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Abstract

Let Γ be an arithmetic lattice in an absolutely simple Lie group
G with trivial centre. We prove that there exists an integer N ≥ 2, a
subgroup Λ of finite index in Γ, and an action of Λ on ZN such that
the pair (Λ n ZN , ZN ) has property (T). If G has property (T), then
so does Λ n ZN . If G is the adjoint group of Sp(n, 1), then Λ n ZN is
a property (T) group satisfying the Baum-Connes conjecture. If Λn is
an arithmetic lattice in SO(2n, 1), then the associated von Neumann
algebras (L(Λn n ZNn))n≥1 are a family of pairwise non-isomorphic
group II1-factors, all with trivial fundamental groups.

1 Introduction and results

Let G be a locally compact group, and let H be a closed subgroup. The pair
(G, H) has property (T) if every unitary representation of G almost having
invariant vectors, has non-zero H-fixed vectors. The group G has Kazhdan’s
property (T) if and only if the pair (G, G) has property (T).

Suppose that G acts by automorphisms on a locally compact group N ,
and form the semi-direct product GnN . In this paper we shall be concerned
with the property (T) for the pair (G n N, N).

Property (T) for the pair (SL2(IR) n IR2, IR2) already plays a big rôle in
Kazhdan’s original paper [Kaz67], to establish property (T) for SLn(IR), n ≥
3. Later, property (T) for the pair (SL2(Z) n Z2, Z2) was exploited by Mar-
gulis [Mar73] to give the first explicit example of an infinite family of ex-
panding graphs.
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Observe that SL2(Z) is an arithmetic lattice in the simple Lie group
SL2(IR). Our main result states that semi-direct product pairs with property
(T) can be obtained, at least virtually, from any arithmetic lattice. Before
stating it precisely, we recall the relevant definitions; good references about
lattices are [Bor69], [Zim84], [Mar91], [WM].

Definition 1 Let G be a real, semisimple Lie group with finite centre, and
let Γ be a discrete subgroup in G.

a) Γ is a lattice in G if the homogeneous space G/Γ carries a finite,
G-invariant measure.

b) A lattice Γ in G is uniform if G/Γ is compact.

c) A lattice Γ in G is arithmetic if there exists a semisimple algebraic Q-
group H and a surjective continuous homomorphism φ : H(IR)0 → G,
with compact kernel, such that φ(H(Z)∩H(IR)0) is commensurable with
Γ (here H(IR)0 is the connected component of identity in H(IR)).

Definition 2 A real Lie group is absolutely simple if its complexified Lie
algebra is simple.

A simple Lie group is absolutely simple if and only if it is not locally
isomorphic (as a real Lie group) to a complex Lie group (see (10.10) in
[WM]). With this we can formulate our main result.

Theorem 1 Let G be a non-compact, absolutely simple Lie group with trivial
centre. Let Γ be an arithmetic lattice in G. There exists an integer N ≥ 2,
a subgroup Λ of finite index in Γ, and an action of Λ on ZN such that:

i) the pair (Λ n ZN , ZN) has property (T);

ii) Λ n ZN is torsion-free and has infinite conjugacy classes.

Note that we have no idea whether Theorem 1 holds true for non-arithmetic
lattices (which are known to exist in SO(n, 1) for every n ≥ 2 - see [GPS88],
and in SU(n, 1) for 1 ≤ n ≤ 3 - see [DM86]). A partial generalization
of Theorem 1 to the case where Γ is an irreducible, arithmetic lattice in a
semisimple Lie group G, will be discussed as Theorem 4 in §2. An explicit
value of the integer N in Theorem 1, will be given as part of Theorem 4.

It is known (see p. 26 in [dlHV89]) that SLn(Z) n Zn has property (T)
for n ≥ 3. The following Corollary generalizes this fact and provides new
examples of groups with property (T).
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Corollary 1 Let G be a non-compact, absolutely simple Lie group with triv-
ial centre, which is not locally isomorphic to SO(n, 1) or SU(m, 1). Let Γ be
a lattice in G. There exists an integer N ≥ 2, a subgroup Λ of finite index
in Γ, and an action of Λ on ZN such that Λ nZN is torsion-free, has infinite
conjugacy classes and property (T).

We conclude the paper by giving two applications of Theorem 1. The first
one is about the Baum-Connes conjecture (see [BCH94]). It is known that,
until the work of V. Lafforgue [Laf98], property (T) was a major stumbling
block for proving the Baum-Connes conjecture (see [Jul98]). So it seems
interesting to construct new examples of groups with property (T) which
satisfy the Baum-Connes conjecture. Building on results of P. Julg [Jul02],
who established the Baum-Connes conjecture for Sp(n, 1), we prove:

Theorem 2 Keep the notations and assumptions of Corollary 1. Assume
moreover that G is the adjoint group of Sp(n, 1) (n ≥ 2). Then the group
ΛnZN is a property (T) group for which the Baum-Connes conjecture holds.

Our second application is about von Neumann factors of type II1. Let
M be a II1-factor; for t > 0, denote by Mt the compression of M⊗B(H) by
any projection with trace t. The fundamental group of M is

F(M) = {t ∈ IR×
+ : M t ' M},

a subgroup of the multiplicative group of positive real numbers. It was a
problem asked by R.V. Kadison in 1967, whether there exists a II1-factor M
such that F(M) = {1}. This was solved by Popa in [Popa] (see also [Popb]
for a shorter proof): building on Gaboriau’s theory of L2-Betti numbers
for measurable equivalence relations [Gab02], Popa proved that, for Γ =
SL2(Z) n Z2, the corresponding factor L(Γ) has trivial fundamental group.
Using the same techniques, we prove:

Theorem 3 Set Γn = SO(2n, 1)(Z), a non-uniform arithmetic lattice in the
simple Lie group SO(2n, 1) (n ≥ 1). Set Nn = n(2n + 1) = dimIR SO(2n, 1),
and let Γn act via the adjoint representation on ZNn, viewed as the integral
points in the Lie algebra of SO(2n, 1). Set finally Mn = L(Γn n ZNn). Then
(Mn)n≥1 is a sequence of pairwise non-isomorphic group II1-factors, all with
trivial fundamental group.

We emphasize here the fact that the Mn’s are group factors: indeed, if
F(M) = {1}, then the M t’s, for t > 0, provide uncountably many pairwise
non-isomorphic factors, all with trivial fundamental group.
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2 Proofs of Theorem 1 and Corollary 1

We first recall a useful sufficient condition for property (T) of semi-direct
product pairs; see Proposition 2.3 in [Val94] for a proof.

Proposition 1 Let V be a finite-dimensional, real vector space; let H ⊂
GL(V ) be a semisimple subgroup. If the product of the non-compact simple
factors of H has no non-zero fixed vector in V , then the pair (H n V, V ) has
property (T). �

We will need some material about algebraic groups. Let k be a number
field, i.e a finite extension of Q, and let X be the set of field embeddings
of k into C. As usual, we say that two distinct embeddings σ, τ : k → C
are equivalent if σ(x) = τ(x) for all x ∈ k; an archimedean place of k is an
equivalence class of embeddings, and we denote by X the set of archimedean
places of k.

If G is a linear algebraic group defined over k, set Rk/Q(G) =
∏

τ∈X Gτ ,
where Gτ is obtained from G by applying τ to the polynomials defining G.
This is the restriction of G to Q, of which we recall the main properties (for
all this, see [Zim84], Proposition 6.1.3).

• For g ∈ G(k), set ∆(g) = (τ(g))τ∈X . Then Rk/Q(G) is an algebraic
group over Q, such that

(Rk/Q(G))(Q) = ∆(G(k)).

• Let O be the ring of integers of k. Then

(Rk/Q(G))(Z) = ∆(G(O)).

• Let τ0 be the identity of k. The projection p : Rk/Q(G) → Gτ0 =
G is defined over k, and yields bijections (Rk/Q(G))(Q) → G(k) and
(Rk/Q(G))(Z) → G(O).

• For every subfield F of C such that τ(k) ⊂ F for every τ ∈ X, each Gτ

is defined over F and

(Rk/Q(G))(F ) =
∏

τ∈X

Gτ (F ).
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Let K be the normal closure of k, and let Gal(K/Q) be its Galois group
over Q. Let W =

⊗

τ∈X Kn be the tensor product over K of |X| copies of
Kn (so that dimK W = n|X|). Let GLn(k) act on W by

ρ(g) =
⊗

τ∈X

τ(g)

(g ∈ GLn(k)). If H = Rk/Q(GLn), then ρ is a representation of H defined
over K. Since H(K) =

∏

τ∈X GLn(K), we have ρ((gτ )τ∈X) =
⊗

τ∈X gτ for
(gτ )τ∈X ∈ H(K). The following lemma was kindly provided by Y. Benoist.

Lemma 1 With notations as above, the representation ρ is defined over Q,
and there exists a GLn(k)-invariant Q-subspace U of W which is a Q-form
of ρ, i.e. the map K ⊗Q U → W is a GLn(k)-equivariant isomorphism.

Proof: Let I be the set of maps X → {1, . . . , n}, so that we may denote
by (ei)i∈I the standard basis of W associated with the standard basis of Kn.
Let Gal(K/Q) act on I by γ · i(τ) = i(γ−1 ◦ τ), for τ ∈ X, i ∈ I. Consider
the semi-linear representation of Gal(K/Q) on W given by

γ(
∑

i∈I

λiei) =
∑

i∈I

γ(λi)eγ·i

(λi ∈ K). Observe that, for vτ ∈ Kn (τ ∈ X):

γ(
⊗

τ∈X

vτ ) =
⊗

τ∈X

γ(vγ−1◦τ ).

This shows that the action of Gal(k/Q) on W commutes with the represen-
tation ρ of GLn(k).

Recall that the group Gal(K/Q) acts on representations π : H → GL(W )
defined over K, by γ · π = γ ◦ π ◦ γ−1 (where γ ∈ Gal(K/Q)). Here, since
γ · ρ = ρ for every γ ∈ Gal(K/Q), the representation ρ is defined over Q, by
[Bor91], AG 14.3.

Finally, let U be the space of points in W which are fixed under Gal(K/Q):
by [Bor91], AG 14.2, this is a Q-form for W . Since ρ commutes with the ac-
tion of Gal(K/Q) on W , the space U is GLn(k)-invariant. �

Let G be a real, semisimple Lie group with trivial centre and no compact
factor. Recall that a lattice Γ in G is irreducible if, for any non-central,
closed, normal subgroup N in G, the projection of Γ in G/N is dense.
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Assume that Γ is an irreducible, arithmetic lattice in G. By definition
1(c), there is a semisimple algebraic Q-group H and φ : H(IR)0 → G a
surjective homomorphism, with compact kernel, such that φ(H(Z)∩H(IR)0)
is commensurable with Γ.

Such an H is obtained as follows: by Corollary 6.54 in [WM], there exists
a number field k and a simple algebraic k-group L such that H =

∏

τ∈X Lτ

and φ can be identified with the projection of H(IR)0 onto the product of
its non-compact simple factors. If Γ is not uniform in G, then by Corollary
6.1.10 in [Zim84] we may assume that H(IR)0 has no compact factor.

Theorem 4 Let Γ be an arithmetic, irreducible lattice in a real, semisimple
Lie group G with trivial centre and no compact factor. Let H, φ, k, L be as
above, and let X be the set of embeddings of k into C. Assume that k is totally
real (so that X = X). Set N = (dimIR L(IR))|X|. The exists a subgroup Λ of
finite index in Γ, and an action of Λ on ZN such that:

i) the pair (Λ n ZN , ZN) has property (T);

ii) Λ n ZN is torsion-free and has infinite conjugacy classes.

If G is absolutely simple, then k is totally real, by [Mar91], (1.5) in
Chapter 9; this shows that Theorem 4 implies Theorem 1.

Proof of Theorem 4: The idea of the proof is to construct a represen-
tation of H(IR)0 on a finite-dimensional space V , satisfying simultaneously
the following two conditions:

• the pair (H(IR)0
n V, V ) has property (T);

• some finite index subgroup in H(Z) ∩ H(IR)0 stabilizes some lattice in
V .

The proof is in 3 steps.

1. Construction of a rational representation of H on QN , such that the
pair (H(IR)0

n IRN , IRN ) has property (T):

Since k is totally real, we have H = Rk/Q(L). Let K be the normal
closure of k. Let l

τ be the Lie algebra of Lτ , and Adτ be the adjoint
representation of Lτ on l

τ . Both Lτ and the representation Adτ of
Lτ are defined over K ([Bor91], I.3.13). Set n = dimk l. Choosing
a basis in l, we get an identification of K ⊗k l

τ with Kn, for every
τ ∈ X; set W =

⊗

τ∈X Kn, and let ρ be the representation of GLn(k)
on W defined before lemma 1. Define a representation of L on W by
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π = ρ ◦ Ad, so that π =
⊗

τ∈X Adτ is a representation of H , which
is defined over Q by lemma 1. Let U be the Q-form of W given by
lemma 1 and its proof. Since π is defined over Q, it defines a rational
representation of H(IR) over IR ⊗Q U ' IRN .

Note that, as a representation of H(IR), this is exactly the external
tensor product of the adjoint representations of the Lτ (IR)’s (τ ∈ X).
Take τ such that Lτ (IR) is non-compact; since Lτ (IR)0 is simple, it has
no non-zero fixed vector in its adjoint representation. So the product
of these Lτ (IR)0’s, i.e. the product of the non-compact simple factors
of H(IR)0, has no non-zero fixed vector in

⊗

τ∈X l
τ (IR) ' IRN . By

Proposition 1, the pair (H(IR)0
n IRN , IRN) has property (T).

2. Construction of the semi-direct product ΛnZN : By lemma 1, the space
U is invariant under H(Q) = {∆(g) : g ∈ L(k)}; in particular, it is
invariant under H(Z) = {∆(g) : g ∈ L(O)}. Choose a Q-basis of U ,
and let M be the Z-module generated by that basis (so that M ' ZN).
By Proposition 7.12 in [Bor69], there exists a congruence subgroup Λ1

in H(Z) ∩ H(IR)0 which leaves M invariant.

By Selberg’s lemma (see [Alp87]), Λ1 admits a torsion-free, finite index
subgroup Λ2; of course φ(Λ2) is commensurable with Γ. Replacing Λ2

by a finite-index subgroup if necessary, we may assume that φ(Λ2) ⊂ Γ.
Notice that, since ker φ is compact and Λ2 is torsion-free, Λ2 intersects
ker φ trivially. We then set Λ = φ(Λ2), which acts on ZN via (π◦φ−1)|Λ.
The desired semi-direct product is then Λ n ZN . It is torsion-free since
Λ and ZN both are. Since Λ n ZN is a lattice in H(IR)0

n IRN , the pair
(Λ n ZN , ZN) has property (T).

3. Λ n ZN has infinite conjugacy classes: Indeed, it is a well-known fact
that lattices in semisimple Lie groups with trivial centre have infinite
conjugacy classes. This already shows that every element in Λ n ZN

which projects non-trivially to Λ, has infinite conjugacy class. It re-
mains to prove the same for a non-zero element x in the normal sub-
group ZN . Equivalently, we must show that the Λ-orbit of x in ZN , is
infinite. So we take x ∈ ZN with finite Λ-orbit, and show that x = 0.
Let Λx be the stabilizer of x in Λ: it is a finite-index subgroup of Λ.
Set then C = {h ∈ H(IR) : π(h)(x) = x}. Since π is a rational repre-
sentation, C is a Zariski closed subgroup of H(IR), containing φ−1(Λx).
The latter is a lattice in H(IR), so it is Zariski dense, by the Borel
density theorem [Bor60]. This means that x is fixed under H(IR). By
our choice of π, this implies x = 0.
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Remark: If G = H(IR)0 and Γ = H(Z)∩H(IR)0, then we may take Λ = Γ
in Theorem 4 (provided we don’t insist that Λ be torsion-free). In other
words, in this situation there is no need to pass to a finite-index subgroup.
To see it, let M ⊂ U be the Z-module appearing at the beginning of step 2 in
the proof of Theorem 4. As M is invariant under the finite-index subgroup
Λ1, the orbit of M under Γ is finite. Then the sum of all the Z-modules in
the orbit, is a Γ-invariant free Z-module of rank N .

We now re-visit some examples of arithmetic lattices, taken from [Mar91],
1.7(vi) in Chapter IX. Since Theorem 4 applies to each of them, we will in
each case identify k, N and H .

Example 1 Let Φ be a quadratic form in n + 1 variables, with signature
(n, 1), and coefficients in a number field k ⊂ IR. We denote by SOΦ the
special orthogonal group of Φ: this is a simple algebraic group defined over
k. Set Γ = SOΦ(O), where as usual O is the ring of integers of k.

a) Φ = x2
1 + . . . + x2

n − x2
n+1; here k = Q and H = SOΦ, so that Γ =

SO(n, 1)(Z) is a non-uniform arithmetic lattice in SOΦ(IR) = SO(n, 1),
to which the previous remark applies. Here N = dimIR SO(n, 1) =
n(n+1)

2
. Let J be the (n + 1) × (n + 1), diagonal matrix with diagonal

values (1, . . . , 1,−1); the Lie algebra of SO(n, 1) is

so(n, 1) = {X ∈ Mn+1(IR) : X tJ + JX = 0}.

The adjoint representation of SO(n, 1) on so(n, 1) is given by Ad(g)(X) =
gXg−1 (g ∈ SO(n, 1), X ∈ so(n, 1)). So the restriction of Ad to Γ
leaves invariant so(n, 1) ∩ Mn+1(Z) ' ZN . This example will be used
below in the proof of Theorem 3.

b) Φ = x2
1 + . . . + x2

n −
√

2x2
n+1; here k = Q(

√
2) and H = SOΦ × SOσ(Φ),

where σ is the non-trivial element of Gal(k/Q). Then Γ = SOΦ(Z[
√

2])
is a uniform arithmetic lattice in SOΦ(IR) ' SO(n, 1). Here N =

(n(n+1)
2

)2.

c) Φ = x2
1 + . . . + x2

n − δx2
n+1 where δ > 0 is a root of a cubic irreducible

polynomial over Q, having two positive roots δ, δ′ and one negative root
δ′′. Here k = Q(δ); let σ, τ be the embeddings of k into IR defined by
σ(δ) = δ′ and τ(δ) = δ′′. Then H = SOΦ × SOσ(Φ) × SOτ(Φ) and Γ is
an irreducible, uniform, arithmetic lattice in SOΦ(IR) × SOσ(Φ)(IR) '
SO(n, 1) × SO(n, 1). Here N = (n(n+1)

2
)3.
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Remark: Let k be a number field, with normal closure K. If k is not
totally real, we do not know whether Theorem 4 is still valid. The reason is
that, while the Galois group Gal(K/Q) acts on the set X of embeddings k →
C (by σ·τ = σ◦τ), it does not act on the set X of archimedean places, because
of pairs of complex places. So if we start from H =

∏

τ∈X Lτ (this group
is indeed defined over Q, see [WM] ex. (6:30)), we will be unable to appeal
to lemma 1, which appeals to the Galois-fixed point criterion for rationality
over Q. A concrete example to which this remark applies, is the following
(see [Mar91], 1.7(vi)(6) in Chapter IX): set Φ = x2

1 + . . . + x2
n − x2

n+1 and

k = Q( 3
√

2). Here k has one real place and one complex place; Γ = SOΦ(O)
is an irreducible, non-uniform arithmetic lattice in SO(n, 1)× SO(n + 1, C),
for which we do not know whether Theorem 4 holds.

Proof of Corollary 1: Under the assumptions of the Corollary, Γ is an
arithmetic lattice in G: if rankIRG ≥ 2, this is Margulis’ famous arithmeticity
theorem (see [Mar91], Thm (A) in Chapter IX; [Zim84], 6.1.2); if rankIRG =
1 (i.e. G is locally isomorphic either to Sp(n, 1) (n ≥ 2) or to F4(−20)),
this follows from the work of Corlette [Cor92] and Gromov-Schoen [GS92].
Theorem 1 then applies and provides N ≥ 2 and a torsion-free Λ acting
on ZN , in such a way that Λ n ZN has infinite conjugacy classes and the
pair (Λ n ZN , ZN ) has property (T). On the other hand, the assumptions
also imply that G has property (T), and hence Λ too (see [dlHV89]). We
conclude by using the following fact: let

1 → N → H → H/N → 1

be a short exact sequence of locally compact groups; if the pair (H, N) has
property (T) and the group H/N has property (T), then the group H has
property (T) (the easy proof can be left as an exercice). �

3 Proof of Theorem 2

We recall that a locally compact group G satisfies the Baum-Connes conjec-
ture if, for every C∗-algebra A endowed with an action of G, the Baum-Connes
assembly map

µA,G : RKKG
∗ (EG, A) → K∗(A or G)

is an isomorphism. Here EG is the universal space for G-proper actions,
RKKG

∗ (EG, A) denotes the G-equivariant KK-theory with compact sup-
ports of EG and A, and K∗(Aor G) denotes the equivariant K-theory of the
reduced crossed product A or G; see [BCH94] for details.
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Let Γ be a lattice in the adjoint group of Sp(n, 1), (n ≥ 2). Corollary 1
provides N, Λ and an action of Λ on ZN such that Λ n ZN has property (T).
The Baum-Connes conjecture for Λ n ZN follows by combining the following
facts:

• The Baum-Connes conjecture holds for ZN (see [Kas95]).

• The Baum-Connes conjecture holds for Sp(n, 1): this is a remarkable
result of P. Julg [Jul02].

• The Baum-Connes conjecture is inherited by closed subgroups, as was
proved by Chabert and Echterhoff [CE01]; in particular it is satisfied
by the lattice Λ.

• Let 1 → Γ0 → Γ1 → Γ2 → 1 be a short exact sequence of countable
groups. If Γ0 and Γ2 satisfy the Baum-Connes conjecture, and Γ2 is
torsion-free, then Γ1 satisfies the Baum-Connes conjecture. This is a
result of Oyono-Oyono (Theorem 7.1 in [OO01]). We apply it to the
short exact sequence 1 → ZN → Λ n ZN → Λ → 1: since Λ is torsion-
free, and ZN and Λ satisfy the Baum-Connes conjecture, then so does
Λ n ZN . �

4 Proof of Theorem 3

Recall that a locally compact group H is a-T-menable, or has the Haagerup
property, if H admits a unitary representation almost having invariant vec-
tors, whose coefficient functions vanish at infinity on H . We refer to [CCJ+01]
for an extensive study of this class of groups. We will use the fact that closed
subgroups of SO(k, 1) and SU(m, 1) are a-T-menable.

We now recall the portions of Popa’s theory [Popa] which are relevant
for our proof. Let N be a finite von Neumann algebra and let B be a von
Neumann subalgebra. In Definition 2.1 of [Popa], Popa defines property (H)
for the inclusion B ⊂ N ; in Proposition 3.1 of [Popa], he proves that, if a
countable group Γ acts on the finite von Neumann algebra B (preserving
some normal, faithful, tracial state), and N = B o Γ, the inclusion B ⊂ N
has property (H) if and only if Γ is a-T-menable.

In Definition 4.2 of [Popa], Popa also defines property (T) for the inclusion
B ⊂ N . In Proposition 5.1 of [Popa], he proves that, if H is a subgroup of
Γ, the inclusion L(H) ⊂ L(Γ) has property (T) if and only if the pair (Γ, H)
has property (T).

Now let M be a II1-factor, and let A be a Cartan subalgebra in M .
Following Definitions 6.1 and 6.4 of [Popa], we say that A is a HTs-Cartan
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subalgebra if the inclusion A ⊂ M satisfies both property (H) and property
(T). We denote by HT s the class of II1 factors with HTs-Cartan subalgebras.

Example 2 Let Γ be an arithmetic group in the adjoint group of SO(k, 1)
or SU(m, 1). Let N, Λ be provided by Theorem 1. Set M = L(Λ n ZN). Let
TN be the N-dimensional torus, viewed as the Pontryagin dual of ZN . Since
L(ZN ) ' L∞(TN) in a Λ-equivariant way, we have

M = L(ZN) o Λ ' L∞(TN) o Λ.

Since Λ n ZN has infinite conjugacy classes, M is a II1-factor; equivalently,
the action of Λ on TN is ergodic.

Set A = L(ZN ); since Λ is a-T-menable and the pair (Λ n ZN , ZN) has
property (T), we see that A is an HTs-Cartan subalgebra in M .

Popa’s fundamental result (Theorem 6.2 in [Popa]) is that a factor M
in the class HT s has a unique HTs-Cartan subalgebra, up to conjugation
by unitaries in M . In particular, there exists a unique (up to isomorphism)
standard equivalence relation RM on the standard probability space, imple-
mented by the normalizer of any HTs-Cartan subalgebra of M . This means
that any invariant of the equivalence relation RM becomes an isomorphism
invariant of the factor M .

This brings us to Gaboriau’s L2-Betti numbers for measurable equivalence
relations [Gab02]. If R is a standard equivalence relation on the standard
probability space (X, µ), Gaboriau defines, for n = 0, 1, 2 . . . the L2-Betti

number b
(2)
n (R) ∈ [0, +∞[. We will use two properties of these numbers.

1) If B is a Borel subset of X, with 0 < µ(B), denote by RB the restriction

of R to B. Then b
(2)
n (RB) = b

(2)
n (R)
µ(B)

for every n ≥ 0.

2) If R is induced by a measure preserving, essentially free action of a

countable group Γ, then b
(2)
n (R) = b

(2)
n (Γ) for every n ≥ 0; here b

(2)
n (Γ)

denotes the n-th L2-Betti number of Γ, as defined by Cheeger and
Gromov [CG86].

Coming back to a factor M in the class HT s, we define -after Popa- the
n-th L2-Betti number of M as b

(2)
n (M) = b

(2)
n (RM). From property 1) above,

if 0 < b
(2)
n (M) < ∞ for some n ≥ 0, then b

(2)
n (M t) = b

(2)
n (M)

t
which implies

immediately that F(M) = {1}.
Proof of Theorem 3: We know by example 1(a) that Γn = SO(2n, 1)(Z)

is an arithmetic lattice in SO(2n, 1), and that the pair (Γn n ZNn, ZNn) has
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property (T). By example 2, the von Neumann algebra Mn = L(Γn nZNn) is
a II1-factor in the class HT s. Since the equivalence relation RMn

is induced
by the action of Γn on TNn , by property 2) above we have for every k ≥ 0

b
(2)
k (Mn) = b

(2)
k (Γn).

Now, for any lattice Λ in SO(2n, 1), the L2-Betti number b
(2)
k (Λ) was esti-

mated by Borel [Bor85]: the result is

b
(2)
k (Λ) =

{

0 if k 6= n
> 0 if k = n

So Mn has exactly one non-zero L2-Betti number, namely the n-th one. This
proves simultaneously that F(Mn) = {1} and that the Mn’s are pairwise
non-isomorphic. �

Remarks:

i) Theorem 3 also holds with SO(2n, 1) replaced by SU(n, 1), Nn being
replaced by dimIR SU(n, 1) = n(n+2) and SO(2n, 1)(Z) being replaced
by SU(n, 1)(Z[i]) (the latter being a non-uniform, arithmetic lattice in
SU(n, 1). The reason is that, for any lattice Λ in SU(n, 1), one has by
[Bor85]:

b
(2)
k (Λ) =

{

0 if k 6= n
> 0 if k = n

as in the case of SO(2n, 1). On the other hand, if Λ is a lattice in
SO(2n + 1, 1), all its L2-Betti numbers are zero, so the same holds for
the corresponding II1-factors constructed in Example 2.

ii) For n ≥ 2, let Γn be a lattice in the adjoint group of Sp(n, 1). Let
Nn, Λn be provided by Corollary 1; set Mn = L(Λn n ZN). Then Mn is
a II1-factor with property (T) in the sense of Connes and Jones [CJ85];
so that F(Mn) is countable, by a result of Connes [Con80]. To the best
of our knowledge, it is unknown whether the Mn’s are pairwise non-
isomorphic. However, it is a result of Cowling and Zimmer [CZ89] that
the inclusions L(ZNn) ⊂ Mn are pairwise non-isomorphic.
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