L, L]).

n—1
Then v is a probability measure on [~L, L], and [*, Uy, (2) dv(z) =1 ¥

n =0

i

Un (2;%) is non-negative, by the trace formula 1.4.6. So the assumptions

of Proposition 1.4.8 are satisfied, and therefore there exists C' = C'(e, k) > 0
such that v[2 —¢, L] > C. But

Hj
vVk—1
X (number of eigenvalues of X in [(2 —¢) vk —1, k]).O

vi2—¢ L] =

IA

X (number of j’s with 2 — ¢ < L)

Sli= 3=

Continuing this analysis we prove the following;:
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1.4.10. Theorem. Let (X,;),>1 be a sequence of connected, k-regular,
finite graphs for which ¢g(X,,) — o0 as m — oo. If v, = v(X,,) is the

measure on [— ;f, = \/kkj] defined by

< )
];0 VE—1"

. . __k k .
then for every continuous function f on [ — T—l]‘
\/L
k
i — 2 4 5
A [ 7 f(z) dv (@ / f( T
Vk—1

In other words, the sequence of measures (v );>1 on [—%, \/%] weakly
Y 4_w2 dx.

converges to the measure v supported on [—2, 2], given by dv(z) =

Proof. Set L = m Recall that f;, denotes the number of paths of length
£, without backtracking, from z to = in X,,,. We have that for n > 1, fixed
and m large enough (precisely g(X,,) > n):

fn—27',a: =0

for any x € X;;, and 0 < 7 < 5. Hence for m large enough the left hand-side
of the equation in Theorem 1.4.6 is zero. Thus so is the right hand-side, and

therefore
L Mh
/ U, (—) dvp () =0.
_L 2

/_L U (g) dvm(z) = 1.

For n > 0, let us compute f Uy (%) dv(z), using the change of variables

We also have that

z = 2cos0:

L ™
/ Un (g) dv(z) = /Un(c030)2sin29ﬁ
-L
= / 2sin((n + 1)) sin6 db (1.1)
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Hence for any n > 0:

[0 (5) = 0 ()

From the recursion relation following Definition 1.4.4, it is clear that the
linear span of Up (5) ,U1 (5),...,Un (§) is equal to the space of polynomials
of degree at most n. Hence we have that

i [ o) dim(@) = [ ple) dv(a)

m—0oQ —L —L
for any polynomial p(x). The rest of the argument is a standard § reasoning:

fix a continuous function f on [—L, L], and a positive number ¢ > 0. By the
Weierstrass approximation theorem, find a polynomial p such that

|f(z) —p(z)| < e

for every € [-L, L]. Then

/fdum /fdu

[0 - oot + | [ ey a) - [ et

IN

+ | o) - s@)avta)

—L

Since v, and v are probability measures, the first and last term are less than
5; while the second term is less than £ for m large enough. So

x) dvp, (z / f(z)dv(z

for m large, which concludes the proof. O

We can now prove the following result, analogous to Theorem 1.4.9, and
which improves on Theorem 1.3.3.
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1.4.11. Corollary. Let (X,,)m>1 be a family of connected, k-regular,
finite graphs, with g(X,,) — oo as m — oo. For every £ > 0, there exists a
constant C' => 0 such that the number of eigenvalues of X, in the interval

[k, (—2+¢) vk — 1] is at least C'| X,

Proof. The proof is similar to the last step of the proof of Theorem 1.4.8.

We use the same notation as in Theorem 1.4.10. Let f be the function which

is 1 on [—\/%, —2], 0 on [ 2+ ¢, \/—1] and interpolates linearly between

1 and 0 on [—2,—2 + ¢]. Then, for every m > 1:
i |- =2 ke > [ T o) dun(e)
m I - m .

VR -

For m — oo, this gives, using Theorem 1.4.10:

. k
I%r%lo%fym [_\/ﬁ 2—}—6] / f(x)dv(z

In other words:

1
lim inf —— X {number of eigenvalues of X,,, in [k, (—2,¢)Vk — 1]}

nk+a>‘)gn|

—2+¢
> [ f@) dul),
2
from which the result follows. O

Exercises on section 1.4.
1. Complete the proof of Lemma 1.4.1, and prove Lemma 1.4.2.

2. Establish the recursion formula for the Chebyshev polynomials of the
second kind, and compute their generating functions.

3. Fix real numbers I > 2 and € > 0. Let M be the set of probability
measures on [—L, L], endowed with the weak topology. Show that the
function M — Rt : v — v [2 — ¢, L] is not weakly continuous.

4. (Do not try this exercise if you have never heard about representations
of SU(2).) Let II,;, be the unique irreducible representation of SU(2)

16

on C™1. Set tg = (eo e?w) € SU(2). Show that TrII,,(tg) =
U (cos ). Use the Clebsch-Gordan formula to give an alternate proof
of the first step in the proof of Proposition 1.4.8.
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1.5 Independence number and chromatic number

Let X = (V, E) be a finite graph without loop; as usual we denote by A the
adjacency matrix of X.

1.5.1. Definition. a) The chromatic number x(X) is the minimal number
of classes in a partition V = Vi UVaU---UV, such that, for every i =1,...,x
and every z,y € V;, we have A;, = 0 (in other words, this is the minimal
number of colours necessary to paint the vertices of X, in such a way that
two adjacent vertices have different colours).

b) The independence number i(X) is the maximal cardinality of a subset
F CV such that A, = 0 for every z,y € F'.

These two quantities are related by the following inequality:

1.5.2. Lemma. Let X be a finite graph without loop, on n vertices. Then
n < i(X) x(X).

Proof. Let V.=V UVaU---UV,(x) be a colouring of V' in x(X) colours.

x(X)
Since |V;| <i(X) fori=1,...,x(X), we have n = ) |V;| <i(X) x(X). O
i=1

For a finite, connected, k-regular graph with spectrum
k=po>pr 22> pp1,

we can relate i(X) to the spectrum of X.

1.5.3. Proposition. Let X be a finite, connected, k-regular graph on n
vertices. Then ¢(X) < ¢ max {|p1], |pn—1]}-
Proof. Let F C V be a subset of V, of cardinality |F| = i(X), such that
Azy =0 for z,y € F. As in the first part of the proof of Theorem 1.2.3, we
consider the function f € £2(V), defined by
_[(|V-F| ifzxeF;
ﬂ@_{4F| ifreV-F.
Then Y f(z) =0 and ||f||3 = |F|-|V — F|-|V| <i(X)n? Take xz € F;

eV
since Azy = 0 for y € F', we have

(Af)(z) = Z Agy fly) =—I|F| Z Agy = —|F]| Z Agy = —ki(X).

y¢Er y¢F yev
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So that [[Af[3 > X (Af)(z)? = k*i(X)°,
zeF
In an orthonormal basis of eigenfunctions, A takes the form:
k
o O
O Hn—1

since & f(a) = 0, we have |14/ |2 < max {Jual, -1} -/ Using the
TE
lower bound for ||Af||2 and the upper bound for || f||2, we get

ki(X)*? < max {|pl, lpn-1]} - n-i(X)?;
cancelling out i(X)/2, the result follows. O

From Lemma 1.5.2, Propositions 1.5.3 and 1.1.4, and Definition 1.3.4,
we immediately get:

1.5.4. Corollary. Let X be a finite, connected, k-regular graph on n
vertices, without loop. Then

k
max { |1, |ptn—1]}

x(X) >

Moreover, if X is a non-bipartite Ramanujan graph, then

k vk

X)>—~—.0
x( )_2\/k—1 2

Exercises on section 1.5.

1. What become the results of this section for bipartite graphs?

2. For the complete graph K, and the cycle graph C,,, compute the chro-
matic and independence numbers, and verify Lemma 1.5.2 and Propo-
sition 1.5.3.
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1.6 Large girth and large chromatic number

A combinatorial problem that has attracted much attention is to construct
graphs with large chromatic number and large girth. Note that adding edges
increases (or at least does not decrease) the chromatic number, but that it
does decrease the girth. Given this tension, it is by no means obvious that
such graphs exist.

A method, known as the probabilistic method and due to Erdds [24], has
proven to be very powerful in demonstrating the existence of such combi-
natorial objects. One proceeds by examining the graphs of a certain shape
which do not satisfy the desired properties, and showing that these are rel-
atively rare. In this way most objects (i.e. the “random object”) have the
desired property, and in particular their existence is assured. Of course such
an argument offers no clue as to be able to find, or give, explicit examples.
(These will be reached in section 4.4.)

Let k and ¢ be given large numbers. We seek a graph X with ¢(X) > &
and x(X) > ¢. Let n be an integer which will go to infinity in the discussion
below. Consider the set of all graphs on n labelled vertices, which have
m edges. We denote this set by A, ,,. Fix € such that 0 < ¢ < %; set
m = [n'*¢], where [ ] denotes the integer part.

First step. We start by counting the number of elements in A, ,,. To
construct a graph X € A}, ,,, we must select m edges out of the () possible

edges. So | Xy m| = ((7%))

Second step. We are interested in those X’s in A}, ,,, with small indepen-
dence number (and hence, by Lemma 1.5.2, large chromatic number). Take
n with 0 < n < 5, and set p = [nlfn]. To formalise smallness of indepen-
dence number, we will first say that, for every subset with p elements in the
vertex set, the graph X meets the complete graph K, on these p vertices, in
a “large” number of edges, say at least n edges. So we count as “bad” X's,
the ones which meet a given complete graph K, (on our vertex set) in few

edges. The number of such X’s which meet a given K, in exactly 0 </ <n
edges, is clearly

B ((3) =)

/ m—/ )

Thus the number N (n,m) of X € A, ,,, which meet this given K}, in at most
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n edges, is:
N(n,m)—;:()(é)( _y )

Fornﬁ%andﬂgégn,wehave

(N) (N>

<

L)~ \n

(see exercise 1). So, for n large and 0 < ¢ < n, we estimate as follows:

((’2’)) < ((2)) and (@‘)—(é’)) < ((3);(3))_ Thus

L)~ m—/
N(n,m) < (n+1)<(:2;)) <(Z)T;(§)> S1,02n<(§)ﬂ—1(§)>

2n

= Srl3) - @G ~(

Now, for 0 < £ < m, we have

(2)-()-=(()-9(-)

NS
S—
|
[
[
—
—~
N3
N—
|
—~
NS
SN—
|
+
ot
[

so that

N(n,m) < 5 (5)[(5) =1 [(5) —m+1] (1_ H)m

IN
3
]
3
/N
—~~
Swos
N—
S~
/N
[
|
—
SR w3
]
~—
N
N—
3

Now for 0 < z < 1, we have (1 —z)™ < e~ hence by the first step

—1\2
N(n,m) < p*e ™1 (X, ]

Third step. Let N(n,m) be the number of X € X, ,,, which meet some K,

in at most n edges. Since the number of possible K},’s is (g), we have

N(n,m) < (Z) N(n,m).
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Fourth step. Since (Z) < nP < p" (because p = [n'~7]), we have by the
second and third steps:

—1\2
N(n,m) < 3" e_m(%) | X m | -

Fifth step. Recall that 0 < < §, that m = [n'*¢], and p = [n'77]. As
n — o0, we have
N(n,m) = o(|Xpml)

where the notation A(n) = o(B(n)) as n — 0o, means % — 0 as n — oo.
Put in another way, this step ensures that the proportion of X’s in &, ,
which meet every K, in at least n edges, tends to 1 as n — oo. This will be

used to ensure that the independence number is small.

Sixth step. Next we address the girth. There is no reason that our good
X’s above have large girth. We will arrange this by removing from X small
circuits. Define the integer-valued function F' on A, ,, by setting F'(X) to
be the number of circuits in X of length £ < k, where k is the large number
fixed at the very beginning. Denote by A(n, k) the average value of F:

A(n, k) =

Seventh step. We can calculate A another way. That is by calculating the
contribution to the sum of each fixed circuit of length ¢, say z1 — z2 —
... > xp = x1, with 3 < £ < k. Indeed each such circuit contributes 1 to the

n J—
sum, for each of ( (;L)_ Z) graphs X’s. Now there are n(n—1)...(n—£+1)
such circuits of length /. Hence we have

k n

Al k) = g |Zn(n—l)...(n—ﬁ—{—l)((ﬁl)__;)

7
Y
L=

3
&~

/N

Mﬁl
=g

~<
[l
=

¢°]
=

=

wn
Il

o2}
=+

D
cH
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The term in parentheses is a o(1), as n — oo. This gives the estimate

Aln,k) < (1+0(1 zk:”‘m[ (1+0(1) Y (2 )
k
< o)k (7)) =oln)

since m = [n17¢] and € < 1

Eighth step. It follows that

2

|X"vm‘ XEXp m:F(X)>

1

=3
3
El
S
m
&
3

>n
k
as n — oco. Hence

HX € Xym: F(X) > 2}
| Xn,ml

Coda. For X € A}, ;,, consider the two following properties:
(1) X meets every K, in at least n edges;
(2) F(X) <%

Combining the fifth and eight steps, we see that, as n — oo, the pro-
portion of X € A), ,,, which satisfy (1) and (2), tends to 1. So for n large
enough (depending on k, €, ), we choose such an X satisfying (1) and (2).
Delete from X all edges which lie on closed circuits of length at most k,
getting a graph X’. Clearly g (X’) > k. Also, according to (2), we have
deleted less than n edges in going from X to X’. From (1) it then follows
that X' meets every K, in at least one edge. That is, i (X') < p. Thus,
according to Lemma 1.5.2, we have x (X') > 7> which is of order n" and
hence is greater than ¢ for n large enough. Thus X’ (which is the “random”
modified element of &), ;,) fulfills our requirements.

Exercises on section 1.6.
1. Check that, for 0 </ <n < %, one has (]Z) < (]X)

2. According to the construction in section 1.6, how large needs n to be
taken, in order to have g (X) > 10 and x (X) > 107
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1.7 Notes on Chapter 1

1.1. Theresults in 1.1 can also be derived from the classical Perron-Frobenius
theory. For a detailed treatment of the relation between the combinatorics
of a graph and the spectrum of its adjacency matrix, see e.g. the books by
Biggs [5] and Chung [15].

1.2. For treatments of families of expanders, see the books by Lubotzky [41]
and Sarnak [57]. As indicated in the Overview, the construction of families
of expanders is an important problem in network theory. The first construc-
tions go back to the years 1972-73: using counting arguments, Pinsker [52]
gave a non-explicit construction, while Margulis [46] gave an explicit one by
appealing to Kazhdan’s property (T') in the representation theory of locally
compact groups (see [17], Chapter 7; [41], Chapter 3). A drawback of this
second method is that it gives a priori no estimate on the size of the ¢ in
Definition 1.2.2 and, therefore, no measure of the quality of the expanders.
This problem was first overcome by Gabber and Galil [28]. (See also [2],
[25], [16]; as well as recent works by Wigderson-Zuckerman [70].)

The inequalities in Theorem 1.2.3 are often called the Cheeger-Buser in-
equalities, by analogy with Riemannian geometry. Indeed, in 1970, Cheeger
[13] defined the isoperimetric constant of a compact Riemannian manifold
M of dimension mn:

h(M) = inf { voln-1(90) } ,

min {vol, (U),vol,(M —U)}

where U runs among non-empty open subsets with smooth boundary OU,
and vol,, denotes n-dimensional Riemannian volume. He proved that h(M) <
2 /A1 (M), where A1 (M) is the first non-trivial eigenvalue of the Laplace op-
erator on M. Then, in 1982, Buser [12] proved that h(M) is also bounded
below by a function of A;(M):

A (M) < 2a(n — 1) h(M) + 10h(M)?,

where the constant a > 0 is related to the Ricci curvature of M by the
inequality Ricci (M) > —(n — 1) a®.

The first inequality in 1.2.3 is due to N. Alon and V. Milman [3]; the sec-
ond is due to J. Dodziuk [22]. The first step in the proof of the 2nd inequality
is often called the co-area formula, again by analogy with Riemannian ge-
ometry: to compute the integral of a function, integrate the volume of the
level sets over the range of the function.
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1.3 and 1.4. The asymptotic behaviour 1.3.1 is due to Alon and Boppana (see
[42] and [51]); it had several improvements, due to Burger [10], Serre [62],
Grigorchuk-Zuk [31]. We have chosen Serre’s approach (Proposition 1.4.8
and Theorem 1.4.9); our proof of Proposition 1.4.8 is a slight improvement
of the one in [62]; for explicit estimates of the constant C' appearing there,
see pp. 213-213 in [39].

The asymptotic behaviour 1.3.3 for the bottom of the spectrum, is due
to W. Li and P. Solé [40]. Note that the number 2+/k — 1 appearing in 1.3.1
and 1.3.3 can be understood as follows: let T} be the k-regular tree: this
is the common universal cover of all the finite, connected, k-regular graphs;
by exercise 7 of section 1.1, the adjacency matrix A of T} is a bounded
operator on the Hilbert space £2(V') (where V is the set of vertices of T}).
The spectrum of A on £2(V) is then the interval [-2+v/k — 1,2v/k — 1] and
its spectral measure is essentially the measure v in Theorem 1.4.10: this
is a result of Kesten [36], and actually 1.3.1 can be proved (as in [57]) by
“comparing” a finite, connected, k-regular graph with its universal cover,
and then applying Kesten’s result.

As mentioned in the Overview, infinite families of k-regular Ramanujan
graphs have been constructed for the following values of k:

e k=p+1, p an odd prime (see [42], [46]);
o k=3 [14];
e k =g+ 1, q a prime power [48].

The other values of k are open, the first open value being k = 7.

An intriguing question is the following one: when one estimates the
expanding constant by means of the spectral gap, something is lost in the
use of the Cheeger-Buser inequality 1.2.3. Recent results by Brooks and Zuk
[9] show that the asymptotic behaviour of the expanding constant can be
essentially different from the asymptotic behaviour of the first non-trivial
eigenvalue of the adjacency matrix.

1.5. Proposition 1.5.3 is due to Hoffmann [33].
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Chapter 2

Number theory

2.0 Introduction

The constructions in the later chapters depend on some old results in the
theory of numbers. In particular we need the fact, arguably known to Dio-
phantus around 400 AD, and proved first by Lagrange in 1770, that every
natural number can be written as a sum of four squares. A remarkable the-
orem of Jacobi gives an exact formula for the number of representations of
n in the form a3 + a? + a3 + a3, in terms of the divisors of n. In section 2.3,
we will prove this result for odd n, and use it repeatedly later.

We will also need analogous statements about sums of two squares. Since
for any integer a, we have a®> = 0 or 1 (mod. 4), it follows that any n = 3
(mod. 4) is not a sum of two squares. Still there is an exact formula, due
to Legendre, for the number of solutions to a? 4+ b*> = n. We prove it in
section 2.1, and make use of it as well.

Notice that any sum of two squares can be factored as

n=a®+b* = (a+bi)(a—bi) = aa
where « is an element of the ring of Gaussian integers
Zi={a+bi:a,becZ, i*=—-1}.

The product a @ is called the norm of «, denoted N(«). Thus n is a sum of
two squares if and only if it is the norm of a Gaussian integer. It turns out to
be simpler to work in this ring. We study the arithmetic of Z [i], extending
the familiar notions of integer, prime number and factorization. The theory
for this ring is presented in section 2.1; it is very similar to that for Z.

45
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In a similar way, any representation of a natural number as a sum of four
squares can be expressed in terms of norms of elements in yet another ring,
the integral quaternions. This ring denoted by H (Z) is defined by:

H(Z)={ao+a1i+azj+ask:ag,a1,a2,a3 €7,
==k ==1,ij=k, jk=1i, ki=j, ji=—k, kj = —i, ik=—j}.

H(Z) is not commutative. As with Z[i] we have conjugate pairs of integral
quaternions

a=ag+taiit+asj+task, a=ay—ait—azj—ask
and the norm N(a) = a@ = @a = a3 + a3 + a3 + a3 is multiplicative:

N (ap) = N(a) N(B).

Thus the problem of expressing n as a sum of four squares becomes one of
factorisation theory in H (Z). In section 2.5, we therefore study the arith-
metic of this ring.

The algebraic structure of the graphs constructed in Chapter 4 depend
on the equation 2 = p (mod. ¢), where p and ¢ are odd prime numbers.
There is a beautiful reciprocity due to Gauss relating the solvability of this
equation to the one with p and ¢ reversed. In section 2.2, we give one of the
many well-known proofs of this famous “quadratic reciprocity theorem”.

2.1 Sums of two squares

The study of sums of two squares originated with the problem of Pythagorean
triples, or triples (a, b, ¢) of positive integers such that a®+b? = c2. Examples
of such triples 32442 = 52 are 52+122 = 132. The description of Pythagorean
triples, as well as the fact that infinite many exist goes back at least to
Diophantus. In the 17th century Fermat described all integers — not just
perfect squares — that could be written as sums of two squares; he and his
successors, including Euler, went on to study sums of three or more squares.

The aim of this section is two-fold: first, we will prove the Fermat-Fuler
characterization of integers that are sums of two squares; then, we will show
Legendre’s formula for the number of representations of a given integer as a
sum of two squares.
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For k > 2 and n € N, we denote by r(n) the number of representations of
n as a sum of k-squares, that is, the number of solutions of the Diophantine
equation x% + w% + -4 x%_l =n:

_ FNR 2
rr(n) ($0,---,$k—1)€Z-Z$1 nel .

i=0
We shall need the ring of Gaussian integers:
Z[i|={a+bi:a,beZ};

which is easily shown to be a subring of C. For a = a + bi € Z[i], we define
the norm N(a) of « as

N(a) =aa = |a? =d® +b*.

As is customary in algebra, we define the norm without taking the square
root; in this way, N(«a) is a rational integer,as we will now call the integers
of Z. Thus a rational integer is a sum of two squares if and only if it is the
norm of some Gaussian integer. A crucial property of the norm is the fact
that it is multiplicative:

N(aB) =N()N(B) (B eL]i]).

Note that this immediately shows that products of sums of 2 squares are
sums of 2 squares. We say that o € Z[i] — {0} is a unit if « is invertible in

Z[i], i.e. 1 € Z[i]. Since in this case 1 = N (oz . %) = N(a) N (é), we see
that « is a unit in Z[4] if and only if N(a) = 1. Furthermore N(a) = 1 if
and only if o € {1,-1,4, —i}.

2.1.1. Definition.

1) Two Gaussian integers «, /3 are associate if there exists a unit € € Z [i]
such that a = ¢f.

2) A Gaussian integer 7 € Z [i] is prime if 7 is not a unit in Z [i] and, for
any factorisation 7 = a3 in Z[i], either o or § is a unit in Z [3].

Note that “being associate” is an equivalence relation on Z [i], preserving
such properties as invertibility, primality and divisibility. In commutative
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ring theory, elements satisfying the condition in Definition 2.1.1 (2) are usu-
ally called irreducibles, while primes are defined by requiring that, if = divides
a product, then 7 divides one of the factors. However, whenever Bézout’s
relation holds the two definitions are equivalent. We will show that this is
precisely the case for Z[i] in Propositions 2.1.4 and 2.1.5 below, but first we
begin with the Euclidean algorithm for the Gaussian integers.

2.1.2. Proposition. Let a,8 € Z[i], § # 0. There exists v,d € Z[i] such
that @ = By + 0 and N(6) < N(f).

Proof. Since 8 # 0, we can form the complex number

« .

—=z+iy  (z,y€R).
B

Let m,n € Z be such that |[z—m| < £ and [y—n| < 3. Set v = m+ni € Z[i]

and § = B[(z — m) + i(y — n)]. Clearly =7+ %, i.e. d = a — (v, so that

0 is a Gaussian integer. Finally

2 2 2 1
—(@—m)?+ - <

‘é
B
so that N(6) <1 N(B) < N(B). O
2.1.3. Definition. Fix o, € Z]i]:

i) «a divides 3 if there exists v € Z[i] such that f = yo;

ii) 0 € Z[i] is a greatest common divisor of a and S if ¢ divides a and S,
and whenever v € Z[i] divides @ and S, it also divides 4.

It is clear that a greatest common divisor, if it exists, is unique up to
associate. Furthermore, if (o, 8) = £1, i, we say that o and j are relatively
prime. Clearly, in that case, we can take (a, ) = 1.

2.1.4. Proposition. For any a,f € Z[i] — {0}, there exists a greatest
common divisor (@, ) € Z[i]. Moreover, Bézout’s relation holds; that is,
there exist 7,0 € Z[i] such that (o, 8) = ary + 4.

Proof. Set I = {ay+ 36 : 7,6 € Z[i]}: The reader can easily check that
I is closed under addition and subtraction and, further, that if A\ € I and
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p € Z[i], then Ay € I. Thus, I forms what is called an ideal in Z[i]. Let
Ao = avg + [y be a non-zero element of minimal norm in 7. We claim that
(o, B) = Ao. Indeed, by Proposition 2.1.2 we can find 0,7 € Z [i] such that
a=o0X+71and N(1) < N(\g). Then 7 = a— g)g belongs to I and, by the
minimality of N(\g), we must have 7 = 0. Hence, )¢ divides a. Similarly,
Ag divides B. Since A\g = ayp + B do, every common divisor of @ and 8 must
divide Ag. Finally, Bézout’s relation holds with v =y, 6 = §p. O

2.1.5. Proposition. =« € Z[i] is prime if and only if, whenever 7 divides
a product af (o, € Z[i]), it divides either « or £.

Proof. =) If w divides a3, we have aff = mo for some o € Z[i]. We may
assume that m does not divide «, and must then show that « divides f.
Consider (7, «): since it divides 7, which is prime, we must have (7, a) = 1.
Then, by our previous result

l=ny+ ad

for some ,8 € Z[i]. Then g = nfy + afd = 7Py + nod = w(By + dd),
showing that = divides .

<) If ¥ = af, in particular 7 divides af8. Say that « divides S, i.e.
B = my for some v € Z[i]. Then m# = aff = amny; cancelling out, we get
1= avy,ie aisaunit. O

From this we get unique factorisation in Z [4].

2.1.6. Proposition. Every non-zero element in Z [i] is, in a unique way, a
product of primes in Z [¢]. More precisely, if & € Z[i]—{0}, then @ = 71 ... 7
for some primes 7y,..., 7, in Z[i]; and if &« = my...7 = 01...0¢ are 2
factorisations of « into primes, then k& = £ and, after permuting the indices,
m; is associate to oy, for 1 <17 < k.

Proof. Existence is proved by induction over N (), the case N(a) =1 (i.e.
« is a unit) being trivial. So assume N (a) > 1; two cases may happen: if «
is prime, there is nothing to prove; if a is not prime, we find a factorisation
a = [y where neither 8 nor « is invertible. Then N(«a) = N(8) N(vy) with
N(B),N(y) < N(a). By induction assumption, S and « are products of
primes in Z [i], hence so is a.

To prove uniqueness, assume o = w1 ... T, = 01 .. .0y as in the statement.
We may assume k < /. Since m; divides o1 ...0¢, and 71 is prime, by
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Proposition 2.1.5 we see that m; divides at least one of the o;’s, say m
divides o1. Write o1 = €1 m1, with ¢ € Z[i]. Since o7 is prime, €1 must be a
unit. Canceling out 7y in both factorisations, we get my... 7 = €1 03...0y.
Clearly we may iterate the process, until we get 1 in the left hand side.
Suppose by contradiction k < £. Then we get 1 = €1...€; 0g41...0¢ and,
taking norms, we get a contradiction. So k = £, which concludes the proof. O

We get a first application of the arithmetic of Z [] to sums of two squares,
a famous result stated by Fermat around 1640, and proved by Euler in 1793.
We denote by F, the finite field with g elements, and by Fy' the multiplicative
group of non-zero elements in F,.

2.1.7. Theorem. Let p be an odd prime in N. The following are equiva-
lent:

i) p=1 (mod. 4);

ii) —1 is a square in F,, i.e. the congruence > = —1 (mod. p) has a
solution in Z;

iii) p is a sum of 2 squares (so r2(p) > 0).
Proof. i) < ii) For y € F), define the packet of y as
Py = {ya -Y, yila _yil} .

It is easily checked that the packets do partition ]F‘;;. There might be some
coincidences within a packet P,. One cannot have y = —y (since y is invert-
ible and p is odd). But one may have y = y !: this happens exactly when
y = %1, in which case P, = {1, —1}. And one may have y = —y~L: this hap-
pens exactly when —1 is a square modulo p, in which case the corresponding
packet P, has 2 elements. To summarize, we constructed a partition of ]F‘];<
into classes of 4 elements, with at most 2 exceptions having 2 elements each.
Note that the exceptional class P; is always present. Therefore, if p = 1
(mod. 4) there must be two classes with 2 elements, so that —1 is a square
modulo p; and if p = 3 (mod. 4), there must be just one exceptional class,
namely P;, and —1 is not a square modulo p.

ii) = 1iii) Suppose that —1 is a square modulo p. So we find z € Z such
that p divides 22 + 1. Write 22 +1 = (z +14)(z — 4) in Z[i] and notice that p
does not divide either z +1i or x —4 in Z [¢]. By Proposition 2.1.5, this means
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that p is not a prime in Z [i]. So there exists a factorization p = «f in Z [i],
where neither factor is a unit; therefore, N(a) > 1 and N(f) > 1. Taking
norms we get p? = N(p) = N(a) N(B). This implies N(a) = N(B) = p, so
p is a sum of 2 squares.

iii) = ii) If p is a sum of 2 squares, say p = a® + b?, then a and b are
invertible modulo p. So we find ¢ € Z such that bc = 1 (mod. p). Then
pc? = (ac)? + (be)?, and reducing modulo p:

0= (ac)® +1 (mod. p),
so that —1 is a square modulo p. O

Here is now the promised characterization of integers which are sums of
two squares: it is a celebrated result of Fermat and Euler.

2.1.8. Corollary. An integer n > 2 is a sum of 2 squares (so r2(n) > 0) if
and only if every prime number p = 3 (mod. 4) appears with even exponent
in the factorisation of n into primes.

Proof. Let n = a®+b? be a sum of 2 squares. Let p be an odd prime dividing

n. Let p* be the highest power of p dividing both @ and b; set z = 1%’ Yy = p—I}c;

then ﬁ =22 4+ 92

Suppose that p still divides p%. Then, as in the proof that iii) = ii)
in Theorem 2.1.7, one deduces that —1 is a square modulo p. (This follows
from the set that p cannot divide both z and y.) So, p =1 (mod. 4). By
contraposition, if p = 3 (mod. 4), then p cannot divide -3z further, showing
that p appears with an even exponent in the factorisation of n.

We leave the proof of the converse as an exercise. O

Coming back to the arithmetic in Z [i], we notice a useful criterion for a
Gaussian integer to be relatively prime to a rational integer.

2.1.9. Lemma. Let m € Z, o € Z[i] : (m,a) = 1 if and only if
(m, N(a)) = 1.

Proof. =) If (m,a) = 1, then by Bézout’s relation we can find v, € Z[i]
such that 1 = ym + da. Then

N(O)N(a) = N1 —ym) = (1 —ym)(1 =Fm) =1 = (y +7)m + N(y) m*,
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or N(6) N(a) + (y+7%) m — N(y) m? = 1. Note that v +7% and N(v) belong
to Z. So, if 8 € Z[i] divides both m and N(«), then it divides 1, showing
that S is a unit.

<) Assume that (m

,N(a)) = 1. If § € Z[i] divides both m and «, then
0 divides m and N(a) =@

a. Again, § must divide 1, so § is a unit. O

We can now characterize the primes in Z [i].

2.1.10. Proposition. A Gaussian integer 7 € Z[i] is prime if and only if
one of the following three mutually exclusive cases occur:

i) N(m) = 2 (in this case 7 is an essociate of 1 + i; that is, 7 € {1 £
i,—1+1i});

ii) N(m) = p, where p is a prime in Z and p = 1 (mod. 4);

iii) 7 is associate to ¢, where ¢ is a prime in Z, and ¢ = 3 (mod. 4).

Proof. =) Let m be a prime in Z[i], and let p be a prime in Z dividing
N(m). Set 6 = (p,7). By Lemma 2.1.9, § is not a unit. Since 7 is prime,
0 is associate to 7, so we may assume § = w. Write then p = vy, for some
v € Z[i]. Taking norms we have p? = N(7) N(v), or p = % - N(vy). Two
cases then appear:

a) Mpﬂ = 1, forcing N(w) = p. Then p is a sum of two squares, and by
Theorem 2.1.7, we have either p =2 or p =1 (mod. 4);

b) N(v) = 1, in which case 7 is associate to p and p is a prime in Z [7].
Then p is not a sum of 2 squares and therefore p = 3 (mod. 4).

<) Observe that, if N(7) is prime in Z, then 7 is prime in Z []. Indeed,
if # = af, taking norms we get N(7) = N(«) N(f) which gives immediately
that either a or § is invertible. So, if either N(7) = 2 or N(w) = p, with
p = 1 (mod. 4), then 7 is prime in Z[i]. On the other hand, if ¢ is prime
in Z, ¢ = 3 (mod. 4), then ¢ remains prime in Z[i]: indeed, if ¢ = af for
o, € Z[i], then taking norms we get ¢> = N(a) N(B); since ¢ is not a
sum of 2 squares by Theorem 2.1.7, we cannot have N(a) = N(8) = gq.
Therefore, either o or (3 is a unit in Z []. O

With this in hand we now reach Legendre’s formula for ro(n), for which
we will need some additional notation. For n € N we make the following
definitions:
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e di(n) is the number of divisors of n € N which are congruent to 1
modulo 4;

e d3(n) is the number of divisors of n € N which are congruent to 3
modulo 4;

e d(n) is the number of divisors of n.

2.1.11. Theorem. Forn €N, n > 0:7ry(n) =4(di(n) — ds(n)).

Proof. Set 6(n) = di(n) —ds(n). Assume first that N € N is odd, and write
N = km, where

a
k= H Py (pr, =1 (mod. 4)),
h=1

b
m = H q;j (gj = 3 (mod. 4)).
j=1

A divisor of N is congruent to 1 modulo 4 if and only if an even number
of g;’s, counting multiplicities, appears in its factorisation. From this we
deduce

Claim.

5(m) = 0 if at least one s; is odd
~ |1 ifall s;’s are even, that is, if m is a square.

To prove the claim, set m' = qsﬂl. Note that 6(1) = 1. If s; is even, then
1
difm) = (3 +1) di(m')+ % ds(m)
dg(m) = % di(m')+ (3 +1) ds(m),
so that §(m) = §(m'). If s1 is odd, then:

s1+1

d1 (m) = 2

dy (m') +

so that d(m) = 0 in this case. This proves the claim.

d(k) if m is a square,

From the claim, we deduce that §(N) = { 0 otherwise
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Now, let n > 0 be an integer. Write n = 2! N, with N odd and N = km as
above. Note that 6(n) = 6(N). If m is not a square, then d(n) = 0 by the
above, and also ra(n) = 0 by Corollary 2.1.8. So the theorem is true in this
case. Assume now that m is a square. Then we know, by Corollary 2.1.8
again, that r2(n) > 0. The idea is, on one hand, to write n = A%+ B? and on
the other, to factor n into primes in Z [¢] using unique factorisation and the
description of primes in Z[i] from Propositions 2.1.6 and 2.1.10. Equating
these, we get

a b
n=A%+B?=(A+iB)(A—iB) = (—)!Q+)* [[ =j» mi» [] ¢
h=t j=1

where 7, € Z[i] is a prime such that N(7,) = pp. Now r2(n) is the number
of factorisations of n as (A +iB)(A — ¢B) in Z[i]. By unique factorisation,
and the fact that N(A +iB) = N(A —iB), we must have

a b s_]
A+iB =u(l+1) H T T H q;’
h=1 j=1

a b s_J
A—iB=4'(1+)" [[ m* =" ] ¢
h=1 j=1
with w,u’ units such that wu' = (—4)!, and up +wp, = r, (1 < h < a).
The freedom lies in the choice of u and of the up’s. The number of possible
choices for A + ¢B is therefore

a

AT (rn+1) =4d(k) =46(N) =4d(n). O
h=1

Fixing ¢ > 0, we say that a real quantity f(n), dependingon n € N, is a
0-(nf) if there exists a constant C' = C'(¢) > 0 such that
|f(n)| < Cn*

for every n € N. Using Theorem 2.1.11, we may estimate the order of
magnitude of ro(n).
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2.1.12. Corollary. For all ¢ > 0: r3(n) = 0.(n°).

Proof. From Theorem 2.1.11; ro(n) < 4(dy(n) + ds(n)) < 4d(n). We leave
it as an exercise to check that d(n) = 0.(n¢). O

There is no simple formula as 2.1.11 for r3(n). (See the notes at the

end of Chapter 2.) Nevertheless, we may estimate the order of magnitude
of r3(n).

2.1.13. Corollary. For alle > 0:73(n) = Og(n%"'g).
Proof. We have

[vn]
r3(n) = ng(n—kQ)

k=0
[vn]
< Cle) Z (n — k?)¢ by Corollary 2.1.12
k=0

< Cle)nzte. O

Exercises on section 2.1.

1) Describe an infinite, one-parameter family of solutions z = f(¢), y =
g(t), z = h(t) where 2% + y? = 22 and (z,y,2) = 1.

2) Prove, without appealing to Theorem 2.1.11, that di(n) — ds(n) > 0.
3) Prove that d(n) = 0.(n®) for every € > 0.

4) Let m,n be rational integers. Prove that m,n are relatively prime in
Z [i] if an only if m,n are relatively prime in Z.

5) Let n > 0 be an integer such that every prime p = 3 (mod. 4) appears
with an even exponent in n. Prove that n is a sum of 2 squares. [Hint:
use Theorem 2.1.7 and the fact that 2 is a sum of 2 squares.]

6) Let p be an odd prime. The aim of this exercise is to give a group-
theoretical proof of the fact that —1 is a square modulo p if and only
if p=1 (mod. 4). First prove that —1 is a square modulo p if and only
if the multiplicative group F) (of order p — 1) contains a subgroup of
order 4. Conclude by appealing to the fact that F; is a cyclic group.
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2.2 Quadratic reciprocity

Let p be an odd prime. Theorem 2.1.7 gives a complete answer to the
question, “When is —1 a square modulo p?” Quadratic reciprocity, due to
Gauss, deals with the more general question, “When is m € Z a square
modulo p?”

We begin by defining the Legendre symbol (%) as:

®)-

Using the fact that the group of squares of Ff has index 2 in F; (see exercise
2 below), one deduces the multiplicative relation

5)-()G) ween

The following lemma has its own interest:

1 if p does not divide m and m is a square modulo p;

{ 0 if p divides m;
—1 if p does not divide m and m is not a square modulo p.

2.2.1. Lemma. Forn€Z:n'7 = (%) (mod. p).

Proof. The result is obvious if n is a multiple of p, so we may assume that

p does not divide n. Then n?~! =1 (mod. p), by Fermat’s theorem, which

p—1 2
2

means that n = +1 (mod. p). If n is a square modulo p, say n = m

-1

(mod. p), then n"T =mpl=1 (mod. p), again by Fermat’s theorem. Now,
-1

since F, is a field, the equation "2 = 1 has at most %1 solutions in F,.

But we just checked that each square in F; provides a solution, and there
1

are p—gl such squares. In other words, the set of solutions of 7T =1is

exactly the set of squares in F;'. Therefore, if n is not a square modulo p,

we must have n*3 = —1 (mod. p). O

From the multiplicativity of the Legendre symbol, we see that, to com-
pute (%) for an arbitrary integer m, it is enough to compute the values
of the Legendre symbol for primes in Z, and for —1. The answer to this
question is provided by Gauss’ celebrated law of quadratic reciprocity.

2.2.2. Theorem. Let p be an odd prime. Then
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2

(5) = -0

if ¢ is an odd prime, distinct from p : (%) =(-1) = (%’).

Proof.

i)

ii)

iii)

This is just a rephrasing of the Fermat-Euler Theorem 2.1.7.

For every integer k € Z, there is a unique integer r € [—p/2,p/2] such
that k = r (mod. p); we call r the minimal residue of k. Now we com-

pute the minimal residues of the 5’%1 numbers 2,4,6,...,p—1. Assume

p =1 (mod. 4); we get 2;4;...;’%1;—(p%s);—(p%);...;—l. Note

that, in absolute values, we just get a permutation of the %1 numbers

1,2,..., 1%1. Also, p%l of the minimal residues are negative. Taking
the product of them all, we get

L D2 (p—1)/2

= JI J = (2j)  (mod. p)
. P7L/2
= 2z H Jj (mod. p).
j=1
) (p—1)/2
Cancelling out ] 7, we get:
=1
p—1 p—1 p2-

(mod. p).

2 =1
By Lemma 2.2.1, we also have (5) =(-1)"7% .

For p = 3 (mod. 4), we proceed in the same way, except that there are
. .. . +1
now %1 negative minimal residues, to the effect that (12—)) = (1) =

p?=1 o
(=1) also in this case.

We first study some properties of the minimal residues. Let m be an

integer, not divisible by p. We consider the minimal residues of the
p%l numbers m, 2m, ..., p%l m. Since these numbers are pairwise non-

congruent modulo p, the minimal residues form a family of p%l integers
in [—p/2,p/2]; among these, we denote by rq,...,r) the positive ones,

and by —ry,...,—7, the negative ones ()\ +u= p%l)
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Claim 1. The family {ry,...,7x,7q,...,7,} is a re-arrangement of {1, 2,...,

p%l}. Indeed, the r;’s and r}’s are integers between 1 and p%l. So it

is enough to see that r; # r;, for every 7 and j. For exactly one a €
{1, een, 1%1} we have am = r; (mod. p), and for exactly one b € {1, e 1%1}
we have bm = —rj (mod. p). So if r; = r}, we get (a +b)m = 0 (mod. p),
hence a + b = 0 (mod. p), which is impossible since 1 < a, b < 1’%1. This
proves Claim 1.

We now generalize what we did for m = 2 in part ii) of the proof.

Claim 2. With m, u as above: (%) = (—1)*. Indeed, consider

(p—1)/2 by @772
(mj)=m"= [ Jj;
j=1 j=1
by Claim 1, the numbers rq,...,7),7],... ,TL form a re-arragement of 1,2,
..,”%1, so we get
- (r—1)/2 (p—1)/2
m 2 H J=(-1# H J (mod. p).
j=1 j=1
. (r-1)/2 p—1

Cancelling out ] j, we get m 2 = (—1)* (mod. p). By Lemma 2.2.1,

[y

]:
we have m*7 = ( ) (mod. p), so that, finally, (%) = (—1)*. This proves

Claim 2.

3

()72 )
We now define S(p,q) = Y [Fq].
k=0

Claim 3. Let y be the number of negative minimal residues of the sequence
q,2q,..., ’%1 -q. Then S(p, q) has the same parity as pu.

To see this, for k£ = 1,...,7’%1, write kg = p[%] + up, with up €
{1,...,p — 1}; note that uy is nothing but the remainder in the euclidean
division of kq by p. If uy, < £, then uy, is the minimal residue of gk, so that
uy, = r; for exactly one 4; and if uy > &, then uj — p is the minimal residue

A u
of kg, so that uy, —p = —r; for a unique j. Set R= Y r; and R' = } 7,
i=1 j=1
sothat R= Y. wpand RM=pup— > ug.

. b . b
k.uk<§ k:.uk>5
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Since r1,...,7\, 71, .., 7, is a re-arrangement of 1,.. ., p%l (by Claim 1),
we have
-1 (p-1)/2
e = > k=R+R=pp+ 3} w- > u
k=1 k:’uk<]§J k:uk>%
(p-1)/2 2

ie. p+ Y, wup = %1 (mod. 2). Now, summing kq = p [%’1] + ug from
k=1

kzltok:p%l,weget

(p-1)/2
hence 1% =S(p,q9)+ > wug (mod.2). Thisimmediately gives S(p,q) =
k=1

g (mod. 2), proving Claim 3.
Claim 4. S(p,q) + S(g.p) = T

To see this, we consider the rectangle [1, p%l] X [1, %] in R?. Clearly
it contains %1 . 95—1 integer points. We are going to count these points in
another way, counting first the ones below the line y = £, then the ones

above that line (note that no integral point from the rectangle lies on the
line).

(0,0
) ) - 1)/2
Clearly the number of integer points under the line is > [Fq]’ while
k=1
: : o 2, :
the number of integer points above the line is Y [?]. This proves

(=1
Claim 4.
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To conclude the proof, we now observe that, with p as in Claim 3, we
have

(z) — (~1)* (by Claim 2)
= (-1)5®9 (by Claim 3).

Similarly we have (%’) = (_1)S(q,P). Multiplying together, we get (g) (ﬂ) =

P
(=1)SP0+S(@r) = (—1)(1)_1)4@_1) by Claim 4. This concludes the proof of

Gauss’ law of quadratic reciprocity. O

Exercises on section 2.2.
Let p be an odd prime.

1) Prove that p? — 1 is divisible by 8.
2) Complete the proof of Theorem 2.2.2 (ii) for p = 3 (mod. 4).

3) Prove that there are p%l squares in F;. [Hint: show that the map

Fy =B iz z? is a group homomorphism. What is its kernel?]
4) Show that

1 if p=1 (mod. 6);
-1 if p= -1 (mod. 6);
0 if p=3.

5) Show that

-1 if p=43 (mod. 10);

{1 if p=41 (mod. 10);
0 if p=5.

2.3 Sums of 4 squares

The aim of this section is to prove the following classical result, due to Jacobi.

2.3.1. Theorem. Let n be an odd positive integer. Then r4(n) =8 3 d.
dn

The proof rests on three lemmas.
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2.3.2. Lemma. For every n € N: r4(2n) = rq(4n).

Proof. If 13 + x2 + x3 + 23 = 4n, one sees by reducing mod. 4 that either all
x;’s are even, or they are all odd. Therefore the change of variables

_xp— 11 xo + 21 T2 — I3 zo + 13
Yo = 2 y Y1 2 ) Y2 2 K] 2

(with inverse zo = yo + y1, 1 = y1 — Yo, T2 = Y2 + Y3, T3 = Y3 — Y2) maps
an integral solution of z3 + z% + 23 + 23 = 4n to an integral solution of
y8 +y? + y3 + y3 = 2n, and establishes a bijection between the two sets of
solutions. O

2.3.3. Lemma. For odd n € N: r4(2n) = 3r4(n).

Proof. If 2% + 23 + 23 + 23 = 2n, by reducing mod. 4 we see that exactly
two of the z;’s are even, while the other ones are odd. Hence the integer
solutions of 3 + z3 + 3 + 23 = 2n can be partitioned into 3 classes:
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By changes of variables similar to the ones used in the proof of Lemma 2.3.2,
each of these classes is in bijection with the set of solutions of 33 + 3% + y3 +

y3 =n.0
For the last lemma, we need one more notation: for £ > 2 and n € N,
let Ni(n) be the number of representations of n as a sum of k squares of

positive odd integers:

Nk;(’l’L) = ‘{(xoa"'awk—l) ENk : fo =n,

z; = 1(mod. 2), Ogigk—1}|.

2.3.4. Lemma. For odd n € N: Ny(4n) = > d.
dln
Proof. Noticing that a sum of 4 squares is a sum of two sums of two squares,

we get the convolution formula

Ny(4n)= > Na(r) Nao(s).
(r,s):'r-;%=4n

Since a sum of 2 odd squares is congruent to 2 modulo 4, we may re-write

this as:

Z Ng(’}") NQ(S).

(r,8):r+s=4n
r=s=2(mod.4)

By Theorem 2.1.11, we have ro(k) = 4 (dy (k) —ds(k)). But 9 counts positive
and negative solutions, while Ny counts only positive solutions; so

N4(4n) =

Nz(?”) = dl(T) — d3(7”) .
Now r = 2 (mod. 4), so § is odd. Divisors of 7 which contribute to the latter

formula are exactly divisors of 5, that is

similarly 3
Y 0T = Y (1S
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(here a, b, ¢, d are positive, odd integers). Hence

Ny(4n) = > (-1)5°.

(a,b,c,d):4n=2ab+2cd
a,b,c,d>0,o0dd

Now we perform the change of variables
a=x+y;c=x—y; b=z—-t;d=z+1t,

with inverse

_at+c a—c  b+d , d-b
T = D) y Y= 92 ; &= 9 - 9
Then
ab+cd =2 (zz — yt)
and

Ny(4n) = > (—1)¥.

(z,y,2,t)in=zz—yt
ly|<ez,|t|<z,zZy (mod. 2),2#¢t (mod. 2)

Note that z and z are both positive. We now split this sum in 3 parts

N4(4n) = Ny + Ny + N_

according toy > 0, y =0, y < 0.
Claim 1. Ny = N_. Indeed the change of variables

("anazat) = ("E’ -Y,z, _t)

establishes a bijection between the 4-tuples contributing to N, and the ones
contributing to N_.

Claim 2. N, = 0. First, let us consider the set @) of 4-tuples contributing
to N+:

Q=A{(z,y,z,t) :mn=zz—yt; 0<y<z; |t| <z; z#y (mod. 2);

z#t (mod. 2)}.

Now we make a change of variables « defined by

=z, z—t;y =2z; 2 =y; t' =2v(z,y)y -z,
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where v(z,y) is the unique positive integer v such that
x
Ww-1<—-<2v+1
Yy

T

(Since z # y (mod. 2), the rational number ¥

We now study properties of a.

> 1 is not an odd integer.)

i) a(Q) C Q. This is a cumbersome calculation, but a straightforward
one.

ii) a? =1d. To see this, notice that v(z,y) = v(z',y'): this follows since
z—: = % = 2v(z,y) — L and 2v(z,y) — 1 < 2v(z,y) — L <

2v(z,y) + 1,since |t| < z.
It is then easy to check that o? =Id.

iii) If (z,y,2,t) € Q, then y # ¢y’ (mod. 2). In particular, « is a fixed
point free involution of Q. Since n = zz —yt is odd, zz Z yt (mod. 2).
Noting that ¢ Z z (mod. 2) and z # y (mod. 2), the result for y and
y' is immediate.

From i), ii) we see that

Nt= Y (= Y (-

($’y,Z7t)€Q (ml’ylﬂz'7tl)€Q

By iii), the term associated with (z,y,z,t) is the negative of the one as-

sociated with (2',9',2',t'). Hence Ny = —N,, and so Ny = 0, proving
Claim 2.
From Claims 1 and 2, it remains to prove that Ny = >  d. But, by
din
definition

No=|{(z,2,t) :n=2zz, |t| <z, z#t (mod. 2)}.

Note that, in such a triple (z, z,t), the integer z must be odd since n is. Now,
for a fixed odd integer z, there are exactly z even integers in the interval
[—z,z]. Hence Ny = > z, completing the proof of Lemma 2.3.4. O

zln

Proof of Theorem 2.3.1. We begin with a
Claim. For n odd, we have r4(4n) = 16 Nyg(4n) + ra(n).
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Indeed, if 73 + 22 + 23 + 23 = 4n, as in the proof of Lemma 2.3.2, we
observe that either all z;’s are even, or they are all odd. In the first case,
the change of variables y; = % (i = 0,1,2,3) provides a bijection between
the set of even solutions of 3 + 23 + z3 + 3 = 4n and the set of solutions of
Y3 + 2 + y3 + y3 = n; so there are r4(n) such solutions. In the second case,
there are 16 Ny (4n) solutions (the coefficient 16 coming from the 24 possible

choices for the signs of the x;’s). This proves the claim.

Then

3ra(n) = 714(2n) (by Lemma 2.3.3)
= r4(4n) (by Lemma 2.3.2)
= 16 Ny(4n) + ra(n) (by the above Claim)

= 16 (Z d) + r4(n) (by Lemma 2.3.4) .

dln

Cancelling out gives the statement of Theorem 2.3.1. O
Exercises on section 2.3.

1) In the proof of Lemma 2.3.3, check that the inverse changes of variables
map solutions of y3 +y? +y3+y3 = n to solutions of 23 +z3+ 23+ 23 =
2n which satisfy the correct parity conditions.

2) Fill in the details in the proof of Claim 2, in Lemma 2.2.4.

2.4 Quaternions

In section 2.1, we have seen that there is an algebraic structure underlying
sums of 2 squares: the ring of Gaussian integers. It turns out that there is
a similar structure underlying sums of 4 squares: the ring of integer quater-
nions. However, the lack of commutativity makes this structure rather more
subtle. We split the exposition in 2 parts: in this section, we present general
definitions and properties of quaternions over R, an arbitrary commutative
ring with a multiplicative identity (usually called a commutative ring with
unit), and we postpone to the next section 2.5 the discussion of the arith-
metic of integer quaternions.
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2.4.1. Definition. The Hamilton quaternion algebra over R, denoted by
H (R), is the associative unital algebra given by the following presentation:

i) H(R) is the free R-module over the symbols 1,i,7,k, that is:
H(R) ={ap+a1i+azj+ask:ap,a1,a2,a3 € R};

ii) 1 is the multiplicative unit;

iv) ij = —ji = k; jk = —kj = i; ki = —ik = j.

This definition is natural, in the sense that any unital ring homomor-
phism R; — Ry extends to a unital ring homomorphism H (R;) — H (Rs)
by mapping 1 to 1, 7 to ¢, j to 7 and k to k.

If g=ap+a1%+ asj+ azk is a quaternion, its conjugate quaternion is
g =ap—a1i—azj—azk. The normof qis N(q) = q7 = Gq = a}+a+a3+ad3.
Note that the quaternionic norm, like the Gaussian norm, is multiplicative;
that is, given ¢1, g2 € H(R),

N(q1¢2) = N(q1) N(g2)-

(Hence, the product of two sums of four squares is itself a sum of four squares.
This fact is crucial since it reduces the problem of representing any natural
number as a sum of four squares, to one of finding such a representation for
primes alone.)

We will need to identify certain quaternion algebras with algebras of 2 x 2
matrices over a field. Again, though we will be interested specifically in the
finite field F,, this identification can be defined over more general fields.

The characteristic of a ring is either zero or the smallest positive integer
m such that

O=m-1=1+1+4+...+1 (m times).

In an integral domain and, therefore, in any field, the characteristic must
be zero or a prime number. The rationals Q, the real numbers R, and the
complex numbers C, are all fields with characteristic zero, while for any
prime power ¢ = p¢, the finite field F, has characteristic p. With this in
hand we have the following:



2.4. QUATERNIONS 67

2.4.2. Proposition. Let K be a field, not of characteristic 2. Assume that
there exists z,y € K such that 22 + y? + 1 = 0. Then H (K) is isomorphic
to the algebra Ms(K) of 2-by-2 matrices over K.

Proof. Let ¢ : H(K) — M3(K) be defined by

ag+arx+asy —a1y+a2+a3x)

. . k:
Y(ap +ari+azj+azk) <_a1y_a2+a3x ap—a1x —aszy

One checks that (g1 g2) = ¥(q1) ¥ (g2) for g1,¢92 € H(K). Since 9 is a K-
linear map between two K-vector spaces of the same dimension 4, to prove
that % is an isomorphism it is enough to show that % is injective. But
P(ag +a1i+ az2j + agk) = 0 leads to a 4-by-4 homogeneous linear system
in the variables ag, a1, a2, a3, with determinant

1 =z 0 Y

0 -y 1 x| _ 9 9 _

0 —y -1 z|° 4(z*+y°)=4#0
1 —z 0 —y

(since char K # 2). O

Proposition 2.4.2 obviously applies to algebraically closed fields, but also,
as we shall see, to any finite field F;, where ¢ is an odd prime power.

2.4.3. Proposition. Let g be an odd prime power. There exists z,y € F,
such that 22 + 42+ 1 = 0.

First proof. (non-constructive) Counting 0, there are q;—l squares in .

Define then
A ={1+2%:2€F,}; A_={—y?:ycF,}.

Since |A4| = |A_| = L1, we have Ay N A_ # 0, hence the result.

Second proof. (constructive) Clearly it is enough to prove the result for the
prime field F, (p an odd prime). If —1 is a square modulo p, take the smallest
zin {2,...,p — 2} such that 22 +1 =0, and y = 0. If —1 is not a square
modulo p, let a be the largest quadratic residue in {1,...,p —2}; then a +1
is not a square modulo p, and therefore —a — 1 is a square modulo p. Let x
(resp. y) be the smallest element in {1,...,p — 2} such that 2% = a (mod. p)
(resp. y2 = —a — 1 (mod. p)). Then 22 + y2 + 1 = 0 (mod. p). Note that
none of these proofs make use of the quadratic reciprocity 2.2.2. O
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Exercises on section 2.4.
1) For R a unital commutative ring:

a) Check that H (R) is associative;
b) Show that the map H(R) — H(R) : ¢ — ¢ is an anti-automorphism
(i.e. a1 @2 = 21 for g1, q2 € H(R)).

2) Let ¢ : H(K) — Ma2(K) be the map defined in the proof of Proposi-
tion 2.4.2.

a) Check that 9(q1 g2) = ¥(q1) ¥(g2), for q1,¢2 € H(K);
b) for ¢ € H(K), show that det ¢(q) = N(q) and Tr ¢(q) = q+7;

c) check that 1) maps “real” quaternions (those with ¢ = g) to scalar
matrices.

3) For q € H(Z), prove that the following properties are equivalent

a) ¢ is invertible in H (Z)
b) N(q) =1
¢) q € {+1,+i,+j, +k}.

2.5 The Arithmetic of Integer Quaternions

We now restrict ourselves to H(Z) and explore some arithmetic properties of
this particular ring. Its interest comes from the fact that a rational integer
is a sum of 4 squares if and only if it is the norm of some quaternion in
H(Z). From Exercise 3 of the previous section, we have seen that the in-
vertible elements, or units, are +1, +4, £j, k. As in Z and Z [i], there is
a factorisation into primes for any integer quaternion, though in H(Z) this
factorisation is no longer unique. We will show that as a non-commutative
ring, H(Z) has a modified Euclidean algorithm and corresponding greatest
common right-hand and left-hand divisors that are unique up to associates.
We will then see that no rational prime remains prime in H(Z) but, instead,
can be factored into a product of two conjugate prime quaternions. In fact,
determining whether or not a quaternion integer is prime is extremely sim-
ple: @ € H(Z) is prime if and only if N(«) is prime in Z. This presents a
contrast to the situation in Z[¢], where any rational prime ¢ = 3 (mod 4)
remains prime but has Gaussian norm N(q) = ¢°.
Let us begin with some definitions:
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2.5.1. Definition.

(a) A quaternion « € H(Z) is odd (respectively, even) if N(a) is an odd
(respectively, even) rational integer.

(b) A quaternion a € H(Z) is prime if « is not a unit in H(Z), and if]
whenever a = 7 in H(Z), then either § of v is a unit.

(c) Two quaternions «, o’ € H(Z) are associate if there exist unit quater-
nions ¢,&’ € H(Z) such that o/ = eae’.

(d) 0 € H(Z) is a right-hand divisor of o € H(Z) if there is y € H(Z) such
that o = 4.

Because N(¢g) = 1 for any unit ¢, “being associate” is an equivalence
relation on the elements of H(Z) that preserves arithmetic properties such
as being odd or even, being prime, or being a unit.

Recall that, for Z and Z [i] we were able to use Bézout’s relation to move
from the definition of a prime as an irreducible, to the following (Proposi-
tion 2.1.5): = is a prime if and only if whenever 7 divides a product zy, then
7 divides = or 7 divides y. However, we clearly cannot adapt this statement
to the non-commutative ring H(Z) since a right divisor of zy cannot gener-
ally be a possible right divisor of x. Hence, we will need to proceed without
that property for primes in H(Z). Nevertheless, the definition of primes in
2.5.1 (b) immediately gives existence of factorisation into prime quaternions.

2.5.2. Proposition. Every quaternion « € H(Z) is a product of prime
quaternions.

Proof. We proceed by induction over N(«), the case N(a) = 1 (i.e. «
invertible) being trivial. So assume N («) > 1. If « is prime, there is nothing
to prove. Otherwise, we find a factorisation a = B7, where neither 8 nor
<y is invertible in H(Z). So 3, vy satisfy N(5) < N(a), N(v) < N(«). By
induction hypothesis # and 7 are products of primes, and so is . O

Note that the factorisation in 2.5.2 is not necessarily unique (not even
up to associates); e.g.

13 = (1+ 26+ 25 + 2k)(1 — 2i — 2j — 2k) = (3 + 2i)(3 — 2i)

are two genuinely different factorisations of 13 into prime quaternions.
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We proceed with the partial Euclidean algorithm, that is, one confined to
odd quaternions and multiplication on the right. An analogous result holds
for multiplication on the left, but the associated y; and d; are not necessarily
the same. We will use this right-hand Euclidean algorithm to construct the
greatest common right-hand divisor, but obvious modifications in the proofs
lead to equivalent left-hand results.

2.5.3. Lemma. Let aand 8 € H(Z), with 8 odd. There exists 7, § € H(Z)
such that
a=v8+¢ and N(§) <N(B).

Proof. We begin with a
Claim. Given 0 = so+ 817+ s2j + s3k € H(Z), and m an odd positive

integer, there exists v € H(Z) such that N (o — ym) < m2. Indeed, for each
s; we can find r; € Z such that

m m
mri—§<si<mm+§

(strict inequality holds because m is odd). Write s; = m r;+t;, with |¢;| <
Set y = ro+r1 i+72 j+73 k; then N(o—ym) = 3 +134+13+13 < 4 (2)? = m?;
this proves the claim. _ B

To prove the lemma, set m = N(f) = 5 and 0 = a 3. By the claim we
can find v € H(Z) such that

N(B)N(B) = N(B)* = m? > N(o—ym) = N(af~7S ) = N(a—vB) N(B).

Setting 6 = a — v and cancelling out N(8), we get N(d) < N(fB), as
required. O

m
5 -

Note that the left-hand Euclidean algorithm provides for ~;,d; € H(Z)
such that a = By + 61, with N(61) < N(B).

2.5.4. Definition. Let a, S be integral quaternions. We say that § € H(Z)
is a right-hand greatest common divisor of o and 3 if

a) 0 is a right-hand divisor of a and f;
b) if éyp € H(Z) is a right-hand divisor of both a and 3, then §, is a
right-hand divisor of 4.

We denote such a ¢ by (a,f),; it is clear that («, ), is unique up to
associate, if it exists. We plan to show that, under suitable conditions,
(a, B), indeed exists.
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2.5.5. Lemma. Let o € H(Z). Then « has a unique factorization

a:2[7r040
where £ € N, m € {1, 1+ 4,1+ 45,1+ k (1 +4)(1+7),1+4)(1—Fk)} and
ap € H(Z) is odd.

Proof. We indicate how to prove existence, leaving the proof of uniqueness
as an exercise. So fix a € H(Z); let 2¢ be the highest power of 2 dividing o
set o/ = 57, and write

a':ao+a1i+a2j+a3k,

where at least one of the a;’s is odd. Since multiplication by a unit changes
the position of the a;’s, up to associate we may assume that ag is odd. Now,
if o is odd, then o = 2¢ o/ and we are finished. Therefore we may assume
o even, and two cases then occur.

a) N(a') =2 (mod. 4).

Then exactly two a;’s are odd, with ag among them. If, say, ag and a; are
odd, then

_apta a; —ag\ . a2 +az\ . az — az
a0 =" +( 2 )”( 2 )”( 2 )k

is in H(Z), it is odd, and o' = (1 4 i) ap. The other possibilities (ag and as
odd, or ag and ag odd) allow one to factor out either 1+ j or 1+ k, and are
treated in the same way.

b) N(a') =0 (mod. 4).

Then all the a;’s are odd, therefore congruent to £1 (mod. 4). In any
case N(a') = 4 (mod. 8). In this case we need to consider the possibilities
for various combinations of congruences modulo 4, in principle 16 different
subcases. However one finds that these can be grouped into two families of
8 subcases each, depending on whether an even or an odd number of the a;’s
are congruent to 1 (mod. 4).

Claim A. If an even number of the a;’s are congruent to 1 (mod. 4), then
there exists an odd quaternion oy such that o/ = (1+1)(1 + j) aq.
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Proof. First note that, multiplying by a unit if necessary, we may assume that
ag =1 (mod. 4). First assume that ap = a1 =1 (mod. 4) and a2 = ag = £1
(mod. 4). As in case (a), we then have o/ = (1 + ) oy with

ag + a1 ap — a1\ . az +ag\ . as — a2
= k.
@0 2 +( 2 )H( 2 >]+< 2 )

Notice that “O;‘“ and ‘”JQF‘“ are odd, while ®5% and “5** are even. By
case (a), we then have ap = (1 + j) aq, where oy is odd since N(agy) = 2
(mod. 4). Hence o' = (1 +14)(1+ j) oy as desired.

Assume now that ag = a2 = 1 (mod. 4) and a1 = a3 = £1 (mod. 4).
Proceeding as above, we may write o/ = (1 + j)(1 + k) a1, with ag odd.
Notice then that (1 + 7)(1 4+ k) = (1 +4)(1 + 7). The last case, ap = ag =1
(mod. 4) and a1 = ag = £1 (mod. 4) is entirely similar, using (1+k)(1+:) =
(I4+)(1+ ).

Claim B. If an odd number of the a;’s are congruent to 1 (mod. 4), then
there exists an odd quaternion oy such that o/ = (1+4)(1 — k) aq.

Proof. Again we may assume without loss of generality that three of the
a;’s are congruent to 1 (mod. 4), with ap among them. If ag = a1 = a3 =1
(mod. 4) and a3 = —1 (mod. 4), then as in case (a) we have o/ = (1 +1i) ap

with
_agtay ap—ai\ . a2 azy . a3 — a2
= T +< 2 )’+< 2 )”( > )k

= by+bii+b2j+bsk.

Now by and bs are odd, while b; and by are even. Then

bo+bs  (bi—b by +b bo +b
ay = (1—k)(0;3+<12 2>i+<1;2>j+<0;3)k>

= (1—k)a1,

where «; is odd. So ag = (1 +4)(1 — k) @;. The remaining cases are shown
in an analogous way. O

We let Z [%] denote the subring of rational numbers defined by:

Z[l]—{k‘kez EN}
AR ,n .
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2.5.6. Theorem. Let o, € H(Z), with 8 odd. Then («,f), exists.
Moreover, the following version of Bézout’s relation holds: there exist v, d €

H (Z [%]) such that (o, ), =vya+ 8.

Proof. We mimic the proof of the FKuclidean algorithm for the greatest
common divisor of two integers. By Lemma 2.5.3, we find 7,y € H(Z),
with N(dp) < N(B), such that

a=ypB+d.

By Lemma 2.5.5, we have §y = 2% 1 6}, with J) odd and N(8}) < N (&) <
N(B). Again by Lemmas 2.5.3 and 2.5.5:

B =6+

and & = 20 71 8}, with N(0}) < N(61) < N(6}) and &} odd. By repeated
applications of Lemmas 2.5.3 and 2.5.5, we find quaternions ~;, 6;,d; € H(Z)
such that

i1 = Yi+1 0; + dit1
and 52’—1—1 = 2bi+1 Ti+41 (52_1_1, with N( é-l-l) < N((Si—i-l) < N((S;), and (52_1_1 odd.
The last two equations are

02 = YkOj_1+ 0k
O 1 = Yh+1 0k,

since the ¢;’s are a sequence of quaternions in H(Z) with strictly decreasing
norms. We claim that (o, 8), = 0. Indeed, 0}, is clearly a right-hand divisor
of 8, _1,0%_o,---,01,8,a. And if § is a right-hand divisor of a and 3, then
it is a right-hand divisor of dy, hence also of &, by the uniqueness part of
Lemma 2.5.5; going on, we see that § is a right-hand divisor of d},.

Finally, we rewrite the above system as:

B = 20m a—yp)
& = 2707 (B —m &)
6/ — 2*[]9 -1 5/ _ 5/ )
k T, (Op—2 — Yk Op—1) -
Since m; is invertible in H (Z [%] ), this expresses 0j, as

S =va+6p
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with v,§ € H (Z [%]) O

Following the line of argument employed for Z and Z [i], we now wish
to use the greatest common right divisor and the modified Bézout relation
to characterise the primes of H(Z) and to develop a theory of factorisation
in this ring. Along the way, we will see that every rational prime has a
non-trivial factorisation into two conjugate prime quaternions. Ultimately
we will show that « is a prime quaternion in H(Z) if and only if N(«a) is a
rational prime.

As in Z [i], divisibility properties of quaternions are related to divisibility
properties of their norms. The following lemma is analogous to Lemma 2.1.9.

2.5.7. Lemma. For a € H(Z) and m € Z, m odd:

(m,a), =1 ifand only if (m,N(a)), =1.

Proof. We first prove the direct implication, so assume that (m, a), = 1. By
Bézout’s relation 2.5.6, there exists v,0 € H (Z [%D with

(m,a)y =1=ym+da.
Then:
N(®)N(a) = N(1 —ym) = (1 —ym)(L —ym) = 1 — (y +7)m + N(y)m?

1=N()N(a)+ (y +7)m — N(y)m?.

Since N(d), N () and y+7 are elements of Z [%] , we can find k& € N such that
2k N (8), 2%(y +7), 2% N(v) are rational integers. Let 8 € H(Z) be a right-
hand divisor of both N(a) and m; since m is odd, § is an odd quaternion.
From

2 = (2 N(9)) N(a) + (2°(y +7)) m — (2" N (7)) m®,

we see that f3 is a right-hand divisor of 2¥. Taking norms, we see that N (3)
divides 2%, Since N(f3) is odd, we must have N(B) = 1; in other words, 8
is invertible.

The proof of the converse is completely similar to the proof of the corre-
sponding statement in Lemma 2.1.9. O
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2.5.8. Lemma. Let p € N be an odd, rational prime. Assume that there
exists « € H(Z), such that « is not divisible by p, but that N(«) is divisible
by p. Set (a,p), = d. Then § is prime in H(Z) and N(J) = p.

Proof. Write p =+ §, for some v € H(Z). First we notice that -y is not a unit;
otherwise, p would be associate to § and hence would divide «, contradicting
our assumption. Next, since p divides N(«), it follows from Lemma 2.5.7
that § is not a unit. On the other hand, taking norms we get

with N(vy) # 1 # N(J). So we must have N(v) = N(§) = p.

From N(§) = p, it follows that ¢ is prime in H(Z). Indeed if § = zy is a
factorisation of § in H(Z), taking norms we get N(§) = p = N(x) N(y), so
either N(z) =1 or N(y) = 1; in either case z or y is a unit. O

2.5.9. Theorem. For every odd, rational prime p € N, there exists a
prime § € H(Z) such that N(0) = p = § 6. In particular, p is not prime in
H(Z).

Proof. By Proposition 2.4.3, there exist z,y € Z such that 1+ 2% 4+ ¢2 =0
(mod. p). Set @ = 1+ xi + yj; clearly p does not divide «, but p divides
N(a) =1+ 22+ 4% So Lemma 2.5.8 applies, and § = (a, p), is the desired
prime in H(Z). O

Finally we are able to show the following:

2.5.10. Corollary. ¢ € H(Z) is prime in H(Z) if and only if N(J) is prime
in Z.

Proof. We have seen in the course of the proof of Lemma 2.5.8, that if N(4)
is a rational prime then ¢ is prime in H(Z). So only the direct implication
needs to be proven. Let § be a prime in H(Z).

Assume first that J is even. By Lemma 2.5.5, we have § = 2¢ 7 §;, where
LeN me{l,14+41+41+k0Q+)01+7),1+:1—k)}, and J is
odd. Note that 2 is not prime in H(Z) since 2 = (1 +7)(1 — 4). Since by
assumption § is prime in H(Z), we must have £ = 0, N(dp) = 1 (since Jy is
odd), and 7 € {1+1¢,1+ j,1+ k}. So that N(J) = 2, as required.

Now suppose that § is odd. Let p € N be an odd, rational prime dividing
N(§). We must show that N(§) = p. Set a = (p,d),; then § = vy« for some
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v € H(Z). It follows from Lemma 2.5.7 that « is not a unit in H(Z). Since
d is prime in H(Z), we see that v must be a unit in H(Z), so that « and §
are associate. Hence, ¢§ is a right-hand divisor of p, say p = ¥ ¢ for some
1 € H(Z). Taking norms and remembering that p divides N(§), we get

L)

pzN(dJ)( )

If N(¢) = 1, then p and § are associate, so that p is prime in H(Z), which
contradicts Theorem 2.5.9. Hence Mpﬂ =1,s0 N(6) =p. O

As a consequence of the arithmetic of H(Z), we get Lagrange’s cele-
brated result on sums of four squares, which of course also follows from
Theorem 2.3.1.

2.5.11. Corollary. Every natural number is a sum of four squares.

Proof. Let n € N. The result is obvious for n = 0 and n = 1, so we
may assume n > 2. Let n = 2™ pi' ... pi*¥ be the factorisation of n into
primes, with p; odd. By Theorem 2.5.9, we can find §; € H(Z) such that
p; = N(§;) = 8;6;, while 2 = (1 +4)(1 — ). Hence, each prime appearing
in 7 can be written as a sum of squares, and the multiplicativity of the
quaternionic norm gives the final representation of n itself in that form. O

As the example following Proposition 2.5.2 shows, we cannot expect
unique factorisation into primes in H(Z). We will now restrict attention
to the set of integral quaternions o with N(«a) = p*. where p is an odd,
rational prime. We will see that, for these o, we can recover a sort of unique
factorisation for these a’s.

So let p be an odd prime. By Jacobi’s theorem 2.3.1, the equation

2 2 2 2
a0+a1+a2+a3:p

has 8 (p+1) integral solutions, each corresponding to an integral quaternion
a=apg+ai+azj+azk of norm p. If p =1 (mod. 4), one a; is odd
while the rest are even; if p = 3 (mod. 4), one a; is even while the rest are
odd. In each case one coordinate, call it af, is distinguished. If a? # 0, then
among the eight associates ¢ a of a, exactly one will have |a)| as its zero-th
component. (Note the absolute value here!). If @) = 0, as it might when
p = 3 (mod. 4), then two associates, ¢ @ and —e a will each have ag = 0. In
this case we may designate either one as distinguished.
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Hence, there are p + 1 distinguished solutions of the equation
a%—l—a%—l—ag—l—ag =p

such that the corresponding quaternion « satisfies either = 1 (mod. 2)
or « =i+ j+ k (mod. 2). In this list of solutions, both a and @ appear
whenever ag > 0, while only one of the pair is included when ag = 0. We
thus form the set

Sp = {al,&l,...,as,m,ﬂl,...,ﬁt}

where «; has a(()i) > 0, B; has b((]j) =0, and o; a; = —ﬁ; = p. Note that
25+t =Sy =p+1.

2.5.12. Definition. A reduced word over S} is a word over the alphabet S,
which has no subword of the form «; @;, @; ;, ﬁf (t=1,...,875=1,...,1).
The length of a word is the number of occuring symbols.

2.5.13. Theorem. Let k € N; let o € H(Z) be such that N(a) = p*.
Then a admits a unique factorisation o = € p" wyy,, where ¢ is a unit in H(Z),
W, is a reduced word of length m over S, and k = 2r + m.

Proof. We begin with existence. So fix a € H(Z) with N(a) = p*. By
Proposition 2.5.2, « is a product of primes in H(Z):

a:51...6n.

By Corollary 2.5.10, we must have N(d§;) = p (1 < i < n), and therefore
n = k. Since N(6;) = p, we find a unit ¢; and v; € S such that 6; = ¢; v;;
hence

Q=&e1M7M¢€Y2..-EkVk -

Now, it is easy to see that for every v € S, and every unit ¢ of H(Z), we can

find some ' € S, and some unit ¢’ such that ye = ¢’+’. In the previous

factorisation of «, this allows to move all the ¢;’s to the left, and write
aA=€EY] .-V

with 4; € S, and € a unit in H(Z). So we have written « as the product

of a unit and a word over the alphabet S}, but this word is not necessarily

reduced. We make it reduced simply by moving any factor p to the left, if
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there is an occurence of «; @;, @; o; or 6]2 in the word: we then get a shorter
word, for which we iterate the process: this proves existence.

We prove uniqueness by a counting argument. First, by Jacobi’s theo-
rem 2.3.1, there are exactly

k k+1
8 E p’=8<7>
i=0 p—1

quaternions o € H(Z) with N(a) = p*. Now we count the number of reduced
words of length m over the alphabet S),: there are p 4- 1 possible choices for
the first letter, and p possible choices for each of the following letters (since
we have to avoid subwords of the form «; @;, @; a; and sz) Thus the number
of reduced words of length m is

1 if m=0
(p+1)p™ 1t if m>1.

Hence the total number of expressions of the form & p" w,,, with ¢ a unit,
wp, a reduced word of length m, and 2r +m = k, is:

4 k—l
2
81+ (p+1)ph=2=1| ifkis even,
r=0
k=1
2
8 (p+1)pr2t if k is odd.
\ r=0

In both cases, we find 8 (%) expressions, which coincides with the num-
ber of o € H(Z) with N(a) = p*. Since, by the existence part, every such «

can be written in such a form, this factorisation must be unique. O
We denote by A’ the following subset of H(Z):
N ={a=ap+ari+azj+ask €HZ):a=1 (mod.2) or

a=i+j+k (mod. 2), N(a) a power of p}.

It is easy to see, by reducing mod. 2, that A’ is closed under multiplication;
clearly it contains 5.
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2.5.14. Corollary. Every element o € A’ with N(a) = p*, has a unique
factorisation a = =+ p” wy,, where r € N, w,, is a reduced word of length m
over Sy, and k = 2r 4+ m.

Proof. By Theorem 2.5.13, o can be written in a unique way as a = € p” Wy,
with 7 and w,, having the desired properties, and ¢ a unit in H(Z). Reducing
mod. 2, we get a = e wy, (mod. 2). Any «;, §; € S, that appears in wy, has
a;,Bj =1 (mod. 2) or ¢4, =i+ j + k (mod. 2). For the moment, denote
the latter as v. Then, modulo 2, we have the congruences:

{ € if an even number of 4’s appears in wy, ;
o =

e(i+ 7+ k) if an odd number of v's appears in wy, .

On the other hand, since a@ € A', « itself must satisfy @« = 1 (mod. 2) or
a =1+ j+ k (mod. 2). Therefore, we see that in every case we must have
¢ =1 (mod. 2), or in other words ¢ = £+1. O

Exercises on section 2.5.

1) Prove the uniqueness part in Lemma 2.5.5.

2) For v € Sp and ¢ a unit in H(Z), show that there exists 4 € S, and a
unit & in H(Z) such that ye = &'+

3) Look at the example following Proposition 2.5.2 (non-uniqueness of
factorisations of 13 in H(Z)); how do you reconciliate it with Theo-
rem 2.5.13 (uniqueness of factorisation)?

2.6 Notes on Chapter 2

2.1. A good introduction to sums of two, three, and four squares can be found
in Landau [37]. The proof that i) < ii) in the Fermat-Euler theorem 2.1.7
is taken from [1]: it is a “proof from The Book”, in the sense of Erdds.
Legendre’s formula 2.1.11 was first proved by Jacobi, using the theory of
elliptic functions. The proof we give is taken from Hardy & Wright, [32]
16.10. There is no such simple formula for r3(n) as there is for rao(n) or
ra(n). However, there is a criterion of Gauss: r3(n) > 0 (or, n is a sum of
three squares) if and only if n is not of the form 4%(8b — 1), with a,b € N
(see [61], Appendix of Chapter 4). From this result, it is a simple exercise
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to deduce Lagrange’s theorem that r4(n) > 0 for every n and, hence, that
every positive integer is a sum of four squares.

2.2. Our proof of quadratic reciprocity 2.2.2 is taken from Hardy & Wright,
[32], 6.13.

2.3. The elementary proof of Jacobi’s formula 2.3.1, given in 2.3, is due to
Dirichlet [21], and was communicated by him in a letter to Liouville. This
proof was advocated by A. Weil in [67]. We recall that Jacobi also computed
r4(n) for arbitrary n: the general formula is

ra(n) =8 Z d;

dln
d#0 (mod. 4)
this has also been proved by means of the theory of elliptic functions; see
[32], 20.11, for a proof.

2.5. The factorisation theory of odd integral quaternions is due to Dickson
[19]. A more complete theory for slightly more general integral quaternions,
was obtained by Hurwitz [35] (see also [56]). The reader can also refer to
the discussion of Hurwitz quaternions in Hardy & Wright [32].



Chapter 3

PSLa(q)

3.1 Some finite groups

The Ramanujan graphs X?+?, to be defined in Chapter 4, will be associated
with the finite groups PGLy(¢g) and PSLy(g) that we define in this section.

Let K be a field. We denote by GLy(K) the group of invertible 2-by-2
matrices with coefficients in K, that is, those matrices with non-zero deter-
minant. We denote by SLa(K) the subgroup of matrices with determinant
1, which forms the kernel of the determinant map

det : GLy(K) — K*.

We denote by PGL2(K) the quotient group

PGLy(K) :GLQ(K)/{(B\ 2) :AeKX} ,

and by PSLy(K) the quotient group

PSLy(K) = SLg(K)/{<(€) g) :g:ﬂ} .

The two latter groups can be realized more concretely as follows. Let
P1(K) = K U{cc} be the projective line over K. We will embed PGLy(K)
and PSLy(K) into the group Sym P!(K) of permutations of P!(K). To every

d
(or Mé&bius transformation)

A= (Z b) € GLy(K), we associate the fractional linear transformation

@4 : PY(K) —» PYK)

81
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defined by

a
Here we set ¢ 4(00) = {OCO 6 e and p4 (7) = oo. Thus, we get a

group homomorphism

where
©(A) = pa
and PGLa(K) (resp. PSLy(K)) identifies with ¢o(GL2(K)) (resp. ¢(SLa(K))).
When K = F,, the finite field of order ¢, we write GL2(q), SLa(q),
PGL2(q), PSLa(g) for the four groups defined above.

3.1.1. Proposition.
a) |GLa(q)| = q(g —1)(¢* — 1)
b) [SL2(q)| = [PGLa(g)| = q(¢*> — 1)

q(¢> — 1) if qis even
PSL =
c) |PSLa(q)| { @ if ¢ is odd.

Proof. a) A 2-by-2 matrix in GLa(q) is obtained by first chosing the first
column, a non-zero vector in ]FZ: there are g2 — 1 possible choices for that;
then by chosing the second column, a vector in ]F‘g linearly independent from
the first one: there are ¢> — ¢ possible choices for that.

b) and c) follow from elementary group theory. O

Exercises on section 3.1.

1) a) For A, B € GLs(K), prove that o4 = @4 o pp.
b) Check carefully that Kery is exactly the subgroup

{ (3 ?\) A€ KX} of scalar matrices.

2) a) Give details of the proof of Proposition 3.1.1, b), c).
b) True or false: is SLa(g) isomorphic to PGL2(q)?

3) For A € GLy(K), show that 4 € PSLy(K) if and only if det A is a
square in K*.
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3.2 Simplicity

The properties of the Ramanujan graphs X?¢ of Chapter 4 will depend on
some structural properties of PSLy(q). Simplicity will be used, on one hand,
to determine which X?-?’s are bipartite and, on the other hand, to establish
the expanding properties of the XP%’s.

3.2.1. Lemma. For any field K, the group SLs(K) is generated by the
union of the two subgroups {(é /1\) A E K} and {(; 2) YIRS K}.

Hence every matrix in SLo(K) is a finite product of matrices which are
either upper-triangular or lower-triangular, and which have 1’s along the
diagonal.

a b

Proof. Let (c d) € SLo(K). We distinguish two cases:

a) ¢ # 0. Then an immediate computation gives

1oehy (10 (1 R (g ol e
0 1 c 1)\0 1 c d '

d—1 a—1 _ ad—1 _ ad—(ad—bc) _
But A 4 et = el = onledtd) —p,
b) ¢ = 0. Then d # 0, and the matrix (a;b d) € SLy(K) can be

treated as in the first case. But then
a+b b 1 0\ _ (a b -
d d -1 1) \0 d/°

Recall that a group G is simple if its only normal subgroups are {1} and
G equivalently, every group homomorphism 7 : G — H is either constant
or one-to-one. The following result was proved by Jordan in 1861.

3.2.2. Theorem. Let K be a field with |K| > 4. Then PSLy(K) is a
simple group.

Proof. Using the homomorphism ¢ : SLy(K) — PSLy(K), it is enough
to show that a normal subgroup N of SLa(K), not contained in Ker¢ =

{((6) 2) F€= :l:]'}v is equal to SLo(K). So let A be a non-scalar matrix
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in N. Since A is non-scalar, there exists a vector v € K? which is not an
eigenvector of A, so v and Av are linearly independent over K. This means
that {v, Av} is a basis of K2. (Note the crucial role of dimension 2 in this

proof). In that basis, A is written (? Z) and since det A = 1, we actually

0 -1
haveA-(1 d

C € SLy(K), the commutator C~! B~1 CB is in N (since C"!B~'C € N
and B € N). We first apply this trick with B = A, C = ((g Oﬁl)
(a € K*); then

C-1A"1CA = (O‘_Q d(a™ — 1)) eEN.

). We now appeal to a classical trick: for every B € N,

—2 —2
Repeating the trick with B’ = <0‘ dla 1)> and C' = (1 ")
(1 € K), we get

C/—l B! C'B — (é U(a41_ 1)) €N.

If |[K| > 4 and |K| # 5, we can find a € K* such that a* # 1. Then
the set of values of u(a* — 1) (1 € K, a € K*) is exactly K, so that

NQ{(l /\) :)\EK}. Since

GH6 e =G

one also has N D {(1 0
J7

SLs(K).

This concludes the proof for K # F5; only the remaining case makes the
proof lengthy. Although we will not need it, for completeness we give the
proof for K = Fs5, as well.

So assume K = F5. From the first part of the proof above, we have

—2 -2 _ 1 _
(ozo d(a o? 1)) € N, forevery a € F;'. Take a = 2; then ( 01 _21d) €

) Tp € K} By Lemma 3.2.1, we have N =

. 1 .
N, and, squaring, we see that ( ) € N. Two cases are possible:

0 1
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a) d # 0. The powers of <(1) _1d) are then {(é i\) i€ ]F5}, and we

conclude as for general fields that N = SLa(F5).

0 -1

b)dzO,soA:(1 0

). We then perform the standard trick with

BzAandC”z(_él (1)> (0 € FY), so that
A—cortatorg— (1 —0 eN
-5 82+1 :

Since A’ is non-scalar, in a suitable basis of FZ it will take the form

A = ((1) Zl'l ), as at the beginning of the proof, with

d=TrA" =6+2.

Now the squares in F;' are £1, so that either d' =1 or &’ = 3. In any case
d' # 0, so case a) applies to A’, and the proof is complete. O

Exercises on section 3.2.
(Note: Alt(n) denotes the alternating group on n letters.)

1) Show that PSLs(2) is isomorphic to Sym(3), and also to the group
of isometries of an equilateral triangle; deduce that it is not a simple

group.

2) Show that PSLg(3) is isomorphic to Alt(4), and also to the group of
rotations of a regular tetrahedron; deduce that it is not a simple group.

3) Show that PSLs(4) and PSLs(5) are isomorphic to Alt(5).

3.3 Structure of subgroups

To establish the property of connectedness for the Ramanujan graphs X?:¢
to be constructed in Chapter 4, we will need to understand some of the
structure of the subgroups of PSLy(q).

We will make repeated use of the following general principle: Recall
that, if o is a permutation of a set X, and x € X, the orbit of x under o is
Q, = {o*(@) : k € Z}.
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3.3.1. Lemma. Let o be a permutation of a set X. If ¢ has prime order
p, then every orbit of o on X has either 1 or p elements.

Proof. Let H be the subgroup generated by ¢ in Sym(X). For z € X, it
is a general fact that |Q;| = %, where H, = {a € H : a(z) = z} is the
stabilizer of 2 in H. Here, |H| = p by assumption, so that either |H,| =1
and |Qz| = p, or |Hy| = p and |Q,;| = 1. (Note that if |Q;| = 1, then z is a
fixed point of ¢.) O

As a first application of this principle, we prove Cauchy’s theorem on
the existence of elements with prime orders in finite groups. Eventually, this
result of Cauchy was superseded by Sylow’s theorems, but since we will not
need the later, stronger results, we prove just the earlier one here.

3.3.2. Theorem. Let G be a finite group, and let p be a prime. If p
divides |G|, then G contains some element of order p.

Proof. Consider the product G? = G x --- x G (p factors). Let o be the
cyclic permutation of factors:

0(91’923"'391)) = (923""gpagl)-

Clearly ¢ is a permutation of GP, with order p. Now let H be the subset of
GP defined by

H:{(glv'--agp)EGPZQlQQ...Q;,:l},

Clearly |H| = |G|P 1, since we may freely choose the p — 1 first coordi-
nates of a p-tuple in H. If g1 go... g, = 1, then conjugating by gfl we get
g2.-.9p g1 = 1, meaning that H is invariant under o. From now on, we view
o as a permutation of H. Since orbits of o partition H, and since |H| is a
multiple of p by assumption, we see that the sum of orders of orbits of ¢ in
H, is congruent to 0 modulo p. By Lemma 3.3.1, orbits of o are either fixed
points, or have p elements. Since ¢ has at least one fixed point in H, namely
the p-tuple (1,1,...,1), it must have at least p — 1 other ones, to match the
above congruence. Such a fixed point is clearly of the form (g,g¢,...,g), with
g # 1. To say that this p-tuple is in H, means exactly that ¢ = 1, i.e. g
has order p in G. This concludes the proof. O

Now we need a group-theoretical definition.
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3.3.3. Definition. A group G is metabelian if it admits a normal subgroup
N such that both N and G/N are abelian.

In particular, abelian groups are metabelian, and metabelian groups are
solvable; subgroups of metabelian groups are metabelian.

In 1901, Dickson gave a list, up to isomorphism, of all subgroups of
PSLs(q), where g is a prime power. We refer to [34], Theorem 8.27, for
the precise statement. Specializing to the case where ¢ is a prime, and
looking up Dickson’s list, one notices that all proper subgroups of PSLy(q)
are metabelian, with two possible exceptions:

e Sym(4), of order 24, which is solvable but not metabelian;
e Alt(5), of order 60, which is simple non-abelian.

Our purpose in this section is to give a direct proof of this fact.

3.3.4. Theorem. Let g be a prime. Let H be a proper subgroup of
PSLa(q), such that |H| > 60. Then H is metabelian.

Theorem 3.3.4 immediately follows from the following two results.

3.3.5. Proposition. Let g be a prime, and let H be a proper subgroup
of PSLy(q). If g divides |H|, then H is metabelian.

3.3.6. Proposition. Let ¢ be a prime, and let H be a subgroup of
PSLa(q). If |[H| > 60 and ¢ does not divide |H|, then H has an abelian
subgroup of index at most 2; in particular H is metabelian. (Note that by
Proposition 3.1.1, if ¢ does not divide |H|, then H is a proper subgroup.)

To prove Proposition 3.3.5 we first need a description of elements of order
g in PSLa(g). Recall that ¢ : SLa(q) — PSL2(q) defined by ¢(A) = ¢a
denotes the canonical map. For simplicity of notation, let Cj, denote the

matrix Cp = <(1) I;)

3.3.7. Lemma. Letqbeaprime. For A € SLy(q), the following properties
are equivalent:

i) ¢4 has order g;
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ii) there is a unique one-dimensional subspace D in ]Fg such that either A
or —A fixes D pointwise;

iii) 4 is conjugate in PGL2(q) to some ¢¢,, with b € F,.

Proof. 1) = ii) We recall that ¢4 is a fractional linear transformation
on PY(F,). Since |P}(F,)| = 1+ q and ¢4 has order g, it follows from
Lemma 3.3.1 that ¢4 has a unique fixed point on P(F,). The latter cor-
responds to a unique one-dimensional subspace D in ]Fg which is globally
invariant under A. Now A has order ¢ or 2¢ in SLs(g), and we examine both
cases:

a) A has order ¢. Since A acts on D with at least one fixed point (namely
(0,0)), and |D| = g, it follows from 3.1.1 that A fixes D pointwise.

b) A has order 2q. Then the preceding argument applies to A2, so A2
fixes D pointwise. Then A acts on D by x — —z so that —A fixes D
pointwise.

ii) = iii) Choose a basis {e1, ea} of IFg, with e; € D. The matrix of A in
this basis has the form (8 Z) with @ = d = £1 and b # 0. This means

that, in PGLo(q), the transformation ¢4 is conjugate to ¢c,,-

iii) = i) This is immediate, since ¢¢, has order ¢. O

The above proof actually shows the following: let A, B € SLa(q) be such
that ¢4 and @p have order g; if A, B globally fix the same line D in ]Fg, then
w4 and ¢p generate the same subgroup of order ¢ in PSLy(q).

Proof of Proposition 3.3.5. Since ¢ divides |H|, it follows from Theorem 3.3.2
that H contains at least one subgroup of order q.

Claim. H contains a unique subgroup of order ¢. Indeed, suppose by contra-
diction that C, Cy are distinct subgroups of order ¢ in H. By Lemma 3.3.7
and the remark following it, they correspond to two distinct lines Dy, D5 in

]F‘g. Choose a basis {ej,e2} of ]Fg, with e; € D; (1 = 1,2). Working in this

basis,wehaveClzgo{(é i\) :)\EIFq}andCb:(p{<; (1)) :uE]F‘q}.

By Lemma 3.2.1, the subgroup generated by the union of Cy and Cs is
PSLa(q); this contradicts the assumption that H is a proper subgroup of
PSLa(q).
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So let C be the unique subgroup of order ¢ in H. By uniqueness, C' is
normal in H. Conjugating if necessary within PGL2(g), we may assume, by

Lemma 3.3.7, that
1 A
C’—gp{(o 1).)\€]F‘q},

so that the action of C' on the projective line P!(F,) is by translations:
z + z+ A Since the unique fixed point of C' in P!(F,) is oo, and C is
normal in H, we have for every p4 € C, pp € H:

a(pB(o0)) = ¢B(¢p-148(00)) = @p(c0)

so that ¢p(0) is fixed under C. Thus ¢p(o0) = oo for every g € H, which
means that H is contained in the stabilizer of co in PSLa(g). But this is
nothing but the subgroup

b
Boz(p{<8 al)I(J,E]F;(,bG]Fq}

sometimes called the standard Borel subgroup of PSLs(q). Since By is
metabelian, so is H. O

Before proving Proposition 3.3.6, we need some more terminology.

3.3.8. Definition. Let G be a group; let J C H C G be subgroups; let
g€ H.

a) The centralizer Cy(g) of g in H is the subgroup of elements in H that
commute with g:

Cu(g9) ={h € H : hg = gh}.

b) The normalizer Ng(J) of J in H is the subgroup of elements in H
that normalize J:

Ng(J)={heH:hJh ' =J}.

3.3.9. Lemma. Let G be a finite group, and let Z be a central subgroup
of G. Assume that, for every ¢ € G — Z, the centralizer Cg(g) is abelian.
Let J, K be maximal abelian subgroups of G. If J # K, then JN K = Z.
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Proof. We first notice that every maximal abelian subgroup J of G, must
contain Z. Indeed, since Z is central, JZ = ZJ is an abelian subgroup
containing J. By maximality, we must have JZ = J, i.e. J D Z.

Claim. For every g € G — Z, the centralizer C¢(g) is a maximal abelian
subgroup of G. Indeed, let J be a maximal abelian subgroup containing
Ca(g)- Since J commutes with g, we must have J C Cg(g), i.e. J = Cg(g).

The lemma, is now easily proved. If J, K are maximal abelian subgroups
in G with JNK # Z, we find g € (JNK) — Z. Then Cg(g) is maximal
abelian, and J C Cg(g), K C Cg(g) since J, K are abelian. By maximality
we must have J = Cg(g) = K. O

Notice that the assumption in Lemma 3.3.9 is inherited by any subgroup
of G containing Z. We now show that this assumption is satisfied by SLo(q),
q prime.

3.3.10. Lemma. Let g be a prime. Every non-scalar matrix in SLs(g) has
an abelian centralizer.

a b
Proof. Let A = (c d
the fractional linear transformation ¢4 on P! (F;2), the projective line over
the field with ¢? elements. Since A is non-scalar, we have ¢4 # Id. The
fixed-point equation

) be a non-scalar matrix in SLs(g). We consider

az +b
=z
cz+d
has one or two solutions in P!(F,2). We separate cases:

a) @4 has a unique fixed point: Conjugating within PGLa(¢?), we may
assume that this fixed point is co; then ¢4 is a translation:

palz)=z+b (2 €Fyp),

so A=+ (é ll)) The centralizer of A in SLa(q?) is the subgroup
1 A Lo .
{i (O 1) ; AE Ty }, which is abelian.

b) ¢4 has two fixed points; conjugating within PGL2(¢?), we may assume
that these are 0 and co. Then ¢ 4(z) = a?z for some a € ]F;;, a # +1.

This means A = + (a 91)
0 o



3.3. STRUCTURE OF SUBGROUPS 91

The centralizer of A inside SLy(¢?) is then the diagonal subgroup,
which is abelian. O

3.3.11. Lemma. Let ¢ be an odd prime. Let H be a subgroup of SLy(q),
containing scalar matrices, with ¢ not dividing |H|. If J is a maximal abelian
subgroup of H, then [Ny (J) : J] < 2.

Proof. The result is obvious when H is the subgroup of scalar matrices in
SLa(g). So we may assume that H, and hence also J, contains some non-
scalar matrix A. As in the proof of Lemma 3.3.10, we consider the fractional
linear transformation ¢4 on P!(F,2).

Claim. ¢4 has two fixed points on P'(F,2). Indeed if ¢4 has only one fixed

. . . . 1

point, then 4 is conjugate in L = SLa(¢?) to + (0 I;), hence A has order
q or 2gq; so g divides |H|, which is a contradiction.

Conjugating within L, we may assume that the fixed points of ¢4 are
{0,00}. Since J is abelian, we have J C Cr(A), where

CL(A):{(S a(fl) :aewgz}.

Now, for g € J, n € Ng(J) and z € {0,00}, we have

g(n(2)) =n(n"" gn(z)) =n(z)

since n"1gn € J. So n(z) is fixed under J, so that n(z) € {0,00}. This
shows that every element in Ny(J) acts as a permutation on {0,000}, and
this defines a homomorphism

w: Ng(J) = Sym{0,00}.

Clearly the kernel Ker w is contained in Cr(A), and Ker w is therefore
abelian. On the other hand, Ker w contains J. Since J is a maximal abelian
subgroup of H, we must have Ker w = J. So [Ng(J) : J| = |[Ng(J)/J| <
|Sym {0, c0}| = 2, and the proof is concluded. O

Proof of Proposition 3.3.6. Let H be a subgroup of PSLy(q), with |H| > 60,
and ¢ not dividing |H|. In view of Proposition 3.1.1, we must have ¢ > 7, in
particular ¢ is odd. So

¢ : SL2(q) — PSLa(q)
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has a kernel of order 2. Set H = ¢ '(H), and |H| = 2h. We denote by
C1,...,Cs the conjugacy classes of maximal abelian subgroups J of H with
[Nz(J) - J] =1, and by Cs41,...,Cs14 the conjugacy classes of maximal
abelian subgroups J of H with [Nz(J) : J] = 2. By Lemma 3.3.11, these
are the only possibilities. Note that, since H contains at least one maximal
abelian subgroup, we have s +¢ > 1. For J;, a representative in C; set
| Ji| = 2gi.
Claim. For every non-scalar matrix A € H , there exists a unique index i
(1 <i < s+t)such that A is conjugate within H to some element of J;.
Existence is clear since A is contained in some maximal abelian subgroup
of H, itself conjugate to some J;.

For uniqueness, let us assume that A is conjugate to some element of J;
and to some element of J;:

BiAB;'€J; and B;AB;'elJ;,

for some B;, B; € H. Then A € By' J; B; N B;' J; B;. By Lemma 3.3.10,
the group H satisfies the assumption in Lemma 3.3.9. Since B;” L J; B; and
B;l J; Bj are maximal abelian subgroups of H, it follows from Lemma 3.3.9
that BZ-_1 J; B; = Bj_1 J;j Bj; so J; and J; are conjugate within ﬁ, SOt =j.
This proves the claim.

From the claim, it follows that, for fixed i, the number of non-scalar
matrices in H which are conjugate to some element of J;, is (|J;|—2)-|C;|. But

o _H H| 1 1 _(gi—1)2h .
Gl = vt = T 50 (il = 2) il = gz, and therefore:

L (g—1)2h X (g —1)2h
2h — 2 = Z T + Z T ’
i=1 ¢ Jj=s+1 J

this leads to the basic relation:

1< 1 st 1
1:—+Z(1——)+ oo l1-=].
h = 9/ ;55 2 9j

Now g;,g9; > 2, hence 1 — i > % and

1>t42plssy
~h 2 472 4
The inequality 1 > 5 + % has exactly five integral solutions with s > 0, ¢ >0

and s+t > 1:
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a) s=1,t=0;
b) s=1,t=1;
c) s=0,t=1,
d) s=0,t=2;
e) s=0,t=3.

We now examine these solutions case by case.

a) The basic relation gives 1 = % +1- gll’ ie: h=gi: then H = Jy, ie.

His abelian, so that H is abelian.

. . _1 1,1 1 1 1 _
b) 'lI‘he ;basm relf:tlonlbecolmes 11— El+1_g_1+§ (1 - 9—2), or ==+ 5= =
3+ % Nowg—1+zzg—l+E>E,sothat2§gl<4.

Claim. g1 = 2. If not, then g1 = 3, leading to %-I— i > %, le. gg < 3, or
g2 = 2. Then, from the basic relation, we get h = 12, contradicting h > 60.

From ¢g; = 2, we deduce h = 2g9, i.e. [ﬁ 2 Jo] = 2, and [H : ¢(J2)] = 2
H has an abelian subgroup with index 2.

c) Actually this case is impossible: indeed the basic relation gives 1 =

F+i— s ie 3+ ﬁ = +. This contradicts the inequality |H| =

17

2h > [Nz (J1)| = 41

d) Also this case is impossible. Indeed the basic relation gives 1 = % +

1 1 1_1(1 4,1
s ti e o k=5 (5t
By Lemma 3.3.9, the subgroup J; N J; is exactly the subgroup of scalar
matrices, i.e. |Jy NJo| = 2. So 2h = |H| > |J1Jo| = 2¢1g2. Hence
% = % (%gf) > % 91—29—2, i.e. g1 + go < 2, which contradicts g1 > 2, go > 2.

e) The basm relation becomes 1 = h —I— 5 — E +1 5 292 + 2 5— 2g , which

gives 291 -|-292+293 = h+2 > 2. Clearly we may assume g1 < g2 < g3.

° We ﬁrst notice that g1 = 2. Indeed, assuming g; > 3, we get
2g1 + 292 + 2g3 < 2, which contradicts the previous inequality.

Then 2g2+2g3 h+Z>Z
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e We now observe that go = 2. Indeed, if we had g, > 4, we would

get ﬁ + i < %, which contradicts the above inequality. But if
1

g2 = 3, then %3

1<1_1+1<1+1_1
12 " 295 h 12 60 12 10’

= % + %, whence

i.e. 6 > g3 > 5, which cannot happen.

e So we get, from the basic relation: h = 2gs; i.e. [H : Js] = 2 and
[H : ¢(J3)] = 2. As in case b), H has an abelian subgroup with
index 2. O

Exercises on section 3.3.

1. Check the details of the following implication: if a group H has an
abelian subgroup of index 2, then H is metabelian.

2. Let G be a group. For g1,92 € G, define the commutator of g1, g2 as
[91,92] = 919291 " g5 *. Show that G is metabelian if and only if, for

every gi, 92,93, g4 € G-

(lg1,92), [93,94]] = 1.

3. Let K be a field. Show that the following groups are metabelian.

a) The affine group of K, i.e. the group of permutations of the form
z—az+b(ae K*, be K).

b) The 3-dimensional Heisenberg group over K:

1 z =z
Hs(K) = 0 1 y|:zy,2z€ K.
0 0 1

4. Let H be a subgroup of PSLs(q), ¢ a prime. Assume that |H| > 60 and
g does not divide |H|. Show that H is either cyclic or dihedral [Hint:
in the proof of Proposition 3.3.6, show that cases a), b), e) correspond
respectively to subgroups which are cyclic, dihedral of order 2n (n
odd), and dihedral of order 2n (n even)].

5. The purpose of this exercise is to see that Lemmas 3.3.10 and 3.3.11
become false upon replacing SLa2(q) by PSLa(q).



3.4. REPRESENTATION THEORY OF FINITE GROUPS 95

a) Consider the fractional linear transformation z — —z of P(F,).
Show that, if ¢ = 1 (mod. 4), it belongs to PSLy(q). Compute
then its centralizer in PSLy(q).

b) For a suitable value of g, construct a subgroup H of PSLs(q) and
a maximal abelian subgroup J of H such that [Ng(J) : J] = 3
[Hint: use exercise 3 in section 3.2].

6. Let p be a prime; set ¢ = p", with r > 2. Show that Theorem 3.3.4
does not hold for PSLy(g) [Hint: remember that F, is a subfield of F,].

3.4 Representation theory of finite groups

Students frequently ask: “We worked so hard in studying some group theory,
why should we learn group representations on top of that?”

The answer is two-fold: first, in a certain sense, a group is a non-linear
object, and linear representations are a way to linearize it; second, linear
algebra is a powerful tool that sheds more light on group themselves.!

A representation of a group G on a real or complex vector space V,
is a homomorphism from G into the linear group of V, that is, into the
group of invertible linear transformations on V. If V is finite-dimensional
and a basis of V' has been fixed, this means that a representation of G is a
homomorphism into the group of matrices with non-zero determinant acting
onV.

Both in physics and in mathematics, groups appear most naturally as
symmetries of some object X. (Recall for example that Sym (3), the sym-
metric group on 3 letters, can be realized as the group of symmetries of
an equilateral triangle; similarly, Dy, the dihedral group of order 8, can be
realized as the symmetries of a square.) A convenient re-phrasing of the
fact that G is a symmetry group of X, says that X is a G-space; in other
words, we are given a homomorphism from G to the group of permutations
of X. Then G also acts on any object associated with X, and in particular
on functions on X. Since functions on X form a vector space CX, we get a
representation Ax of G on CX, where each element g € G acts on CX by
taking the function f € CX to the function Ax(g) f € CX, defined by

Mx(9) f) (@) =f(g7 ) (zeX).

'Philosophically, this is analogous to what happens in calculus, where a certain affine
space, namely the tangent space at a point of the graph of a function, provides valuable
information about the underlying differentiable function in a neighbourhood of that point.
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Suppose we can find a linear operator 7" on CX, which commutes with
the representation Ay, i.e.

Ax(9)T =T Ax(g)

for every ¢ € G. Suppose that the function f is an eigenfunction of 7',
associated with the eigenvalue p; then so is the function Ax(g) f, since

Txx(9)f=X2x(@)Tf=prx(9)f-

So the eigenspace V), of T' corresponding to u, is a subspace of CX which is
invariant under Ax (G); in other words, eigenspaces of commuting operators
allow us to decompose the representation into smaller pieces. (The theme
of decomposing representations into subspaces of smaller dimension, is a
recurrent one; representations which cannot be decomposed further are said
to be irreducible: these are the building blocks of the theory.)

Specifically, suppose that X = (V, E) is a finite graph. Let G be a group
of automorphisms of X, and let Ay be the corresponding representation of
G on CV. Since G maps edges to edges, Ax commutes with the adjacency
matrix A. Since A is diagonalisable, we can use eigenspaces of A to start
decomposing Ay into irreducibles; or conversely, we can use a priori knowl-
edge on the representations of G to bound multiplicities of eigenvalues of A.
In section 3.5, we shall prove that any non-trivial representation of PSLy(q)
has dimension at least q;—l; in Chapter 4 we shall use that information to see
that, for the graphs X?¢ constructed there, the multiplicity of the non-trivial
eigenvalues is at least %.

3.4.1. Definition. Let G be a group. A representation of G is a pair (7, V)
where V' is a complex vector space and 7 is a homomorphism G — GL(V)
(here GL(V) is the group of linear permutations of V). The degree of (7, V)
is the dimension dim¢ V of V.

When there is no risk of confusion about which vector space is involved,
we write 7 instead of (7, V).

3.4.2. Examples.

i) The constant homomorphism G — GL(V') defines the trivial represen-
tation of G on V.

ii) Every homomorphism G — C* gives rises to a representation of degree
1of GonC
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iii) Let X be a G-space, that is, a non-empty set endowed with a homo-
morphism G — Sym(X), where Sym(X) is the group of permutations
of X. Let CX be the set of functions X — C that are zero except on
finite subsets of X. The permutation representation Ax of G on CX is
defined as earlier by

(Ax(9) f)(z) = f(g~" - x)
where f € CX, g€ G, z € X.

iv) Viewing G as a G-space by means of left multiplication, we get the left
regular representation A\g of G on CG:

(Ae(9)f) (@) =f(g7'z) (f€CG; gz €Q).

Viewing G as a G-space by means of right multiplication, we get the
right reqular representation pg of G on CG:

(bc(9) f) (z) = f(zg)  (f€CG; g,z €G).

To analyse a representation, it makes life easier to have invariant sub-
spaces.

3.4.3. Definition. Let (7, V) be a representation of G. A linear subspace
W of V is invariant if, for every g € G : w(g)(W) = W.

If W is invariant, then (7 |, W) is also a representation of G, called
a sub-representation of w. The subspaces 0 and V are the trivial invariant
subspaces.

3.4.4. Example. Let X be a G-space. Set

W():{fE(CX:Zf(w)ZO};

zeX

this is an invariant subspace of Ax. If X is finite, then Wy admits a G-
invariant complement: the subspace Wi of constant functions on X. Note
that Ax |w, is the trivial representation of degree 1 on Wj.

3.4.5. Definition. A representation (7,V) with V' # {0} is irreducible if
it has no non-trivial invariant subspace.
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3.4.6. Examples.
i) Every representation of degree 1 is irreducible.

ii) The canonical representation of GL(V) on V (given by the identity
homomorphism GL(V) — GL(V)) is irreducible, since GL(V) acts
transitively on the set of linear subspaces of the same dimension.

As in most of mathematics, the notion of equivalence plays a crucial role
in representation theory. Here we determine equivalence of representations
of a group G through the existence of certain linear maps on the associated
representation spaces.

3.4.7(a). Definition. Let (7,V) and (p, W) be two representations of G.
A linear map T : V — W intertwines m and p if, for every g € G, one has
Tw(g) =p(g)T. We denote by Homg(m, p) the vector space of intertwiners
between 7 and p.

3.4.7(b). Definition. Let (m, V) and (p, W) be two representations of G.
We say that 7 and p are equivalent if there exists an invertible intertwiner
in Homg (m, p), that is, a linear map 7' : V' — W such that, for every g € G,

plg) =T (g)T".

Note that 3.4.7(a) means that whenever T' intertwines m and p, then the
following diagram commutes:

v "9y
Tl lT
w9 W

3.4.8. Examples.
i) Consider the map 7' : CG — CG defined by
(Tf)(z)=Ff(@="") (feCG, z€q).

Then T € Homg(\g, pg); since T? = Id, we see, furthermore, that Ag
and pg are equivalent.
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ii) For a G-space X, consider the map T : CX — C given by

fe > flo);

reX
T intertwines Ax and the trivial representation of degree 1.

The next result is the celebrated Schur’s lemma; its proof sheds light on
the role of complex vector spaces in representation theory.

3.4.9. Theorem. Let (m, V), (p,W) be finite-dimensional, irreducible
representations of G. Then

. 0 if 7 and p are not equivalent;

dime Homg (. p) = { 1 if 7 and p are equivalent.

Proof. We prove the first equality by contraposition, so assume that dimg¢
Homg (m,p) > 0. Then there exists a non-zero intertwiner 7' from 7 to
p. We must show that 7 and p are equivalent. First, the kernel, Ker T,
is an invariant subspace of 7 with KerT' # V by assumption. Since 7 is
irreducible, we must have Ker7T = {0}, so T is injective. Next, the image,
ImT, is a non-zero invariant subspace of p. Since p is irreducible, we have
ImT = W, so T is onto. Thus, T is invertible, and we have shown that 7
and p are equivalent.

To prove the second equality, since 7 and p are equivalent, we may assume
that m = p. Now Homg(, m) always contains the one-dimensional subspace
of scalar matrices al; hence it will be enough to show that any intertwiner
T € Homg(m, m) is scalar when = is irreducible. As V is a finite-dimensional
complex vector space, the linear operator 7" on V has at least one eigenvalue
A € C; that is,

Ker (T'— \-1dy) #0.

Since Ker (T'— A-Idy) is an invariant subspace, and 7 is irreducible, we must
have Ker (T'— A -Idy) =V, ie. T =X -1dy. O

An alternative statement of Schur’s Lemma reads as follows: Let (7, V)
and (p, W) be two irreducible representations of G, and let T intertwine 7
and p. Then either

(a) =0

or
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(b) f is an isomorphism, so 7 is equivalent to p and V = W. In this case
f is a scalar map f(v) = Av for some A € C.

From now on, we shall consider representations of finite groups on finite-
dimensional complex vector spaces only.

We first define the tensor product V ® W of two finite-dimensional com-
plex vector spaces V and W.

We identify V@ W with a vector space of formal products in the following
way. Consider the Cartesian product V x W of pairs (v, w) with v € V|
w € W, and form the additive group consisting of finite sums of pairs with
complex coefficients; that is,

G = {Zaij(vi,wj) | Qi € C,v; € V,’LU]' c W} .
Let H be the subgroup of G generated by the subset of sums of the form
(i) (v1+v2,w) — (v1, w) — (v2, w),
(ii) (v, w1 +we) — (v, wy) — (v, wa),
(iii) (v, 0w) — (av,w),
where o € C. Now define a map i : V x W — G/H by setting
i(v,w) = (v,w) + H.

The group G/H constructed above, which itself forms a vector space over
C, is called the tensor product of V and W it is denoted by V @ W.

We can be even more specific in describing elements of V @ W. If
{viti<i<n and {wj;}1<j<m are sets of basis vectors for V' and W, respec-
tively, then the set {i(v;,w;)} is a basis for V@ W. Informally, V @ W
can be thought of as a set of finite sums of products }_ v,w; satisfying the
following properties for all v € V, w € W:

v(wy + we) = vwy +vwe, (v1 +v2)w = viw + vow,
a(vw) = (aw)w = v(aw) .

Furthermore, the tensor product is unique in the following sense: let Y be
any complex vector space, and let B be any map B : V x W — Y which is
linear in both v and w. Then there exists a unique linear map B : VW — Y
such that B = Boi.

We indicate how to build new representations from known ones.
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3.4.10. Definitions. Let (m, V), (p, W) be representations of the group
G.

a) Let V* = Hom(V, C) be the vector space dual to V. The conjugate rep-
resentation (7*,V*) of (m, V) is the representation of G on V* defined
by

(m"(9) f)(z) = f(n (g™ )z) (9€G,zeV, feV).

b) The direct sum of m and p is the representation (7 & p,V & W) of G
on V @& W, defined by

(r@p)(9) (v,w) = (r(g)v, p(g)w) (9€EG,veEV, weW).

c) The tensor product of m and p is the representation (7 ® p,V @ W) of
G on V ® W, defined on elementary tensors v ® w by

(rRp)(9) (vew)=7(9)v®p(g)w (geG,veV, weW).

3.4.11. Example. Let (m,V), (p, W) be representations of G. On
Hom (V, W), consider the representation o defined by
o) (T)=p(@Tn(g"") (9€G, T €Hom(V,W)).

Let us show that p ® 7* is equivalent to ¢. Indeed, for f € V*, w € W,
define a rank 1 operator 0,, ; € Hom (V, W) by

bus0) = f0)w  (wEV).
The map B : W x V* — Hom (V, W) : (w, f) +— 60,5 is bilinear, so we get a
linear map

B:W@V* > Hom (VW) :w® f > Oy 5.

The map Bis onto, as one sees by taking bases for V and W, and the dual
basis for V*. Since dimc(W ® V*) = dim¢ Hom (V, W), the map B is an
isomorphism. Finally, for g € G, w € W, f € V* we have

g (g) ew,f = gp(g)w,w*(g)f =B (P (g) we W*(g) f)
soo(g)B=B(p®*)(g), or Be Homg(p® 7*,0).

Recall that a complex vector space has a hermitian scalar product (- | -)
satisfying the following properties:

(i) (w|v)>0ifv#0,
(i) (v [w) = (w|v).

We now have the following results:
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3.4.12. Proposition. Let (7,V) be a representation of the finite group
G.

i) There exists a hermitian scalar product (- | -) on V' which is invariant
under 7 (G), that is, (7 (g)v1 | 7 (g) v2) = (v1 | v2) for every g € G,
v1,v2 € V.

ii) Every invariant subspace W of m admits an invariant complement; in
other words, there exists an invariant subspace W' such that WNW' =
{0} and W+ W' =V.

iii) If V # {0}, then = is equivalent to a direct sum of irreducible repre-
sentations of G.

Proof.

i) Let (- | -) be any hermitian scalar product on V. Set

(v1 | v2) = Z(W (h)v1 | 7 (h)va) (v1,v2 € V).
heG

Then (- | -) is a hermitian scalar product, which is invariant since, for

ged
(m(g)v1 |7 (g)v2) = D (w(hg)vy | (hg)vs)
heG
= > (w(h) vy | 7(B) v2) = (v1 | v2),
e

where the second equality follows from the change of variables b’/ = hg
in G.

ii) Let W be an invariant subspace of . By (i) above, we may assume
that 7 leaves invariant some hermitian scalar product (- | -). Define
W' as the orthogonal of W with respect to (- | -):

W ={veV:(w|w)=0 Vwe W},

W' is clearly a complement to W let us check that W’ is an invariant
subspace. For g € G, v € W', w € W, we have

(m(g)v|w)=(v|m(g™)w)=0

since W is invariant and 7(g) is unitary. Thus, W' is also invariant
under 7(G).
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iii) We prove the statement by induction on dim¢V. If dimcV = 1,
then 7 is irreducible (see Example 3.4.6 (i)). If dim¢V > 1, either
7 is irreducible, and there is nothing to prove, or 7 admits a non-
trivial invariant subspace W. By (ii) above, we can find another non-
trivial invariant subspace W' which is a complement to W. The map
WeW — V. (wuw)— w+ w realizes an equivalence between
m |lw @7 |w, and w. Furthermore, by our induction assumption,
the representations 7 | and 7 | are equivalent to direct sums of
irreducible representations. O

For a representation (m, V') of G, we denote by
={veV:nm(g)v=v VgeGqG}

the space of 7 (G)-fixed vectors in V. This is an invariant subspace of 7.

3.4.13. Example. Let X be a finite G-space. A function f € CX is fixed
under Ax (G) if and only if f is constant on orbits of G in X. In particular
dim¢(CX)% is the number of orbits of G in X.

3.4.14. Proposition. Let (m,V) be a representation of the finite group
G. Set Py = ﬁ Z 7 (g). Then:
9€eG

i = Py, i.e. Py is an idempotent in End V = Hom(V,V);

1il

i) P,
ii) For every h € G, w (h) Py = Py (h) = Py;
i) Im Py =V

) @

iv Z Tr7 (g) = dimg(V), where Tr denotes the trace of a matrix.

gEG

Proof.

i) Noticing that, for fixed s € G, there are |G| pairs (g,h) € G x G such
that gh = s, we compute

1
7r \G\Q Z Z |G| Z m(s) = Pr.

geG hea s€G
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ii)
m(h) Pr=" Y wlhg) == > 7(¢)="PFx
ol 2 G
where the second equality is obtained by means of the change of vari-
ables ¢’ = hg. The equality P, 7 (h) = Py is proved in a similar way.

iii) The image of an idempotent map is its fixed point set:
ImP, ={veV:P(v) =v}.

Clearly, from definition, if v € V¢ then P,(v) = v. Conversely, if
P;(v) = v, then by ii), for every h € V:

w(h)v=m(h)Pr(v) = Pr(v) =v.

iv) The trace of an idempotent map is the dimension of its image. So, by
(iii) and the linearity of the trace:

é Z Trm(g) =Tr Py :dimC(VG). O

geG

In Proposition 3.4.14 (iv), an important concept appears: the character
of a representation.

3.4.15. Definition. Let (7, V) be a representation of G. The character
of 7 is the function x, : G = C: g — Tr7 (g).

3.4.16. Example. Let X be a finite G-space. To compute x),, we may
use the basis of CX consisting of characteristic functions (d,)zex of points.
Since Ax(g) 0 = 0g5 for g € G, we see that Ax(g) is a permutation matrix.
So the trace of Ax(g) is the number of 1’s down the diagonal, or equivalently,
X)x (¢) is the number of fixed points of ¢ in X.

Specializing this to the case of the left regular representation of the finite
group G, we get
X)\X(g) = { |§| ig 7& 1

We study the behaviour of the character under the constructions of rep-
resentations in 3.4.10.



3.4. REPRESENTATION THEORY OF FINITE GROUPS 105

3.4.17. Proposition. Let (7, V), (p, W) be representations of G.

= (9) = xx(g7") (for g € G);

i) x

i) Xrep = Xr + Xp3
i)
)

iii Xr®@p = Xm Xp>

iv) If w is equivalent to p, then x; = x,.

Proof. Let e1,... e (resp. fi,...,fn) be a basis of V (resp. W).

i) Let e},..., e}, be the dual basis of ey, ..., ep. In this basis of V*, the
matrix of 7*(g) is the transpose of the matrix of 7 (¢7!) in the basis
€1,...,en. The result follows.

ii) In V@ W, we have (7 @ p) (9) = (WC()Q) p%))

iii) Let 7 (g)i (resp. p(g)je) be the matrix of m(g) (resp. p(g)) in
the given basis. Then the matrix of 7 (g) ® p(g) in the basis (e; ®
fihicicmii<j<n of V@ W is (7 (9)ik p(9)j¢) 150, k<m - Then:

=7, L5n

> Y ) (i w(g)n) (i P(g)jj>

= xx(9) xp(9) -

=
3
®
hS)
s
I
NE
1=
N
S
A~
—~
Q
:/
<
I

iv) If T € Homg(m, p) is invertible, so 7 and p are equivalent, then by the
trace property:

Xpl9) = Tx (T (9)T71) = Trm (9) = xx(9). O
As a function on the group G, the character has the following properties.

3.4.18. Lemma. Let (7,V) be a representation of the finite group G.

a) Xﬂ'(l) = dim¢ V;

b) xx(9) = x«(g71) for g € G;
¢) xx(9) = xx(hgh™1) for g,h € G.
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Proof.
a) This is clear, by definition.

b) From Proposition 3.4.12 (i), we know that « (G) leaves invariant a
hermitian scalar product (- | -) on V. Let ey, ..., e, be an orthonormal
basis of V', with respect to (- | -). Then

m

(m(g™ei|e)= Z (ei | m(g) e:)

i=1

M

-
Il
—

X« (g7 =

(m(g)ei | ei) = xx(9)-

I

~
Il
—_

c) We leave this as an exercise. O

We now define the scalar product of two functions f1, fo : G — C as
1 _
(il foe =1 > filg) f2(g) -

Referring to Schur’s lemma, (Theorem 3.4.9), we will show that the characters
associated to irreducible representations of a group G form an orthonormal
system with respect to this inner product.

3.4.19. Theorem. Let (m,V), (p,W) be representations of the finite
group G. Then (x, | xr)g = dim¢ Homg(7, p).

Proof. We compute:

1
Xp | xn)a = al > x0(9) - xx(9)
1 geG
= @ Z Xp(9) Xw(gfl) (by Lemma 3.4.18 (b))
9€eG
1 . . .
= @ Z Xp(9) Xx*(9) (by Proposition 3.4.17 (i))
9g€eG
1 ..
= a Z Xpor(9) (by Proposition 3.4.17 (iii))
= 1@ 2 "o
geG

= dime (W@ V*)¢ (by Proposition 3.4.14 (iv)).
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By Example 3.4.11, the representation p ® 7* is equivalent to the represen-
tation o on Hom (V, W) defined by

o(g) (T) =plg) Tw(g™") (T €Hom(V,W), g€q).

Clearly T € Hom (V, W) is o(G)-fixed if and only if T" intertwines 7 and p,
that is, if T € Homg(m, p). So we see that

dimg (W @ V*)¢ = dime Hom (V, W)Y = dime Homg(V,W). O

3.4.20. Corollary. Let (m, V) be a representation of the finite group
G, with V # {0}. Write 7 = p1 & -+ & pg, with p1,..., pr irreducible
representations of G (this is possible, by Proposition 3.4.12 (iii)). Let (p, W)
be an irreducible representation of G. The number of those p;’s which are
equivalent to p, is equal to (xr | X,)@; in particular, this number does not
depend on the chosen decomposition of 7 as a direct sum of irreducible
representations.

Proof.
k
(X | Xp)a = Z (Xpi | Xp)G (by Proposition 3.4.17 (ii))
Zil
= Z dim¢ Homg(p, p;) (by Theorem 3.4.19) .
i=1

By Schur’s lemma 3.4.9:

. 1 if p is equivalent to p;
dime Home(p, pi) = {0 if ﬁot. ! g

So (xr | Xp)c is indeed the number of p;’s equivalent to p. O

This result gives a useful criterion for irreducibility.

3.4.21. Corollary. Let (m, V) be a representation of the finite group G,
with V' # {0}. The representation 7 is irreducible if and only if (x | xx)c¢ =
1.

Proof. If 7 is irreducible, then by Theorems 3.4.19 and Schur’s lemma:

(Xr | Xr)¢ = dim¢ Homg(m,m) = 1.
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If 7 is not irreducible, then by Proposition 3.4.12 (ii) we can write V' as the
direct sum of two non-zero invariant subspaces W, W'

V=weoWw'.

Then the maps V = V : (w,w') = (w,0) and V — V : (w,w’) — (0,w’) are
linearly independent elements in Homg(m, ), so that, by Theorem 3.4.19:

(Xr | Xr)¢ = dim¢c Homg(m,7) > 2. O

We can now prove the uniqueness, up to order, of the decomposition of
a representation into irreducible components. First, let V =W, & ... W,
be a decomposition of V into irreducible G-invariant subspaces. Now let
7:G = Aut(V),sor=7"1a...@1"" =m @®...®n. By the properties
of the trace,

Xz =X1+.--+tXr,

where x; = Xr;-
By what we have just proved

<Xi7X7T> = <Xi’X1> +.+ <Xi7Xr> .

Hence, (xi, xx) is precisely the number of isomorphic copies of 7; which ap-
pear in the decomposition of 7. However, that number is clearly independent
of any particular decomposition since

(Xi»xx) = 1/IGI Y xi(9) xxg™h) -
geG

To this extent the character y, determines the representation of 7, and, in
fact, = must contain exactly (x;, x») copies of each irreducible component
m;. We have thus shown the following:

3.4.22. Theorem. Let 7: G — Aut(V) be a representation of G, and let
m = »_n; mj be a decomposition of 7 for which the 7; are distinct irreducible
representations of (G. Then this decomposition is unique up to possible
reordering of its components.
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3.4.23. Theorem. Two representations with the same character are iso-
morphic, and any given irreducible representation appears with the same
multiplicity in each.

From Theorem 3.4.19, the characters of inequivalent irreducible repre-
sentations are orthogonal in CG with respect to the scalar product (- | -)g:
this immediately implies that G has at most |G| irreducible representations,
up to equivalence. The following is known as the degree formula.

3.4.24. Corollary. Let (p1,Wi),...,(pn, Wr) be the list of irreducible
representations of the finite group G, up to equivalence. Let n; = dim¢ W;
h
be the degree of p;. Then |G| =" n;.
i=1
Proof. We decompose the left regular representation Ag into irreducible

representations. By Corollary 3.4.20, the representation p; appears (x\, |
Xp;)G times in Ag. But x,, = |G| 1, by Example 3.4.16, so that

e | xe)e = o S 1G161(0) - TEpilg) = T pr(D) = s
R

R

This means that x,, = Z n; Xp;- Evaluating at the identity of G' gives the
i=1

required formula. O

The degree formula is useful in determining whether a list of irreducible
representations is complete.
We close this section with a construction of irreducible representations.

3.4.25. Definition. A G-space X is 2-transitive if, for any two ordered
pairs (z1,v1), (z2,y2) in X x X, with z; # y; (i = 1,2), there exists g € G
such that gz = z2 and gy = ys.

It is easy to check that, if the action of G on X is 2-transitive, it is also
transitive. Now, let X be a finite G-space. We denote by A% the restriction
of Ax to the codimension 1 subspace

WO:{feCX:Z f(:z:)zO},

zeX

already considered in Example 3.4.4.
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3.4.26. Proposition. Let G be a finite group, and let X be a finite G-
space which is 2-transitive. Then A}, is an irreducible representation of G.

Proof. We consider the diagonal action of G on X X X, given by
9(z,y) =(9z,9y) (9€G; z,y€X).
Since X is 2-transitive, G has exactly 2 orbits on X x X: the diagonal
A={(z,z):z € X}

and its complement X x X — A. So

2 = dime(C(X x X))¢ (by Example 3.4.13)
1
= > Traxxx(g) (by Proposition 3.4.14 (iv))
= @ Z X/\XXX(g) :
9€eG

Now consider the map
p:CX ®CX - C(X xX)

defined by
o(f1® f2) = 911,15
where

gf1,f2($7y) = fl(x) f2(y) .

The map ¢ defines a canonical isomorphism from CX ® CX onto C (X X
X), which intertwines Ax ® Ax and Axxx. Then Ax ® Ax and Axxx are
equivalent; hence X\, = Xix by Proposition 3.4.17. This means that

1
2 = il > Xox (9)°
geG
= (0w | Xax)e

since ), is real-valued, by Example 3.4.16. Now, as explained in Exam-
ple 3.4.4, the representation Ax decomposes as the direct sum of A} and the
one-dimensional trivial representation on the space of constant functions on
X. Then, by Proposition 3.4.17 (ii):

x =1+ x3,
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so that
2 = (1+x3, 11+ X3

= (e +2(1|x} )6+ 00x [ X0x)6-

Since (1 | 1)g =1, we get
1=2(1 )+ (0 [ X2 )e -
By Theorem 3.4.19, the numbers (1 | x§, )e and (X3 | x3,)c are non-
negative integers, and <ng | xgx)g > 0. This forces
s 10506 =1

which, by Corollary 3.4.21, implies that A\ is irreducible. O
Exercises on section 3.4.

1) Let G be an abelian group. Show, using Schur’s lemma, that every
irreducible representation of G’ with finite degree, has degree 1.

0 1
(n € Z). Show that none of the 3 statements of Proposition 3.4.12
holds for .

2) Let 7 be the representation of G = Z on C? given by 7(n) = (1 n)

3) Let G be a finite abelian group, of order n.

a) Show that G has exactly n irreducible representations (up to
equivalence), given by n homomorphisms xi,...,x, from G to
C*. [Hint: combine exercise 1 with the degree formula 3.4.22.]

b) Using Theorem 3.4.19, show that x1,...,xn are an orthonormal
basis of CG for the scalar product (- | -)g-.

c) For G=7Z/nZ, set w = en i fora € Z |nZ, set
eq(z) = w* (z € Z/nZ).

Show that the e,’s (a € Z/nZ) are the n homomorphisms G —
Cc*.

4) Let G be a finite group, and let 7, p be representations of G with finite
degree. Show that 7 is equivalent to p if and only if x, = x, (in other
words the character determines the representation).
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5) Let G be a finite group of order N, and let 7 be a representation of G
of degree n. Show that, for every g € G, the complex number x,(g) is
algebraic and such that |x,(¢)| < n. [Hint: 7(g) is diagonalisable in a
suitable basis, and its eigenvalues are N-th roots of 1 in C/]

6) Let G be a finite group. A function f € CG is a class function if it is
constant on conjugacy classes of G, i.e.

flghgH=f(h) Vg hed.

Denote by C1(G) the space of class functions on G, endowed with the
scalar product (- | -)¢.

a)

b)

e)

Show that the dimension of Cl(G) is the number of conjugacy
classes of G.

Let (p V) be a representation of G. For f € Cl(G), set p(f) =
Z flg ). Using Schur’s lemma, show that if p is irreducible,
geG
then p(f) is a scalar operator on V; actually
__lq] <
p(f) = dlmc Z flg = S v xo | fla
Let x1,-..,xn be the characters of the irreducible representations

of G. Show that the x;’s are an orthonormal family in C1(G) (i.e.
(xi | xj)a = dij)-

Show that the x;’s are a basis of Cl1(G). [Hint: for f € Cl )
such that (x; | f)¢ = 0 for i = 1,...,h, show that Ag(f f) =
Applying Ag(f) to the function &; € (CG show that f = 0.]
Show that the number of irreducible representations of G is equal
to the number of conjugacy classes in G.

7) Let G be a finite group, and let X be a finite G-space. Show that the
following properties are equivalent:

i)
ii)

iii)

X is 2-transitive;
G has exactly 2 orbits X x X;

MY is an irreducible representation of G.

8) A space with lines is a set X endowed with a family £ of subsets, called
lines, satisfying the following properties:
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a) Every two distinct points of X belong to a unique line;
b) Every line has at least two points;

c) Every point belongs to at least two lines.

For example, take for X the n-dimensional affine (resp. projective)
space over some field. Then X, with the set of all affine (resp. pro-
jective) lines, is a space with lines. Suppose that some group G acts
by automorphisms on a space with lines X (i.e. X is a G-space and G
leaves £ invariant). Assume that X is finite.

i) The X-ray transform T : {?(X) — £?(L) is defined by:

(THT) =, fle) (fel(X), LeL)

xzeLl

(i.e. we “integrate” f on lines in X). Show that T intertwines the
permutation representations Ax and Az, i.e. T € Homg(Ax, Az)-

ii) Compute T*T : £?(X) — ¢*(X) and deduce that T is injective
(this means that a function f € £2(X) can be reconstructed from
its integrals over all lines).

iii) Show that the number of orbits of G on X is at most the number
of orbits of G on L. [Hint: use injectivity of T.] In particular, if
G acts transitively on £, then it acts transitively on X.

iv) (The aim of this exercise is to show that (iii) may fail for infinite
spaces with lines; you should not try it if you do not know about
hyperbolic geometry.) Let X be the union of the real hyperbolic
plane and of its circle at infinity. A line in X is the union of a
hyperbolic line and of its two points at infinity. Let G be the
group of isometries of real hyperbolic plane. Check that X is a
space with lines, that G has two orbits on X, but acts transitively
on lines of X. This example is due to G. Valette.

3.5 Degrees of representations of PSLs(q)

The aim of this section is to prove the following result, going back to Frobe-
nius [27].
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3.5.1. Theorem. Let ¢ > 5 be a prime. The degree of any non-trivial
representation of PSLa(q) is at least %.

Let B be the “ax + b” group of F,, that is, the group of affine transfor-
mations

zrraz+b (a €Fy, beT,)

of F,. Viewing I, as a B-space, we may form the permutation representation

Ar, of B, as in Example 3.4.2 (iii), and the subrepresentation )\%q on Wy =

{fE(CIB‘q:Z f(z):()}.

Z€F,

3.5.2. Lemma. The representation )\%q is an irreducible representation of
B, of degree q — 1.

Proof. By Proposition 3.4.24, it is enough to check that F, is 2-transitive, as
a B-space. So let (z1,22), (y1,y2) be two pairs in F; x F,, with 21 # z2 and
y1 # y2. We need to find an affine map ¢ such that g (z;) = y; (i = 1,2).
Geometrically, if we think of the graph of g as a subset of F;, x F;, we need
to find the line through the points (x1,y1) and (z2,y2), as in Figure 3.1.
But of course this line is given by

z): Y2 — Y1 (

z—11) + Y1
9 — I

(2 € Fy), so that not only g exists, but it is unique. O
(X2, ¥2)

(X1, Y1)

Figure 3.1:
Recall that we denote by

¢ : SL2(q) — PSLa(q)
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the canonical map and, as in the proof of Proposition 3.3.5, we let

B():(p{(col abl):CLE]F;,bE]Fq}

the stabilizer in PSLy(q) of co € P1(F,;). The action of By on F, is then
given by

va(z) = a®z + ab, where A = (g ai) .

This means that By identifies with a subgroup of index 2 in B. Actually,
denoting by a the surjective homomorphism

a:B—=F;:(zaz+b)—a,

we see that By = o' (F)?), where F)* denotes the group of squares in F)'.
Now we describe the representation theory of By.

3.5.3. Proposition. Let g be an odd prime. Up to equivalence, there are

‘1’5—3 irreducible representations of By, comprising

. % group homomorphisms By — C*, factoring through « |p;

e 2 inequivalent representations p;, p_ of degree %.

Proof. Since IF;<2 is an abelian group of order %, by exercise 3 in section 3.4

it has exactly % irreducible representations, all of degree 1, given by ho-

momorphisms xi, ..., Xxe1 from FS to C*. Composing with « |p, gives qg—l
2

homomorphisms x; o « |g,, ..., Xe=1 © & |p, from By to C*.
2

On the other hand, consider the restriction of /\%q to By: we are going to
show that this restriction decomposes as the direct sum of two inequivalent,

irreducible representations py, p— of By, both of degree %. To see this,

27

we appeal again to exercise 3 in section 3.4: set w = e ¢ and consider, for
€ Iy, the homomorphism

ec:Fyg — c*
given by

ec(z) =w
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Then the e.’s, with ¢ € F;, are a basis of CF,. In particular the e.’s, with
cE IE‘;, are a basis of the subspace Wy from Proposition 3.4.26. Note that,
if g € B is given by g(z) = az + b, then

(O (g)e(2) = ol 2) = eo (0] =0 o w¥ =¥ eala)

or else ,

)‘IIOTq (g) €c =W a €c/a -
Denote then by W, (resp. W_) the subspace of W) generated by the e.’s,
with ¢ taking all square values (resp., non-square values) in Fy

W, = span(e : c€F?)
w. = span(eC:cEIB‘;—lF‘f).

The preceding formula shows that W, and W_ are invariant subspaces for
the restriction of /\%q to By; so we denote by p; (resp. p_) the restriction of
qu |B, to W, (resp. W_). Note that
: . g—1
dlII](]: W_|_ = dll’Il(C W_ = T,

so that py, p_ have degree g;—l To show that py, p_ are irreducible and
inequivalent, we first observe that, if g € B — By, then )\gq (g9) exchanges W
and W_. (This follows from the formula for the action of )\]%q (g9) on the e.’s.)
This means that, in the decomposition Wy = W, & W_, we have

<p+0(g) p0(9)> ifg € Bo;

(O ;) ifg€ B— By.

*

AR, (9) =

So, at the level of characters:

_ [ xp:(9) +xo_(g9) ifg € Bo;
xqu(q)—{O ifge B—By.

By Lemma 3.5.2, the representation )\%q of B, is irreducible. By Corol-
lary 3.4.21, this means

1
1 = = 2
g, [x0e,)8 = 151 > g (9)]

geB
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1
= T |2 e, @F+ X Do )
9g€Bo g€EB—By
1
= 3 2(Bo| Z 1Xps (9) + xp_ (9)]? (by the above formula)
gEBo

<XP+ + Xp- | Xp+ + Xp_>Bo

[(Xp+ | Xp+>Bo +2Re <Xp+ | X/L)Bo + <Xp7 ‘ X/L>Bo] .

N — DN~

By Theorem 3.4.19, the scalar products (x,, | Xp.)Bo> (Xps | Xp_)B, and
(Xp— | Xp_)B, are non-negative integers, with (x,, | X,,)B, > 0 and
(Xp_ | Xp_)Bo > 0. This forces (x,, | Xp.)Bo = (Xp_ | Xp_)B, = 1, and
(Xp+ | Xp_)B, = 0. The first two equalities mean by Corollary 3.4.21 that
p+ and p_ are irreducible representations of By; the latter means by Theo-
rem 3.4.9 that p; and p_ are not equivalent.

To show that this list of irreducible representations of By is complete,
we apply the degree formula 3.4.22: on the one hand, we have

q(g—1)
[Bol = L=
on the other hand the sum of squares of degrees of irreducible representations
obtained so far is

-1 —1\2 -1
2 2 2

Hence, the list is complete. O

Proof of Theorem 3.5.1. Let m be a non-trivial representation of PSLy(q)
on C". Consider the restriction 7 |p,. By Proposition 3.4.12, we may de-
compose it as a direct sum of irreducible representations of By, whose list
is given in Proposition 3.5.3. Since ¢ > 5, the group PSLs(g) is simple,
by Theorem 3.2.2, so 7 |g, is a faithful representation of By, meaning that
7 |By (9) # I if g # I. Now it follows from Proposition 3.5.3 that representa-
tions of degree 1 of By factor through the homomorphism « |g,: By — IF‘;<2,
so that they are all trivial on the commutator subgroup of By. This implies
that at least one of the irreducible representations p., p_ must appear in
T | By, SO that n > %. O
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Exercises on section 3.5.

1) Let G be a finite group, and let H be a subgroup of G. Let (7, V) be
a finite-dimensional representation of H.

a) Set W ={f:G—=V:f(gh)=n(h7t)f(g) Vg€ G, heH}.
Show that W is a complex vector space, and that

dime W =[G : H] dim¢ V.
b) Define the induced representation Indg 7 of G on W by
((Indf m)(9) f)(z) = f(g7'2) (9,2 €G; feW).
Check that Ind$  is a linear representation of G on W.

2) Show that the representation qu of B is induced from a non-trivial
representation of degree 1, of the subgroup of translations z — z + b
(b eRy).

1 b

3) Showthathw{(O 1

By for ¢ > 4.

) | be lF‘q} is the commutator subgroup of

3.6 Notes on Chapter 3

3.2. Tt is a classical result of Jordan that, for a field K and n > 2, the group
PSL,(K) is simple, with the exceptions of PSLy(F2) and PSLy(Fs). This
can be found in many books in group theory. As we already noticed in the
proof of Theorem 3.2.2, the proof we give is special to dimension 2.

3.3. Our proof of Lemma 3.3.11 is patterned after Dickson’s proof (see also
Huppert [34], Suzuki [64]). Note that the same counting argument is used
in the classification of the finite subgroups of PSLy(C).

3.4. An excellent introduction to the representation theory of finite groups,
is given in Chapter 1 of Serre’s book [60]. We tried not to duplicate it, by
following a somewhat different route to the main results, appealing more to
tensor products of representations.

3.5. The lower bound in Theorem 3.5.1 on degrees of non-trivial represen-
tations of PSLy(q), is actually sharp; this follows from the classification of
irreducible representations of PSLy(q), see [27], [49].



Chapter 4

The graphs X4

4.1 Cayley graphs

Let G be a group (finite or infinite), and let S be a non-empty, finite subset
of G. We assume that S is symmetric, that is, that S = S71.

4.1.1. Definition. The Cayley graph G(G, S) is the graph with vertex set
V = G, and edge set

E={{zy}:z,ycG; Is€ S:y=us}.

Hence, two vertices are adjacent if one is obtained from the other by right
multiplication by some element of S. Note that, since S is symmetric, this
adjacency relation is also symmetric, so the resulting graphs are undirected.

Examples.

a) G=12/62,S ={1,—1}

119
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b) G =17/6Z, S = {2,-2}

0 1
5 2
4 3
¢) G=1/6Z, S = {3}
0 1
5 2
4 3

d) G=12/67,8 = {2,-2,3}
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e) G =Sym(3), S = {(123), (132), (12)}
(12)

(132) (123)

Examples (d), (e) show that non-isomorphic groups can have isomor-
phic Cayley graphs.

f) G=17,8={1,-1}

g) G=17,8={2,-2,3,-3}
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h) G =172 S ={(1,0),(-1,0),(0,1),(0,—-1)}

(-1,1) |(0,1) [(1,1)

(-1,0 ](0,00 [(1,0

(-1,-1|(0,-1) [(1,-D

i) G =1,, the free group on 2 generators a,b; S = {a,a~%,b,b71}

More generally, for the free group L, on n symbols aq,...,a,, with § =
{ai,...,at'}, the Cayley graph G(L,,S) is the 2n-regular tree.

4.1.2. Proposition. Let G(G,S) be a Cayley graph; set k = |S]|.
a) G(G,S) is a simple, k-regular, vertex-transitive graph.
b) G(G,S) has no loop if and only if 1 ¢ S.

c) G(G,S) is connected if and only if S generates G.
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d) If there exists a homomorphism y from G to the multiplicative group
{1,—1}, such that x(S) = {—1}, then G(G, S) is bipartite. The con-
verse holds provided G(G, S) is connected.

Proof. a) The adjacency matrix of G(G, S) is

A — 1 if there exists s € S such that y = xs;
¥ 10 otherwise.

From this it is clear that G(G, S) is simple and k-regular. On the other hand
G acts on the left on G(G, S) by left multiplication: this action is transitive
onV =G@G.

b) This result is obvious.

c) G(G, S) is connected if and only if every x € G is connected to 1 € G
by a path of edges. But this holds if and only if every x € G can be expressed
as a word on the alphabet S, that is, if and only if S generates G.

d) If the homomorphism x : G — {£1} is given, then

Vei={z€G:x(z) =+£1}

defines a bipartition of G(G, S). For the converse, assume that G(G,S) is
connected and bipartite. Denote by V. the class of the bipartition through
1 € G, and by V_ the other class. (Note that S C V_.) We then define a
map x : G — {£1} by

- 1 if$€V+
x(z) _{—1 if z € V_

To check that x is a group homomorphism, we first observe that, since S
generates G:

x(@) = (1))

where £g(x) is the word length of z with respect to S, hence, the distance
from z to 1 in G(G, S). The fact that G = V; U V_ then makes it clear that
x is a group homomorphism. O

Exercises on section 4.1.

1) For the group G of quaternionic units (see exercise 3 in section 2.4),
draw the Cayley graphs G(G, S) for the following choices of S:

a) S ={*i};
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b) S = {%i, +j}.

2) Let G be the group of symmetries of a square. Draw the Cayley graphs
G(G, S) for the following choices of S:

a) S = {s,r*!}, where s is a symmetry with respect to the median
of a side, and r is a 90°-rotation.

b) S = {s,s'}, where s is as above, and s’ is the symmetry with
respect to a diagonal.

3) Let G be the group of rotations of a regular tetrahedron. Draw the
Cayley graphs G(G, S) for the following choices of S:

a) S = {s,r*1}, where s is the half-turn around the line joining the
midpoints of two opposite edges, and r is a rotation of angle 120°
around the line joining a vertex to the centre of the opposite face.

b) S = {s,s'} where s is as above, and s’ is the half-turn around the
line joining the midpoints of another pair of opposite edges.

¢) 8 = {rif!, rF1} where r; is a 120°-rotation around the line joining
a vertex to the centre of the opposite face, and the axes of 71, 7o
are distinct.

4) Let G(G,S) be a Cayley graph, with adjacency matrix A acting on
?2(@). Denote by Ag and pg the left and right regular representations
of G on £2(G) (see Example 3.4.2).

a) Show that A =3 pg(s), as operators on £2(G).
seS

b) Let u be an eigenvalue of A, with corresponding eigenspace V.
Show that V), is an invariant subspace of Ag.

4.2 Construction of XP4

Let p,q be distinct odd primes. Recall from section 2.5 that we defined a
distinguished set S, of p + 1 integral quaternions of norm p.

We now consider reduction modulo g:

7, H(Z) — H(F,) .
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By Proposition 2.4.3 there exist integers z,y such that z? + 4% +1 = 0
(mod. ¢). Furthermore, by Proposition 2.4.2, any choice of such integers
determines an isomorphism

Vg H(Fq) — Mo (Fy)
enjoying the following two properties (see exercise 2 on section 2.4):
a) N(a) =det ¢, (a) for a € H(Fy);
b) if o € H(F,) is “real” (that is, if & = @), then 1,(c) is a scalar matrix.

For a € S), we see that 4(7,(c)) belongs to the invertible group GLa(q)
of M>(F,), since N (a) = p # g; also, 94(14(a@)) = 94(1¢(@ @)) is a non-zero
scalar matrix in GL2(¢q). Now we compose further with the homomorphism

¢ : GLa(q) — PGL2(q)

(see section 3.1), whose kernel is exactly the subgroup of scalar matrices.
We then set

Spq = (popgoTy) (Sp).

The previous considerations show that S, , is a symmetric subset of PGL3(q),
so S, 41, = Spq-

4.2.1. Lemma. If g is large enough with respect to p (for example, if
q > 2,/p), then |S, (| =p + 1.

Proof. Let a =ag+a1i+azj+ask and B =0by+ b1i+ b j+ bsk be two
distinct elements of S,. Then, for some ¢ € {0,1,2, 3}, we have a; # b;. Since
N(a) = N(B) = p, we have aj,b; € (—/p,/p) for every j € {0,1,2,3},
so if ¢ > 2,/p we have a; Z b; (mod. ¢), and 7,(a) # 74(B). Now set
A = (¢pgo071y)(a) and B = (14 074)(B), so that A # B in GLa(gq). Assume by
contradiction that ¢4 = ¢p in PGLy(q). Then there exists \ € IF‘; such that
A # 1 and A = AB. Taking determinants we get p = det A = \? det B =
A2p; hence, A2 = 1, or A = —1. From A = —B, we get « = —f (mod. q),
ie. aj = —b; (mod. q) for every j € {0,1,2,3}. Since ¢ > 2,/p, we deduce
aj = —bj, showing that a = —. By assumption, ag,by > 0, so ag = by = 0
and hence § = @. But this contradicts the definition of S}, since as explained
in section 2.5: if o € Sp has ap =0, then @ ¢ S),. O
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The bound 2,/p in Lemma 4.2.1 has nothing to do with the Ramanujan
bound 2,/p appearing in Theorem 4.2.2 below; this coincidence is just a
numerical accident.

If p is a square modulo ¢, giving (%) =1, then S, 4 is actually contained

in PSLa(q) (see exercise 3 in section 3.1). We define X?¢ as the Cayley
graph of PSLj(g) with respect to S, 4:

Xpaq = g(PSL2(Q)7 Spaq) )

If p is not a square modulo ¢, in which case (%) = —1, then S, 4 is contained

in PGL2(q) — PSL2(q), and we define XP¢ as the Cayley graph of PGL3y(q)
with respect to S) 4:

XP = G(PGLa(q), Spq) -

The Holy Grail of this set of notes would be the following theorem.

4.2.2. Theorem. Let p,q be distinct, odd primes, with ¢ > 2,/p. The
graphs XP? are (p+ 1)-regular graphs which are connected and Ramanujan.
Moreover:

a) If (%) = 1, then XP9 is a non-bipartite graph with @ vertices,
satisfying the girth estimate

g(XP?) >2log, q.

b) If (%’) = —1, then XP9 is a bipartite graph with ¢(¢?> — 1) vertices,
satisfying g(X??) > 4 log, q — log, 4.

4.2.3. Remarks.

a) The issue of connectedness of XP? is a very important one, that we
address in section 4.3. By Proposition 4.1.2(c), it is equivalent to say
that Sy, generates either PSLa(q) or PGLa(q), according to whether

(g =1or g) = —1. This will be proved in section 4.3, under the

slightly stronger assumption that g > p®.
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b) Grails are seldom reached. We will not be able to prove the Ramanu-
jan property for X?¢ with our elementary means. We shall however
indicate briefly how this property can be deduced from the Ramanu-
jan conjecture on coefficients of modular forms. Nevertheless, we will
prove by elementary means, in section 4.4, that for fixed p the family
(XP?) prime 1s a family of expanders, and we will get an explicit lower
bound on the spectral gap.

c) Some parts of Theorem 4.2.2 are easy to prove. It follows from Propo-
sition 4.1.2(a) and Lemma 4.2.1, that XP? is (p + 1)-regular. The
number of vertices of X?+¢ is given by Proposition 3.1.1, (b) and (c). If

(%’) = —1, the fact that XP? is bipartite follows Proposition 4.1.2(d)

and the group isomorphism PGLa(q)/PSLa(q) ~ {£1}.

Exercises on section 4.2.

1) Show that 1 ¢ S, 4, so that XP? is a graph without loop.

2) Construct a graph ZP7 as follows. The set of vertices is the projective
line P(F,), and the adjacency matrix is

Agy = I{s € Spy s(z) =y}

(for z,y € P}(F,)). Taking Theorem 4.2.2 for granted, show that ZP4
is a (p + 1)-regular, connected, Ramanujan graph. [Hint: show that
the spectrum of ZP is contained in the spectrum of X?-%.] It may
happen that ZP? has loops or multiple edges: see the pictures of Z%'3
and Z%17 in [57]. These pictures also show that ZP¢ is not necessarily
vertex-transitive. It might however be interesting to know that there
are (p + 1)-regular Ramanujan graphs on ¢ + 1 vertices.

4.3 Girth and connectedness

In this section, we introduce another family Y7 of (p 4+ 1)-regular graphs
that will ultimately turn out to be isomorphic to X?-?. Because the YP?’s
are defined as quotients of trees, it will be fairly easy to estimate their girth.
We will see in section 4.4 that they are also tractable for spectral estimates.

Let p be an odd prime. Recall that after Theorem 2.5.13 we defined a
subset A’ of H(Z) as:
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N={a€eHZ):a=1 (mod. 2) or a =i+ j+ k (mod. 2),
N(a) a power of p}.
On A’, we define the following equivalence relation: o ~ S if there exist

m,n € N such that p™a = £ p"3. We denote by [a] the equivalence class of
a €N, by A =A"/ ~ the set of equivalence classes, and by

Q:A > A

the quotient map Q(a) = [a].

Note that ~ is compatible with multiplication; that is, if a; ~ 1, as ~
B2, then ay ag ~ B1 B2. Thus, A comes equipped with an associative product
with unit.

Recall that before Definition 2.5.12 we defined a set
Sp = {alaa_la' . '7asaa_37513"' 718t}

of p + 1 integral quaternions of norm p, where o; has a(()i) > 0 and $3; has
b(()]) = 0. By definition S, C A'.

4.3.1. Proposition. a) A is a group.
b) The Cayley graph G(A, Q(Sy)) is the (p + 1)-regular tree.

Proof. a) For a € A' : a@ = @a ~ 1, hence, [a]™! = [a], so A is a group.

b) For a, 3 € S,, one sees that a ~ /8 implies & = 5. So |Q(Sp)| =p+ 1.
By the existence part of Corollary 2.5.14, any a € A’ is equivalent to
a reduced word over Sp; in other words, A is generated by Q(S,), and,
by Proposition 4.1.2, the graph G(A,Q(Sp)) is (p + 1)-regular and con-
nected. To prove that it is a tree, we have to show that it does not con-
tain any circuit. So suppose by contradiction that it does contain a circuit

20, T1,%2, .-, Tn—1,Tg = To of length g > 3. By vertex-transitivity, we may
assume zo = [1]. By definition of a Cayley graph, we have z; = [y],
zo = [m2l,---,2g = [M172...7) for some vy1,72,...,74 € S,. Since

Tp_1 # Tpq for 1 < k < n— 1, the word 71 7y2...7, over S, is reduced,
i.e. it contains no occurence of «; @;, a; a; or 5]2- (1<i<s1<j<t). The
equality [1] = [y172...7,] in A becomes, in A’,

pr=xp e

But since 71 ¥2 ..., is a non-trivial reduced word over S}, this contradicts
the uniqueness part in Corollary 2.5.14, and the proof is complete. O
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As in section 4.2, we consider reduction modulo ¢:
T, H(Z) — H(F,) ;

which sends A’ to the group H(F,)* of invertible elements in H(F,). Let Z,
be the following central subgroup of H(F,)*:

Zy={a € H(Fy)* : a =a@}.

Let o, € A"t if @ ~ B, then 7,(a)"*7,(8) € Z;. This means that
T4t A — H(F,)* descends to a well-defined group homomorphism

I, : A — H(F,)*/Z,.

We denote the kernel of II, by A(q) and we identify the image of II, with
the quotient group A/A(q). We set T}, 4 = (II; 0 Q)(Sp)-

One sees as in Lemma, 4.2.1 that, for ¢ sufficiently large with respect to
p (for example ¢ > 2,/p), one has [Tp 4| = p+ 1. We define the graph Y74
as the Cayley graph of A/A(q) with respect to T} 4:

YP4 =G(A/A(q), Tp,q) -

Since A is generated by Q(S,) (see Proposition 4.3.1), it follows from
Proposition 4.1.2 that, for ¢ > 2,/p, the graph Y?¢ is (p 4 1)-regular and
connected.

Notice now that the isomorphism %, : H(F,)* — GL2(q) of Proposi-
tion 2.4.2, sends Z, to the subgroup of scalar matrices in GLa(g), which, in
turn, form the kernel of ¢ : GLa(q) — PGL2(g). Hence, 1, descends to an
isomorphism

B:H(Fq)"/Zq — PGL2(q) -

This allows us to compare, by means of a commutative diagram, the
constructions of X?? and YP4:

Tq

Sy, A — H(F,)* —  GLa(g)

le l Le
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(Here all vertical arrows are quotient maps.) The graph X7 is defined by
means of ¢ o 1, o 74, while YP4 is defined by means of II; o Q. We do not
know yet that XP-? is connected, but we know exactly from which group it
comes, namely either PSLy(gq) or PGLy(q), depending whether or not p is a
square modulo g. By contrast, Y?? is connected by definition, but we did
not identify the group A/A(q) from which it comes. (For example, what is
the order of A/A(q)?). However, since 5(T},4) = Spq, We see that Y is
a connected component of X?¢. Playing both constructions against each
other, we will eventually see that XP is connected for ¢ > p8, so that XP4
is isomorphic to YP9.

We first need to identify the “congruence subgroup” A(q).

4.3.2. Lemma.

Alg) ={la] e A:a=ap+ari+az j+azk,q|a, a2 a3}.

Proof.

[a] € A(q) & 14(a) € Z,

< ¢ does not divide ag and q | a1, a9, a3

54 q | ap,a2,as
where the equivalence between the second and third lines follows from the
fact that N(«) is a power of p, and p # ¢. O

We can now give a lower bound for the girth of Y?-¢

4.3.3. Proposition. One has g(Y??) > 2log, ¢q. If (%’) = —1, we have
the better inequality g(Y?9) > 4log, q — log,, 4.

Proof. For simplicity’s sake, write g for g(Y??). Let g, 21,...,Z4-1,%4 = g
be the vertices of a circuit of length g in Y?¢. By vertex-transitivity of Y74
(see Proposition 4.1.2), we may assume that zo = 4, = 1 in A/A(g). Since
YP4js a Cayley graph, we find t,...,t, € T, , such that

zi=11t2...1; (1§Z§g)
Now t; = I14([v;]) for a unique v; € S, (i =1,...,9). Write a = y1...74 €

A, with @ = ag + a1i + a2j + agk. Then « is a reduced word over S,
and [a] = [11]...[7,] is distinct from [1] in A, by Proposition 4.3.1(b). So
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« is not equivalent to 1 in A/, which implies that at least one of a1, as, a3 is
non-zero. On the other hand,

Hq([()é]) :tltg...tg :LEg =1

so that [@] € A(g). By Lemma 4.3.2, the prime ¢ must divide a1, a2, as.
Since one of them is non-zero, we get

p? = N(a) =a3 +al+ a3 +a2>¢>.
Taking logarithms in base p, we get the first statement.

Suppose now that (%) = —1. Since p? = a3 (mod. q), we have

- (2)- () -

so that g is even, say g = 2h. Now actually
p? = a? (mod. ¢?).
From exercise 1 below, it follows that

p" = +ay (mod. ¢?).

On the other hand a2 < p9, so |ag| < p. Assume by contradiction that
g < 4log, q —log, 4 = log, %, so ph < %. Then |p* F ag| < ¢* and, from
the previous congruence, we get p? = +ay. Then pJ = a%, which forces
a1 = az = a3 = 0; this gives a contradiction. O

4.3.4. Remark. From exercise (c) in section 1.3, we have, for p > 5:
g(YP?) <2+ 2log, [YP,
and therefore, from Proposition 4.3.3:

YPa| > g

3

g (e) = _1.
Better, if (5) =—1:
¢
lypa > L
2p
This shows that |Y??| = |A/A(q)| grows at least linearly with g.

Here now is the main result of this section.



132 CHAPTER 4. THE GRAPHS XP¢

4.3.5. Theorem. Assume p > 5. For ¢ > p8, the graph XP+¢ is connected,
and therefore X?¢ is isomorphic to Y?9.

Proof. By Proposition 4.1.2(c), we have to show that .S, ; generates PSLa(q)
if (2) =1, and PGLa(g) if (2) = —1. Recall the isomorphism § : H(F,)* /Z,
— PGLa(q). Since 3(Tpq) = Sp,q, it is equivalent to prove:

PSLy(q) if (2)=1;

PGLy(q) if (2)=-1.

B(A/A () = {

In the second case, we already observed that S, , C PGL2(g) — PSLa(g). Set
H, ,=PSLa(q) N B(A/A(q)). We are left to prove that, in both cases,

H, ,=PSLs(q).

In view of Theorem 3.3.4, this will follow from two facts: |Hp,| > 60, and
H

p,q 1S not metabelian.

To prove that |H, 4| > 60, we observe that, since ¢ > p® and p > 5, we
certainly have, from Remark 4.3.4:

IA/A(q)] > g > 120,

hence |Hp 4| > 60.

To prove that H) , is not metabelian, by exercise 2 in section 3.3, we
must show that there exist g1, g2, g3, g4 in H) 4 such that:

[lg1, 92]; [93,94]] # 1.

For that, we examine each case:

a) If (g) = 1, we choose the g;’s as follows from among the elements of

Sp,q: take for g; any element in ), ;; choose go to be distinct from
gi!. Then take g3 = g1, and let g4 ¢ {gT',¢5'}. With this choice
[lg1,92]), [93,94]] is a reduced word of length 16 over Sy, ,. By Proposi-
tion 4.3.3, the girth of Y?¢ satisfies

g(YP4) > 2log, q > 16;

as a consequence, any reduced word of length 16 over S, 4, cannot be
equal to 1 in H), ;, since this would create a circuit of length at most
16 in YP4,
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b) If (%’) = —1, we first choose hq,hg,hs in S, , as follows: let h; be
any element of S, ,; let hy be distinct from hf' and hy ¢ {hf!, hEt}.
Then we set g1 = hl h3, gs = h2 h3, gz = hl hz, g4 = h3 hz: these are
elements of Hy,. Then [g1,g2] = h1 hsha hit hgl hyt and [g3,94] =
hi ha ha hit hy' hyt. Then [[g1, g2], [g3, 94]] is a reduced word of length
24 on S, 4. By Proposition 4.3.3, the girth of Y74 satisfies

g(YP?) > 4log, q —log, 4 > 24.

The conclusion then follows as in part (a). O

We summarize what this means for the graphs X?*¢ (in comparison with
the statement of Theorem 4.2.2).

4.3.6. Corollary. Assume that ¢ > p®. The graphs XP? are (p + 1)-
regular, connected graphs. Moreover:

a) If (%’) = 1, then XP? is non-bipartite, with

g(XP:Q) >

Wl N

log, | XP1|.

b) If (g) = —1, then XP is bipartite, with

4
g(XP1) > 3 log,, [XP?] —log, 4.

Proof. Connectedness was established in Theorem 4.3.5. The girth estimates
follow from Proposition 4.3.3 and the fact that ¢3 > |XP4|. (See Proposi-

tion 3.1.1.) Assume that (%) = 1: in view of Proposition 4.2.1(d) and the
connectedness of XP4 the fact that XP? is not bipartite follows from the
simplicity of PSLy(q) proved in Theorem 3.2.2. Finally, if (g) = —1, the
fact that XP? is bipartite was already observed in Remark 4.2.3(c). O
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4.3.7. Remark. Recall from Definition 0.12 that a family (X,,)m>1 of
finite, connected, k-regular graphs, with | X,,| — 400 for m — 400, has large
girth if there exists C' > 0 such that g(X,,) > (C'+0o(1)) logs_; |Xm|. From
exercise (b) in section 1.3, we necessarily have C' < 2. As already mentioned,
Erdos and Sachs [25] gave a non-constructive proof of such families with
C = 1. For (%) = —1, the graphs X??¢ are an explicit family of (p + 1)-
regular graphs with large girth, namely C' = %. This is one of the few
examples in graph theory where explicit methods give better results than
non-constructive ones.

Exercises on section 4.3.

1. Let ¢ be an odd prime; let a, b be integers, not divisible by ¢, such that
a? = b? (mod. ¢?); show that a = £ b (mod. ¢?).

2. Show that, if p =1 (mod. 4) and (%’) = —1, then g(Y?9) > 4log, q.
[Hint: in the proof of Proposition 4.3.3, observe that the congruence
p" = +ay (mod. ¢?) improves to p = +ay (mod. 2¢?), since p and ag
are odd.]

3. Assume p = 1 (mod. 4). Show that A(2¢) = {[a] € A(2) : a =
ap+a1i+ a2 j+ask, 2q | a1,a2,a3} (compare with Lemma 4.3.2).

4. How should one modify Theorem 4.3.5 (and its proof) to include the
case p = 37

5. (This exercise assumes some acquaintance with free groups.)

a) Assume that p =1 (mod. 4); show that the group A(2) is isomor-
phic to the free group Lp+1 on 1%1 generators.
2

b) Let L, be the free group on ay,...,a,; set S = {ay,...,an,a7",

...,a;'}. Let N be a normal subgroup of L,; denote by II :
L, — L, /N the quotient map, and assume that II |g is one-to-
one. Show that the girth of the Cayley graph G(L, /N,II(S)) is
the minimum of the word length of the non-identity elements in
N. (When p = 1 (mod. 4), this applies to the graphs Y?¢ in
Proposition 4.3.3.)
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6. (This exercise requires some basic knowledge about free products.)
Write S, = {n, 07, ..., 04,5, 51, .., i}, as immediately before Propo-
sition 4.3.1. Observe that, in A(2) : [5;]> = [1] (1 < j < t). Deduce
that A(2) is isomorphic to the free product of Ly with ¢ copies of Z /2Z:

AN2)~Ls xZ/2Z%---+x 7|27 .

t factors

4.4 Spectral estimates

In this section we prove that, for fixed p, the family XP¢ is a family of
expanders, with an explicit lower bound on the spectral gap when ¢ is large
enough with respect to p.

We shall denote by n the number of vertices of X4, computed in Propo-
sition 3.1.1, and by

po=p+1>p1 >pe > 2 pp

the spectrum of its adjacency matrix. Recall from Section 1.4 that f,, is
the number of paths of length m without backtracking, starting and ending
at 1 on XP4. Because, by Proposition 4.1.2(a), the graph XP¢ is vertex
transitive, the trace formula in Corollary 1.4.7 takes the following form for
XPa:

for every m € N.

Our first task is to re-interpret the left hand side of this trace formula.
For this, we introduce the quadratic form in 4 variables

Q(zo, 71, 2, 73) = 7§ + ¢* (25 + 73 + 23)

and, for m > 1, we set

s@™) = |{(=o,z1,22,23) € AR Q(xo,x1, T2, x3) = p"*, either 2y odd

and z1, 2,3 even, or z even and 1, Ta,x3 odd}|.
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4.4.1. Remark. Suppose either m even, or p = 1 (mod. 4). By reducing
modulo 4, one sees in the above definition that all the 4-tuples (g, 21,2, x3)
appearing have xg odd and z1, z2, 3 even. We introduce the quadratic form

Q' (20, 1, 2, 73) = 7§ + 4¢° (27 + 3 + 23);

then sg(p™) is exactly the number of integral representations of p™ by the
quadratic form Q'

We now come back to a general p.

4.4.2. Lemma. Form € N:sg(™)=2 Y  fm—2r-

0<r<
Proof. We identify XP? with Y?:4, by Theorem 4.3.5. Let zg = 1, z1,...,T¢_1,
z¢ = 1 be the vertices of a path of length ¢, without backtracking, starting
and ending at 1 in Y4, As in the proof of Proposition 4.3.3, we can find
t1,...,tp € Tpq such that z; = ti1ta... ¢ (1 < ¢ < £); write ¢; = II[ay] for

a unique o; € S, (i = 1,...,¢). Then [a1] [a2]... ][] is a reduced word of
length £ in A, since it is lifted from a path without backtraking; and be-
cause I ([ou] [az]. .. [oy]) = z¢ = 1, we see that [o][az]. .. [ay] belongs to

A(q). This proves that fy is the number of reduced words of length £ in A,
belonging to A(q).

Let (2o, 21,22, 73) € Z* contribute to sg(p™), so Q(zo, 1, T2, 23) = p™
and the correct congruences modulo 2 are satisfied. Form the quaternion
a=uxy+q(x1i+ 27 +2x3k): this a belongs to A’ and, by Lemma 4.3.2, its
equivalence class is in A(g). From this we get the equality

soip™) =Ha=ao+arit+azj+aske AN :N(a)=p™, q|a1,a2,a3}.

Suppose « contributes to the right hand side of the previous equation.
By Corollary 2.5.14, « has a unique factorization a = % p’wy,_2¢, where
Wiy —2¢ is a reduced word of length m — 2£ over S),. The class [a] is therefore
a reduced word of length m — 2¢ in A that, moreover, belongs to A(q).
Conversely, starting from a reduced word w of length m — 2¢ in A(q), the
formula o = + p® w produces two quaternions as above. This shows that

Ha € A':N(a)=p™, [a] € A(q)}] =2 Z frm—o2r
0<r<m

which concludes the proof. O
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The trace formula for XP¢ becomes, for every m € N:
so(p™) = = p% nf U | L
9 n m\2vp)
At this juncture, we introduce the following subset ©,, of C:

©p = [ilog/p,0] U [0, 7] U [m, 7 + ilog/p] .

Recall that the cosine and sine of a complex number z € C are defined

as
z2 z4 26 o0 " 2211 eiz _i_efiz
cosz-l——+z—a+ Z(—l) ) = 5
n=0
23 z5 z7 0 z2n+1 eiz _ efiz
R T D T T

The reader can check easily that the change of variables 2 — 2,/p cos z maps
O, bijectively to [—(p+1),p+1]; note that it maps [0, 7] to [-2,/p, 2\/p], so
this change of variables “sees” the Ramanujan interval. For j =0,1,...,n—
1, let 6; € ©, be the unique element of ©, such that y; = 2,/pcosd;. In

particular 6y = ilog,/p and, if (g) =—1
Op—1 =7 +ilog./p (by Corollary 4.3.6).

By definition of the Chebyshev polynomial U,,, we have

SII\D

sQ(p™) =

m o — 1nm—|—19
p* g s1n9 '

To prove that X?? is Ramanujan, we, therefore, must prove that, with
the exception of 6y = 7log,/p and possibly of 6, 1 = m+ilog/p, all the 6;’s
are real. This was first done in [42], and we refer the reader to Remark 4.4.7
for an indication of how that proof was constructed. With elementary meth-
ods we will not be able to go so far. Instead, we will need to content ourselves
with a proof that, for ¢ sufficiently large, the imaginary part of ¢; is bounded
above by a constant depending only on p. This will be enough to establish
that the XP? form a family of expanders.

Since, in the trace formula, the 6;’s are repeated according to the multi-
plicities of their corresponding eigenvalues, we first gather information about
these multiplicities.
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4.4.3. Proposition. Let y be a non-trivial eigenvalue of XP4, which
means that |u| # p+ 1, and denote its multiplicity by M (u). Then M (u) >
ot

Proof. Let V,, be the eigenspace corresponding to p. From exercise 4 in sec-
tion 4.1, the vector space V), is a representation space of the group underlying
XP4. Since this group always contains PSLa(q), V), is a representation space
PSLy(q). From Theorem 3.5.1, any non-trivial representation of PSLs(g) has
degree at least %. So we must prove that, if |u| # p + 1, then the repre-
sentation of PSLa(g) on V), is non-trivial. We do this by contraposition, so
we assume that the representation of PSLa(g) on V), is trivial. We separate
two cases.

If (%) = 1, this means that every function in V), is constant, so y = p+1.

If (%) = —1, then a non-zero function f € V,, must be constant on each
of the two cosets of PSLa(q) in PGLy(q): say that

fe {a+ on PSLs(q);
a— on PGLa(q) —PSLa(q).

Noting that f is an eigenfunction of the adjacency matrix of X?9 we are
led to the system of equations:

{uaz(p+1)a+
pay=(p+1)a_.

Using the fact that f is non-zero, we get u? = (p + 1)2; hence, |u| = p + 1,
as desired. O

We now reach the main result of this section.

4.4.4. Theorem. Fix a real number ¢ with 0 < € < %. For ¢ sufficiently
large, every non-trivial eigenvalue p of XP? satisfies

|| < p&*e +ps=.

In particular, the X??’s are a family of expanders.

Proof. We start with our expression for the trace formula for X?4:
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for every m € N. Here u; = 2,/pcos6;. If p; is not in the Ramanujan
interval [—2,/p, 2,/p], we write

{Qj:iwj it 2/p<p;<p+1,
9j=7T+i¢j if —@+1)Sﬂj<_2\/i)7
where 0 < ¢; < log,/p in both cases.

From now on, we assume that m is even. Recall that the hyperbolic sine
and hyperbolic cosine of a complex number z are defined as

e* —e %

sinh z = — = isin(—iz);
z —Z
cosh z = % = cos(—iz).

For p; ¢ [—24/p, 2./p], we have in both cases, since m is even:

sin(m+1)0;  sini(m +1)4;  sinh(m + 1) 9); >0

sin 0; sini 1 sinh 1);
Then, for a fixed non-trivial eigenvalue . ¢ [—2./p,2,/p]:

sinh(m + 1)y,

sinh 1/Jk +

2
—p
n

m 3 sin(m + 1) 0;
. sin @;
JimgFE ik J

m Z sin(rrlz +1)6; -
. sin 6;
Jilpmi|<2p

M‘ < m + 1 so that:

sin 6

We leave the reader to check that, for 4 real:

sinh(m + 1)y
sinh ’(/Jk

m
2

2 m
SQ(pm)Zﬁp M () —2p2 (m+1).

We now estimate sg(p™) from above. By Remark 4.4.1, since m is even,
sg(p™) is the number of integral solutions of

x% +4q2(x% +$§ +x§) =pm.

We first estimate the number of possible choices for zy. First we have |z¢| <
p?. Second 2% = p™ (mod. ¢?); hence, by exercise 1 in section 4.3:

zo=+p? (mod. ¢?).



140 CHAPTER 4. THE GRAPHS XP¢

Since both zy and p are odd, we actually have

2o = +p2 (mod. 2¢%).

o

This gives at most 2 (p = + 1) choices for zg. Once z( is fixed, we must

Q

solve )
m

2 2 2o P — Xy
4+l ="10
1 2 3 4q2

m__ .2
in integers. Using the notations of section 2.1, there are r3 (%Q) ways to

do this. Furthermore, by Corollary 2.1.13, we have

m 2 m\ =+4e
p—x b 2
’"3< 4¢? 0) :OS(<q_2> )

for every € > 0. Then:

[ ™iem m
p2 p2
s(@™) = O qit2e <q_2+1>
[m(l+e) Z(14+2¢)
— 0. p p

q3—|—25 + q1—|—25

_pm(l—l—s) p%(1+25)'

= O

+
¢ q

Thus, for some constant C. > 0, our inequality becomes

pm(1—|—s) 5 (1+2¢)

M(pr) m sinh(m + 1)y
. p 2 . -
n sinh 1y,

4P

¢ q

o3

< C. +p2(m+1).

Canceling out p?, and using n < ¢3 (see Proposition 3.1.1), we get

sinh(m + 1) ¥y,

M) =i "

<0 [pmGF) 4 ¢ p™) + g¥(m+1).

Suppose that m is chosen in such a way that p% < ¢3. Then

sinh(m + 1) ¥,

M) — "

<C [T + 2 )+ 21+ 6 log, q) .
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Since sinh v, < sinh log ,/p, this yields:

M (uy) sinh(m + 1) ¢y, = O [¢*%].

Now take m to be the greatest even integer such that p% < ¢ TFor q
sufficiently large we have
(m+1)y, (—=1+6log, q)vk -3
Sinh(m—|— 1) ¢k > € 3 > € 3 r > p32 eGIOgP aU

where we have used 1, < log,/p in the final inequality. Then

69
) =0 (58

But, since py is a non-trivial eigenvalue, we have

-1
M(Mk) > C_IT

by Proposition 4.4.3. So, for ¢ large enough, we must have

6 1
34 6e— Pk 5 1, giving ¥y, < (—+g> log p.
log p 3
Then since either 0 = i or O = m + iy, and pp = 2,/pcos b, we
get:

k] = 2¢/p | cos(i )| = 2¢/peosh gy, < pite +po 2,

for ¢ big enough. This concludes the proof. O

From Theorem 1.2.3 and Corollary 1.5.4, we immediately get estimates
for the isoperimetric constant and the chromatic number of the graphs X?9.

4.4.5. Corollary. Fix e € (0,1/6). For ¢ sufficiently large, one has
P+ 1—pite—po=e

h(XP1) > 5

Moreover, if (%) =1 and q is large enough:

p+1
X(XP) > —————.
pste +ps
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a

This proves that we have given an explicit construction of an infinite
family of graphs with large girth and large chromatic number, providing a
constructive solution to the problem we discussed in section 1.6. There we
used probabilistic methods to establish the existence of such graphs, but the
proof gave no insight into how such a graph could be explicitly defined.

4.4.6. Corollary. Fix N € N. There exists an odd prime p such that, for
a prime q large enough:

g(XP%) >N and x(XP?) >N.

Proof. Let p be chosen large enough to have 1{”“ — > N. Then, choose ¢

pl12 +pI12
large enough to allow the four following conditions to be satisfied simulta-

neously:

(a) g > p%
(b) 2log, ¢ > N;

© (5) =1

(d) x(XP9) >
p12 -|—p 12

(Condition (d) will be satisfied in view of Corollary 4.4.5.) Then, by Propo-
sition 4.3.3 and Theorem 4.3.5, we have

min {g(X”7), x(X")} = N .

4.4.7. Remark. The Ramanujan conjecture [54] is a conjecture about the
order of magnitude of coefficients of modular cusp forms; in weight 2, this
conjecture was proved by Eichler [23]. (For a discussion of modular forms,
we refer the reader to [47], for example.

The #-function of the quadratic form Q' is given by

9(z) = Z 62772'62'(56)2 _ Z T‘Ql(k‘) e2m'kz
k=0

r€ez4
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where g (k) is the number of integral representations of the integer k by the
form @’. Then 6 is a modular form of weight 2; decomposing # as the sum
of an Eisenstein series and a cusp form, we may appeal to Eichler’s result
to get estimates on rq/ (p™) = sg(p™) for even m’s. Specifically, we get for
every € > O
m—+1

my — 4 p 1 Lo, (p%(l—i—s))

q(¢*—1) p-1
(For details, see [42], [57], [65].) It is interesting to compare this result with
the estimates obtained in the proof of Theorem 4.4.4 by our elementary
means.

sq(p

Now, recall the trace formula for X?:?, as written before Proposition 4.4.3:

2 m "2 sin(m+1)6;
so(pm)=—p:2 77
Q(P™) =~ p Z 0,
7=0
We leave as an easy exercise the proof that the dominant term q(q+—1) %

is exactly the contribution of the trivial eigenvalues:

0o = ilogyp if (2)=1;
6o = ilog\/p and 60,1 =mw+ilog,/p if (%):—1.

Suppose for simplicity that we are in the first case. Then, from the Ramanujan-
Eichler estimate on sg(p™), we get:
2 & sin(m+1)0; em
2 5 sinm+ D0 _ (r?) .
n sin 0;
j=1
So, if some §; is not real, as in the proof of Theorem 4.4.4 we may write
0; = ivp; or ; = m+ irp;, with +p; € (0,1og ,/p], and the corresponding term
is

2 sin(m+1)0; 2 sinh(m+1); S

0
n sin ¢; n sinh 1;

since m is even. This quantity cannot cancel with the contributions of the
real 6;’s, since we certainly have

2 i 1) 6;
L S W L Y

) sin 6;
:0; real
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So, if some 6; is not real, by choosing ¢ small enough, we get, for m a large

sin (m+1)6;
sin 6; '

n—1
even number, a contradiction with the above estimate on )

j=1
This way one proves that the graphs X?? are Ramanujan.

Exercises on section 4.4.
1) Check that z +— 2,/pcosz maps ©, bijectively onto [—(p + 1),p + 1].

2) Prove that, for 6 real: w‘ <m+ 1

sin 6
3) Show that Uy, (%) =p 7. %.

4.5 Notes on Chapter 4

4.2. Theorem 4.2.2 is due to Lubotzky-Phillips-Sarnak [42], with a substan-
tial part being obtained independently by Margulis [46]. For applications of
the graphs XP¢ to problems in automorphic forms, dynamical systems, and
operator algebras, see [65].

4.3. The construction of the graphs YP? also appears in [42], [65], [57].

When (%) = —1, Biggs and Boshier proved in [6] that the constant ¢ = 3 in

Corollary 4.3.6(b) is the best possible; namely
g(XP?) <4log, q+1log, 4 +2.

As far as the constant ¢ in Definition 0.12 is concerned, examples nearly
as good as the XP?’s were constructed by Lazebnik, Ustimenko and Woldar
[38]; more precisely, for every prime power ¢, they construct families (X, ) men
of ¢g-regular graphs such that

4
9(Xm) 2 3 logy(q — 1) -logy_y [Xm| -

4.4. For modular cusp forms of weight 2, the Ramanujan conjecture was
proven by Eichler [23] as a consequence of Weil’s proof of the Riemann
hypothesis for curves over a finite field (see [68], [69]).
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He did so by relating the eigenvalues of certain operators acting on such
spaces of cusp forms, to the zeroes of zeta functions of modular curves over
the fields IF,. These operators are known as Hecke operators; they are close
relatives of the operators A, used in our setting in section 1.4. The Ramanu-
jan property turns out to be equivalent to the Riemann Hypothesis for these
zeta functions. In higher weight, the Ramanujan conjecture was proven by
Deligne [18]. All these works rely heavily on algebraic geometry over finite
fields.
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Appendix A

4-regular graphs with large
girth

The aim of this Appendix is to give, following Margulis [45], a completely
elementary construction of a family of 4-regular graphs with large girth, with
an explicit estimate on the constant C in Definition 0.12. These graphs will
be Cayley graphs of SLy(q), where ¢ is an odd prime.

Let 74 : SLo(Z) — SLa(q) denote reduction modulo ¢. In SLy(Z), consider

the two matrices
1 2 1 0
(Y ()

Set then A, = 7,(A), By = 74(B), and define
Sq = {Aq’Aq_lan’B(;l}a

so that S, is a 4-element subset of SLa(g) (since ¢ is odd). Set X, =
g(SLZ(q)JSq)

A.1. Lemma. For an odd prime g, the graph X, is a 4-regular, connected
graph on ¢(¢? — 1) vertices.

Proof. X, is 4-regular, since |S,;| = 4; the number of vertices is given by
Proposition 3.1.1(b). By Proposition 4.1.2(c), connectedness of X, is equiv-
alent to showing that S, is a generating subset for SLa(g). To see the latter,
we observe that, by Lemma 3.2.1, the matrices

(0 1) (i 1)

147
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PESY 11 att
generate SLa(g). Since 4,° = ( ) and B,? = (1 1

0 1 1 O),we see that
Sy generates SLa(g). O

To show that the graphs X, are a family with large girth, we need some
information about the subgroup H of SLs(Z) generated by A and B.

A.2. Proposition. H is isomorphic to the free group s on two genera-
tors.

Proof. H is the set of reduced words over the alphabet {A, A1, B, B 1};
recall that a word is reduced if it contains no occurence of AA™!, A71A,
BB~!, B~!B. Non-empty reduced words have exactly one form among the
four following ones:

a) Words starting and finishing with a power of A:
Ak B gk gl Ak Bl gk
where k;, 4; € Z—{0} 1<i<r+1,1<j5<r).
b) Words starting and finishing with a power of B:
B At BR2 g2 | BRr Al ghr
where ki, 0; € Z—{0} (1<i<r+1,1<j<r).
¢) Words starting with a power of A and finishing with a power of B:
Akt Bh gk gl Ak Bl
where k;, 0; € Z— {0} (1 <i,5 <r).
d) Words starting with a power of B and finishing with a power of A:
B At pk2 gl | Bhr Al
where k;, 0; € Z— {0} (1 <i,5 <r).

To prove that H is the free group over A and B, we have to show that
any non-empty reduced word above defines a non-identity element in H. For
this, we will use a method going back to R. Fricke and F. Klein [26], called
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Figure A.1:

today the “ping-pong lemma”. Let SLo(Z) act on R? by its standard linear
action, and define two subsets E, F of R? as follows (see Figure A.1)

E={(z,y) € R : Jy| > |z}

F={(z,y) €®: |z| > |y}

One sees immediately that A*(E) C F (k € Z — {0}) and BF) C E
(¢ € Z — {0}). Now take a reduced word of the first kind above:

Wy = AFt B gk Bl2 Ak Bl pkrar
to apply it to F, we start playing ping-pong;:
AFr+1(E) C F
B Ab+1(E) CE
Ak B Ak (B C F
Bbr-1 gk B pkr+1(B) c E

Wi(E) = Ak BY Ak BY ARy (B) C F .

Since W1(E) C F and EN F = (), clearly W; # 1. Proceeding symetrically,
for a reduced word W5 of the second form, we get Wo(F') C E and therefore
Wy # 1.

Now let W5 = Ak1 Bl Ak Bt be a reduced word of the third kind.
Choose k € Z with k # ki. Then A~* W3 A, is a word of the first kind,
and therefore A=% W3 A* # 1. Clearly this implies W5 # 1. The case of a
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reduced word Wy of the fourth kind is completely symmetric, so the proof
is finished. O

We endow R? with the standard scalar product
Elm=&m+&n
(for vectors & = (£1,&), n = (n1,m2) in R?); the corresponding euclidean

norm 1is
1€l = /& + &3

Let M2(R) be the space of 2-by-2 matrices with real coefficients. We define
the operator norm of T € M3(R) as

7 =sup{% e -0.0)].

Then, by definition we have
1€l < (1711 1€l
for every ¢ € R2. From this, it follows immediately that
[Tl < Tl 1€
for T,T'" € M>(R), hence

17T < |1 7]

b

A.3. Lemma Let T = (a
c d

transposed matrix.

) € M>(R); denote by T* = (Z ccl) the

DT =175
2) Tl = 1T T|"/%;
3) IT|l = max {|al, [b], |e], |d] }-

4) If T is symmetric (b = ¢) with eigenvalues A1, A2 € R, then ||T| =
max {|A1], [Az(}.
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Proof. The proof is based on the following basic inequality, which follows
immediately from the Cauchy-Schwarz inequality:

KT &l < ITIIEN Ninl

for every £,n € R2.

1)

Since (T ¢ | ) = (€| Tt n), we have

[ 1Tt < 71 gl il

for every &,n € R?. Setting & = T, we get
1T nl* < T nll [l
from which we deduce
1T nll < Tl 1]

for every n € R2, hence ||T?|| < ||T||. By symmetry we also have the
reverse inequality.

We have [T T < [T |T|| = ||T||?, by (1). To prove the converse
inequality, observe that, for every ¢ € R?:

ITEI* =(TE|TE) =(T"TE|&) < |T°T - |I¢]?
by the basic inequality. So ||T]|? < |T*T|.

Set £ = (170)7 n= (071) Then a = <T§ | 5)7 b= <T77 | §>7 ¢c= <T§ |
n), d = (T'n | n). So the result follows immediately from the basic
inequality.

If T is symmetric, it is conjugate to a diagonal matrix via an orthogonal
matrix. Since conjugating by an orthogonal matrix does not change
the operator norm, we may assume that 7' is diagonal; in other words,

= (Aol )(\)2) Then, for £ = (£1,&) € B2 — {(0,0)}:

ITEP _ ME+238 2 42
e = erg e

so ||T|| < max{|A1],|A2|}. The converse inequality follows from (3). O
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Example. As an application of the preceding lemma, let us compute the
1 2 1 ..
operator norm of A = ( ), B = ( O), and their inverses. We have

01 2 1
1 2
ta_
a3
and the eigenvalues of A* A are 3 + 2+/2. Thus, we have |A' A|| = 3 +2/2
and ||A|| = /3 4+ 2v2 =1+ /2, by Lemma A.3. Similarly

A I =Bl =B =1+ V2,
A.4. Theorem The graphs X, for ¢ an odd prime, satisfy

liminf 9Kd < 1 __ 1o8() 415400,
g—+oo logs [Xe| T 3logz(14++v/2)  3log(l++2)

Proof. Write g for g(X,). By vertex-transitivity, X, contains a circuit of
length g starting and ending at 1 € SLo(q):

Iy = 1,:81,...,.’59_1,.%‘9 =1.

Since X, is a Cayley graph, we find ai,as,...,a4 € S, such that z; =
a1 az...0; 10; (1 <i< g);let & be the unique element of {4, A~1, B, B~1}
such that 7,(0;) = ;. Then a1 &z ...a4—1 a4 is a reduced word in H (since
it is lifted from a circuit in X;) and, since H is free (Proposition A.2), we
have Gy Gp ... Gyy—1 Gg # 1 in H. On the other hand, since 74(q;1 Gz ... ay) =
a1 a...aq =1y =1, we have

a1 as...a4 € Kerry.

This means that all coefficients of oy az...ay — 1 are divisible by ¢; since
Q1Gy...09—1#0, by Lemma A.3(3) we obtain

la1aa...aq —1]| > q.

By the triangle inequality: |1 &2...¢&4]| > ¢ — 1. On the other hand, by
the previous example, we also have

@1 @z ... Gl < (14+V2)9.

Taking logarithms to the base 3, we get:
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logs(q — 1) < glogy(1 +V2).
By Lemma A.1:
1
logz(g —1) = 3 logs [ Xq| +0(1)

so that g > m logs | X,| + 0(1) and the result follows. O

The above exposition owes much to an unpublished paper by P. de la
Harpe, “Construction de 2 familles de graphes remarquables” (1989).

Exercises on Appendix A

1. For T' € M»(R), why is ||T|| finite? Check carefully that 7' — ||T']| is
indeed a norm on Ma>(R).

2. Show that Theorem A.4 can be improved to

liminf 950 2 :
q—+00 log3 |Xq| 3]0g3(1 + \/i)

by proceeding as follows: instead of working with ajas...ay — 1,
. ~ ~ I e | ~—1 . .
work with @y ... a[%] Qg Oy ... a[%]H. all the coefficients of this
matrix are divisible by ¢. Show that one has either ||@; ... &[1] | >4
2

or ||Eig_1 o,

1 o~
g_l...a[%]HH > 4. Deduce that

< (1+V2)5+,

N [

and conclude.
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simple 13
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Spectral gap 8, 16
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