
Convergence of Baumslag-Solitar groups

Yves STALDER∗

July 26, 2004

Abstract

We study convergent sequences of Baumslag-Solitar groups in the
space of marked groups. We prove that BS(p, q) → F2 for |p|, |q| → ∞
and BS(1, q) → Z o Z for |q| → ∞. For p �xed, |p| > 2, we show
that the sequence (BS(p, q))q is not convergent and characterize many
convergent subsequences. Moreover if Xp is the set of BS(p, q)'s for q

relatively prime to p and |q| > 2, then the map BS(p, q) 7→ q extends
continuously on Xp to a surjection onto invertible p-adic integers.

1 Introduction
Let G2 be the space of �nitely generated marked groups on two generators
(see section 2 for de�nition) and let F2 =

〈
a, b

∣∣ ∅〉
be the free group on two

generators. Baumslag-Solitar groups are de�ned by the presentations

BS(p, q) =
〈
a, b

∣∣ abpa−1 = bq
〉

for p, q ∈ Z∗ = Z\{0}. The purpose of the present paper is to understand how
Baumslag-Solitar groups are distributed in G2. More precisely, we determine
convergent sequences and in some cases we are able to give the limit group.
In the following results, we mark F2 and BS(p, q) by {a, b}.

Theorem 1 BS(p, q) → F2 when |p|, |q| → ∞.
∗Supported by the Swiss national Science Foundation, grant 20-101469
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In particular, the property of being hop�an is not open in G2 since BS(2k, 3k)

is known to be non hop�an for all k > 1 (see [LS77], Chapter IV, Theorem
4.9.) while F2 is hop�an. Theorem 1 is not so surprising because the length
of the relator appearing in the presentation of BS(p, q) tends to ∞ when
|p|, |q| → ∞. However, this relator is not the shortest relation in the group
for many values of (p, q). To prove Theorem 1, we give a lower bound for the
length of shortest relations in the more general setting of HNN-extensions
(see section 3).
We now �x the parameter p. In the case p = ±1, we show that the sequence

(BS(±1, q))q∈Z is convergent and we can identify the limit.

Theorem 2 Let the wreath product Z o Z = Z n ⊕i∈ZZ be marked by the
elements (1, 0) and (0, e0) where e0 ∈ ⊕i∈ZZ is the Dirac mass at 0. Then
BS(±1, q) → Z o Z when |q| → ∞.

In the case |p| > 2, we show that the sequence (BS(p, q))q∈Z is not conver-
gent in G2. As G2 is compact, it has convergent subsequences. The last result
we state in this introduction, among subsequences, characterizes many con-
vergent ones. However we don't actually know what the limits are. Remark
that the result also holds for p = ±1, even if it is in this case weaker than
Theorem 2.

Theorem 3 Let p ∈ Z∗ and let (qn)n be a sequence of integers relatively
prime to p. The sequence (BS(p, qn))n is convergent in G2 if and only if one
(and only one) of the following assertions holds:

(a) (qn)n is eventually constant;

(b) |qn| → ∞ and for all h > 1 the sequence (qn)n is eventually constant
modulo ph.

Note that condition (b) precisely means that |qn| → ∞ and (qn)n is conver-
gent in Zp, the ring of p-adic integers. The link between Baumslag-Solitar
groups and p-adic integers can be made more precise. We de�ne Xp to be
the set of BS(p, q)'s, for q relatively prime to p and |q| > 2 and we denote
by Z×p the set of invertible elements of Zp.
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Theorem 4 The map Ψ : Xp → Z ; BS(p, q) 7→ q extends to a uniformly
continuous and surjective map Ψ : Xp → Z×p . However, Ψ is not injective.

An immediate corollary of Theorem 3 or Theorem 4 is that (for |p| > 2) the
sequence (BS(p, q))q admits uncountably many accumulation points, namely
at least one for each invertible p-adic integer.
We end this introduction by a remark on markings of Baumslag-Solitar
groups. In this paper we always mark the group BS(p, q) by the generators
coming from its canonical presentation given above. Nevertheless, it is also an
interesting approach to consider di�erent markings on BS(p, q). For instance,
take p and q greater than 2 and relatively prime, so that Γ = BS(p, q) is
non-hop�an, the epimorphism φ : Γ → Γ given by a 7→ a and b 7→ bp being
non-injective (see again [LS77], Chapter IV, Theorem 4.9.). In [ABL+03], the
authors consider the sequence of groups Γn = Γ/ ker(φn) (marked by a and
b). They show that the sequence (Γn)n converges to an amenable group while,
being all isomorphic to Γ as groups, the Γn's are not amenable. This allow
them to prove that Γ is non-amenable, but not uniformly (cf. Proposition
13.3) and also shows that the property of being amenable is not open in G2.

Acknowledgements. I would like to thank Luc Guyot for his help in the
treatment of the example of symmetric groups and Alain Valette for his useful
comments and hints.

2 Preliminaries and examples
We collect in this section some de�nitions and material which are needed
in the rest of the paper. The reader which is familiar with the notions of
Presentations, HNN-extensions and topology on the space of marked groups
can skip directly to section 3. We nevertheless present at the end of this
section symmetric groups as a convergent sequence in G2. This example does
not seem to be published.

Presentations. Let X be a set and R be a collection of cyclically reduced
words in FX , the free group on X. Recall that the group given by the
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presentation
〈
X

∣∣ R〉
is Γ = FX/NR, where NR denotes the normal subgroup

of FX generated by R. If Γ =
〈
X

∣∣ R〉
, we call generator any element of X,

relator any element of R and relation any nontrivial element of NR.
Let w = xε1

1 . . . xεn
n be a reduced word in FX with εi ∈ {±1}. The integer

n is called the length of w and denoted `(w). The length of the shortest
relation of Γ will be denoted gΓ, for we observe it is the girth of the Cayley
graph of Γ (with respect to the generating set X). In case R = ∅, we set
gΓ = +∞.
If Γ =

〈
X

∣∣ R〉
, given γ ∈ Γ we de�ne its length to be

`Γ(γ) := min{n : γ = x1 . . . xn with xi ∈ X tX−1}
= min{`(w) : w ∈ FX , w = γ in Γ} .

HNN-extensions and Baumslag-Solitar groups. Suppose now that
H =

〈
X

∣∣ R〉
, and that φ : A → B is an isomorphism between subgroups

of H. The HNN extension of H with respect to A, B and φ is given by the
presentation

HNN(H, A, B, φ) :=
〈
X t {t}

∣∣ R, t−1at = φ(a) ∀a ∈ A
〉

.

Unless speci�ed otherwise, we always refer to the above presentation while
discussing of length of elements in a HNN-extension. An element γ ∈
HNN(H, A,B, φ) can always be written

γ = h0t
ε1h1 . . . tεnhn with n > 0, εi ∈ {±1}, hi ∈ H . (1)

The decomposition of γ in (1) is called reduced if no subword of type t−1at

(with a ∈ A) or tbt−1 (with b ∈ B) appears. We recall the following result,
which is called Britton's Lemma

Lemma 1 ([LS77], Chapter IV.2.) Let γ ∈ HNN(H, A,B, φ) and write as
in (1) γ = h0t

ε1h1 . . . tεnhn. If n > 1 and if the decomposition is reduced,
then γ 6= 1 in HNN(H, A, B, φ).

This shows in particular that the integer n appearing in a reduced decom-
position is uniquely determined by γ.
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Let us �nally recall that Baumslag-Solitar groups are de�ned by the pre-
sentations BS(p, q) =

〈
a, b

∣∣ abpa−1 = bq
〉
for p, q ∈ Z∗. We have BS(p, q) =

HNN(Z, qZ, pZ, φ) where φ is given by φ(qk) = pk

Marked groups and their topology. Introductory expositions of these
topics can be found in [Ch00] or [CG04]. We only recall some basics and
what we need in following sections.
A marked group on k generators is a pair (Γ, S) where Γ is a group and

S = (s1, . . . , sk) is a family which generates Γ. A marked group (Γ, S)

comes always with a canonical epimorphism φ : Fk → Γ and this gives an
isomorphism of marked groups between Fk/ ker φ and Γ. Hence a class of
marked groups can always be represented by a quotient of Fk. In particular
if a group is given by a presentation, this de�nes a marking on it.
Let Gk be the set of marked groups on k generators (up to marked iso-
morphism). Let us recall that the topology on Gk comes from the following
ultrametric: for (Γ1, S1) 6= (Γ2, S2) ∈ Gk we set d

(
(Γ1, S1), (Γ2, S2)

)
:= e−λ

where λ is the length of a shortest element of Fk which vanishes in one group
and not in the other one. But what the reader has to keep in mind is the
following characterization of convergent sequences.

Proposition 1 Let (Γn, Sn) be a sequence of marked groups. The following
are equivalent:

(i) (Γn, Sn) is convergent in Gk;

(ii) for all w ∈ Fk we have either w = 1 in Γn for n big enough, or w 6= 1

in Γn for n big enough.

Proof. (i)⇒(ii): Set (Γ, S) = lim
n→∞

(Γn, Sn) and take w ∈ Fk. For n su�-
ciently large we have d

(
(Γ, S), (Γn, Sn)

)
< e−`(w), which implies that we have

w = 1 in Γn if and only if w = 1 in Γ.
(ii)⇒(i): Set N = {w ∈ Fk : w = 1 in Γn for n big enough }, Γ = Fk/N ,
and �x r > 1. For n big enough, Γn and Γ have the same relations up to
length r (for the balls in Fk are �nite) and hence d(Γ, Γn) < e−r (we drop
the markings since they are obvious). This implies Γn →

n→∞
Γ. ¤
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Example 1 Let Γn = Sym(Z/nZ), marked by the transposition t = (01)

and the n-cycle s = (0 . . . n). Let Γ be the subgroup of Sym(Z) generated
(and marked) by the transposition t = (01) and the shift s : k 7→ k + 1. (We
have Γ ∼= Z n Sym0(Z) where Sym0(Z) is the set of permutations of Z with
�nite support (we de�ne the support of a permutation to be the complement
of �xed points) and Z acts by conjugation by s.)
With the given markings, we have Γn → Γ in G2 when n →∞.

To see it, set F2 =
〈
t, s

∣∣ ∅〉
. We take w ∈ F2 which we may write as

w = tktα1sj1t−α1 . . . tαmsjmt−αm .

We set f = tα1sj1t−α1 . . . tαmsjmt−αm and N = max16i6m(|αi| + 1). First
we show that for n > 3N , one has f = 1 in Γ if and only if f = 1 in Γn.
Indeed, the image of f in Γ is a product of transpositions, all with support in
{−N + 1, . . . N}. As n > 3N , the image of f in Γn is the same permutation
of {−N + 1, . . . N}, seen as a subset of Z/nZ.
To conclude, we now show that for n > max(3N, 2|k|), one has w = 1 in Γ

if and only if w = 1 in Γn. Indeed, if w = 1 in Γ, then k = 0 and f = 1 in Γ.
The former observation shows that w = f = 1 in Γn. On the other hand, if
w 6= 1 in Γ, we distinguish two cases:
Case 1: k 6= 0

The image of f in Γn has support in {−N +1, . . . N}. Thus it stabilizes N +1

(n > 3N) so that the image of w sends N + 1 to N + 1 + k. As n > 2|k|, we
have N + 1 + k 6≡ N + 1 modulo n. Hence w 6= 1 in Γn.
Case 2: k = 0

We have necessarily f 6= 1 in Γ, which implies w = f 6= 1 in Γn. ¤

3 Shortest relations in a HNN-extension and
convergence of Baumslag-Solitar groups

Let H =
〈
X

∣∣ R〉
and Γ = HNN(H, A, B, φ). In this section we give a lower

estimate for gΓ. As a higher estimate, we obviously get gΓ 6 gH , because a
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shortest relation in H is also a relation in Γ. Let us de�ne:

α := min
{
`H(a) : a ∈ A \ {1}} ;

β := min
{
`H(b) : b ∈ B \ {1}} .

Theorem 5 Let H =
〈
X

∣∣ R〉
and Γ = HNN(H,A, B, φ). Let α and β be

de�ned as above. Then we have

min{gH , α + β + 2, 2α + 6, 2β + 6} 6 gΓ 6 gH .

As the case of Baumslag-Solitar groups (treated below) will show, the lower
bound given in Theorem 5 is in fact sharp. Before proving this Theorem, let
us begin with a simpler observation.

Lemma 2 Let H =
〈
X

∣∣ R〉
, Γ = HNN(H, A, B, φ) and r be a relation of

Γ contained in FX . Then r is a relation of H. In particular, `(r) > gH .

Proof. Since r = 1 in Γ and since the canonical map H → Γ is injective,
we get r = 1 in H. Hence the �rst assertion. The second one follows by
de�nition of gH . ¤
Proof of Theorem 5. The second inequality has already been discussed.
To establish the �rst one, let us take a relation r of Γ and show that `(r) > m,
where we set m := min{gH , α + β + 2, 2α + 6, 2β + 6}.
Write r = h0t

ε1h1 . . . tεnhn with εi ∈ {±1}, hi ∈ FX and hi 6= 1 if εi =

−εi+1. Up to replacement by a (shorter) conjugate, we may assume that r is
cyclically reduced. If n 6= 0, we may also assume that h0 = 1. Since r = 1 in
Γ, one clearly has

∑n
i=1 εi = 0. In particular, n is even. Let us distinguish

several cases and show `(r) > m in each one:
Case n = 0: We get r = h0 ∈ FX . Thus `(r) > gH > m by lemma 2.
Case n = 2: One gets r = tεh1t

−εh2. If we look at r in Γ, we have r = 1 and
thus h1 ∈ A (if ε = −1) or h1 ∈ B (if ε = 1) by Britton's lemma. Suppose
ε = −1 (in case ε = 1 the proof is similar and left to the reader). Looking
at h1 in FX , there are two possibilities (remember that we assumed h1 6= 1).

• If h1 = 1 in Γ, lemma 2 implies `(r) > `(h1) > gH > m.

• If h1 6= 1 in Γ, then `(h1) > α. On the other hand h−1
2 = t−1h1t ∈ B;

thus `(h2) > β and `(r) > α + β + 2 > m.
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Case n > 4: We have r = 1 in Γ. By Britton's lemma, there is an index
i such that either εi = −1 = −εi+1 and hi ∈ A, or εi = +1 = −εi+1 and
hi ∈ B. Since cyclic conjugations preserve length, we may assume i = 1, so
that r = tε1h1t

−ε1h2t
ε3h3 . . . tεnhn. Let us moreover assume ε1 = −1 (again

the case ε1 = 1 is similar and left to the reader). Set r′ = wh2t
ε3h3 . . . tεnhn

where w ∈ FX is such that w = t−1h1t in Γ (in fact this element is in B).
Applying Britton's lemma to r′, one sees there exists an index j > 3 such
that either εj = −1 = −εj+1 and hj ∈ A, or εj = 1 = −εj+1 and hj ∈ B.
There are three possibilities:

• If h1 = 1 or hj = 1 in Γ, lemma 2 implies `(r) > gH > m as above.

• If h1 6= 1 in Γ, hj 6= 1 in Γ and εj = 1, then `(h1) > α and `(hj) > β.
Thus `(r) > α + β + 4 > m.

• If h1 6= 1 in Γ, hj 6= 1 in Γ and εj = −1, then we can write r =

t−1h1tw1t
−1hjtw2 with `(h1) > α and `(hj) > α. The subwords w1, w2

are not empty because r is cyclically reduced. Thus `(r) > 2α+6 > m

(Remark that 2α + 6 would be replaced by 2β + 6 in the case ε1 =

1, εj = 1).

The proof is complete. ¤
We now turn to prove that for Baumslag-Solitar groups, the lower bound
coming from Theorem 5 is in fact the length of the shortest relation. More
precisely we have the following statement:

Proposition 2 Let p, q ∈ Z∗. We have

gBS(p,q) = min
{|p|+ |q|+ 2, 2|p|+ 6, 2|q|+ 6

}
.

Proof. Set m := min{|p| + |q| + 2, 2|p| + 6, 2|q| + 6} and Γ = BS(p, q).
We have gZ = +∞, α = |q| and β = |p|. Thus, Theorem 5 implies gΓ > m.
To prove that gΓ 6 m, we produce relations of length |p| + |q| + 2, 2|p| + 6,
and 2|q|+ 6. Namely:

• abpa−1b−q has length |p|+ |q|+ 2;

• abpa−1bab−pa−1b−1 has length 2|p|+ 6;
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• a−1bqaba−1b−qab−1 has length 2|q|+ 6. ¤

Theorem 1 of introduction is now a consequence of Proposition 2, since
a sequence of groups Γn =

〈
a, b

∣∣ Rn

〉
converges to the free group on two

generators (marked by its canonical basis) if and only if gΓn tends to ∞.

4 One parameter families of Baumslag-Solitar
groups

In this section, the purpose is to prove Theorems 2, 3 and 4 of introduction.
We begin with the case p = ±1, which is easier.

Proof of Theorem 2. We remark �rst that BS(1, q) = BS(−1,−q) as
marked groups. Thus we may assume p = 1. Hence, we let Γq = BS(p, q)

and Γ = Z oZ. In Z oZ, let us set a = (1, 0) and b = (0, e0). We have to show
that for all w ∈ F2:

(1) if w = 1 in Z o Z, then w = 1 in BS(1, q) for |q| big enough;

(2) if w 6= 1 in Z o Z, then w 6= 1 in BS(1, q) for |q| big enough.

Let w ∈ F2. One can write w = aαaα1bβ1a−α1 . . . aαkbβka−αk . The image
of w in Γ is (α,

∑k
i=1 βieαi

), where ej ∈ ⊕h∈ZZ is the Dirac mass at j. Let
m = min16i6k αi. In Γq = BS(1, q), we have

w = aαamaα1−mbβ1am−α1 . . . aαk−mbβkam−αka−m

= aαambβ1qα1−m

. . . bβkqαk−m

a−m

= aαamb
P

h∈Z(
P

αi=h βi)qh−m

a−m

(1) As w =
Γ

1, we have α = 0 and ∀h ∈ Z, ∑
αi=h βi = 0. Hence

w =
Γq

a0amb
P

h∈Z 0·qh−m

a−m = 1 ∀q ∈ Z∗ .

(2) As w 6=
Γ

1, either α 6= 0 or ∃h ∈ Z such that
∑

αi=h βi 6= 0. The image
of w by the morphism Γq → Z given by a 7→ 1, b 7→ 0 is α. Hence, if α 6= 0,
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then w 6=
Γq

1 ∀q. If α = 0, we set h0 to be the maximal value of h such that
∑

αi=h βi 6= 0. For |q| big enough, we have
∣∣∣∣∣
∑

αi=h0

βiq
h0−m

∣∣∣∣∣ >

∣∣∣∣∣
∑

h<h0

∑

αi=h

βiq
h−m

∣∣∣∣∣ .

For those values of q, we get

w =
Γq

amb(
P

αi=h0
βi)qh0−m+

P
h<h0

(
P

αi=h βi)qh−m

a−m 6=
Γq

1 .

The proof is complete. ¤
We now treat the case |p| > 2. More precisely, we begin the proof of
Theorem 3. We also have BS(p, q) = BS(−p,−q) as marked groups. This
equality will allow us to assume p > 0 in following proofs. We begin with
a lemma which already shows that the sequence (BS(p, q))q is not itself
convergent.

Lemma 3 Let p̃, q̃ ∈ Z∗, d = gcd(p̃, q̃). We write p̃ = dp, q̃ = dq. Let k ∈ Z,
h > 1 and

w = ah+1bp̃a−1b−ka−hbah+1b−p̃a−1bka−hb−1 .

If |q̃| > 2, we have w = 1 in BS(p̃, q̃) if and only if q̃ ≡ k (mod phd).

The congruence modulo phd (instead of p̃h) is the reason for the hypothesis
"p relatively prime to q" appearing in Theorem 3.
Proof. Let Γq̃ = BS(p̃, q̃). We have

w =
Γq̃

ahbq̃−ka−hbahbk−q̃a−hb−1 .

Let us now distinguish three cases:
Case 1: q̃ 6≡ k (mod p̃).
We have w 6=

Γq̃

1 by Britton's lemma, since |q̃| > 2.

Case 2: q̃ 6≡ k (mod phd), but q̃ ≡ k (mod p̃).
We write q̃ − k = npgd with g < h and n not a multiple of p. Hence nqgd is
not a multiple of p̃ = pd, for p is relatively prime to q. We have

w =
Γq̃

ah−gbnqgdag−hbah−gb−nqgdag−hb−1 6=
Γq̃

1
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by Britton's lemma (again because |q̃| > 2).
Case 3: q̃ ≡ k (mod phd).
Let us write q̃ − k = nphd. Then w =

Γq̃

bnqhdbb−nqhdb−1 =
Γq̃

1. ¤

Proof of Theorem 3. The "if" is a particular case of Theorem 6 below.
We prove now the "only if" part. Let Γn = BS(p, qn). We assume the
sequence (Γn)n to converge and condition (a) not to hold. We have to show
that condition (b) holds.
Fix h > 1. For k ∈ Z we set

wk = ah+1bpa−1b−ka−hbah+1bpa−1bka−hb−1 .

As (Γn)n converges, we have (for each k ∈ Z) either wk =
Γn

1 for n big enough,
or wk 6=

Γn

1 for n big enough. As qn is relatively prime to p for all n, lemma

3 ensures that (for each k ∈ Z) either qn ≡ k (mod ph) for n big enough, or
qn 6≡ k (mod ph) for n big enough. This implies that qn is eventually constant
modulo ph (∀h > 1).
It remains to show that |qn| → ∞. Assume by contradiction that there
exists some ` ∈ Z such that qn = ` for in�nitely many n. As (a) does not
hold (i.e (qn)n is not eventually constant), it is su�cient to treat the two
following cases:
Case 1: ∃`′ 6= ` such that qn = `′ for in�nitely many n.
Take h big enough so that ph > |`−`′|. The sequence qn cannot be eventually
constant modulo ph, in contradiction with the �rst part of the proof.
Case 2: ∃ a subsequence (qnj

)j of (qn)n such that |qnj
| → ∞.

We set w = abpa−1b−`. For in�nitely many n (those values for which qn = `),
we have w =

Γn

1. On the other hand |qnj
| > ` for j big enough. For these

values of j, we have
w =

Γnj

bqnj−` 6=
Γnj

1 .

This contradicts the assumption on the sequence (Γn)n to converge. ¤
What remains now to do is to prove the following Theorem, which is a little
bit more general than the "if" part of Theorem 3. The proof will need some
preliminary lemmas.
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Theorem 6 Let p ∈ Z∗ and let (qn)n be a sequence in Z∗. If |qn| → ∞
and if ∀h > 1 the sequence (qn)n is eventually constant modulo ph, then the
sequence (BS(p, qn))n is convergent in G2.

Lemma 4 Let p, q, q′ ∈ Z∗ and h > 1. If q ≡ q′ (mod ph), there exists
s0, . . . , sh; s′0, . . . , s

′
h; r1, . . . , rh, which are unique, such that:

(i) 0 6 ri < p ∀i; s0 = 1 = s′0;

(ii) si−1q = sip + ri and s′i−1q
′ = s′ip + ri ∀ 1 6 i 6 h;

(iii) si ≡ s′i (mod ph−i) ∀ 0 6 i 6 h.

Proof. Given the congruence q ≡ q′ (mod ph), we obtain (by Euclidean
division) s0q = q = s1p + r1 and s′0q

′ = q′ = s′1p + r1 with 0 6 r1 6 p

and s1 ≡ s′1 (mod ph−1). Hence we have s1q ≡ s′1q
′ (mod ph−1). (Let us

emphasize that we do not necessary have s1q ≡ s′1q
′ (mod ph).)

Now, it just remains to iterate the above and uniqueness follows from con-
struction. ¤
Given a word w in F2, we may use Britton's lemma to reduce it in BS(p, q)

or BS(p, q′). But w could be reducible in one of these groups and not in the
other one. Even if it is reducible in both groups the result is not the same
word in general. The purpose of next statement is, under some assumptions,
to control the parallel process of reduction in both groups. This will be useful
to ensure that w is a relation in BS(p, q) if and only if it is one in BS(p, q′)

(under some assumptions).

Lemma 5 Let p, q, q′ ∈ Z∗ and h > m > 1. Assume that q ≡ q′ (mod ph)

and let

α = k0 + k1q + k2s1q + . . . + kmsm−1q

α′ = k0 + k1q
′ + k2s

′
1q
′ + . . . + kms′m−1q

′

where |k0| < min(|q|, |q′|) and s0, . . . , sh; s′0, . . . , s
′
h; r1, . . . , rh are given by

lemma 4.
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(i) We have α ≡ 0 (mod p) if and only if α′ ≡ 0 (mod p). If this happens
we get abαa−1 =

BS(p,q)
bβ and abα′a−1 =

BS(p,q′)
bβ′ with

β = `1q + `2s1q + . . . + `m+1smq

β′ = `1q
′ + `2s

′
1q
′ + . . . + `m+1s

′
mq′ .

(ii) We have α ≡ 0 (mod q) if and only if α′ ≡ 0 (mod q′). If this happens
we get a−1bαa =

BS(p,q)
bβ and a−1bα′a =

BS(p,q′)
bβ′ with

β = `0 + `1q + `2s1q + . . . + `m−1sm−2q

β′ = `0 + `1q
′ + `2s

′
1q
′ + . . . + `m−1s

′
m−2q

′ .

Proof. (i) We have α ≡ α′ (mod p) by construction. Assume now that
α ≡ 0 ≡ α′ (mod p). We have

α = k0 + k1r1 + . . . + kmrm + k1s1p + . . . + kmsmp .

As α ≡ 0 (mod p), we obtain abαa−1 =
BS(p,q)

bβ with

β =
q

p
(k0 + k1r1 + . . . + kmrm) + k1s1q + . . . + kmsmq

Thus we set `1 = 1
p
(k0 + k1r1 + . . . + kmrm) and `i = ki−1 for 2 6 i 6 m + 1,

and doing the same calculation with α′ in BS(p, q′), we obtain also

β′ = `1q
′ + `2s

′
1q
′ + . . . + `m+1s

′
mq′ .

(ii) As |q| > |k0| and |q′| > |k0|, we have α ≡ 0 (mod q) if and only if k0 = 0

if and only if α′ ≡ 0 (mod q′). Suppose now that it is the case. We have
abαa−1 =

BS(p,q)
bβ with

β = k1p + k2s1p + . . . + kmsm−1p

= k1p− k2r1 − . . .− kmrm−1 + k2q + k3s1q + . . . + kmsm−2q .

Hence we set `0 = k1p− k2r1− . . .− kmrm−1 and `i = ki+1 for 1 6 i 6 m− 1.
Again, doing the same calculation with α′ in BS(p, q′), we obtain also

β′ = `0 + `1q
′ + `2s

′
1q
′ + . . . + `m−1s

′
m−2q

′ .

This completes the proof. ¤
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Lemma 6 Let p ∈ Z∗ and let (qn)n be a sequence in Z∗ such that |qn| → ∞
and ∀h > 1 (qn)n is eventually constant modulo ph. Let w ∈ F2, which we
consider as an element of BS(p, q). We have either w 6= 1 for n big enough,
or w is in the subgroup generated by b for n big enough.

Proof. We de�ne Γn = BS(p, qn). Let us write w = bα0aε1bα1 . . . aεmbαm

with εi = ±1 and αi ∈ Z and assume the �rst term of the alternative not to
hold, i.e. w = 1 in Γn for in�nitely many n. Then the sum ε1 + . . . + εm has
clearly to be zero (in particular m is even). We have to show that w = bλn

for n big enough.
For n big enough, we may assume that, |qn| > |αj| for all 1 6 j 6 m

and the qn's are all congruent modulo pm. We take a value of n such that
moreover w = 1 in Γn (there are in�nitely many ones) and apply Britton's
lemma. This ensures the existence of an index j such that εj = 1 = −εj+1

and αj ≡ 0 (mod p) (since |qn| > |αj| for all j). By lemma 5, for all n big
enough

w =
Γn

bα0 . . . aεj−1bαj−1+βj+αj+1aεj+2 . . . bαm

with βj = `1qn (depending on n). Hence we are allowed to write

w =
Γn

bα′0,naε′1bα′1,n . . . aε′m−2,nbα′m−2,n

for n big enough, with ε′i = ±1 and α′j,n = k′0,j + k′1,jqn, where the k′i,j's do
not depend on n.
Now, for n big enough, we may assume that, |qn| > |k′0,j| for all 1 6 j 6 m−1

(and the qn's are all congruent modulo pm). Again we take a value of n such
that moreover w = 1 in Γn and apply Britton's lemma. This ensures the
existence of an index j such that either ε′j = 1 = −ε′j+1 and α′j,n ≡ 0 (mod p),
or ε′j = −1 = −ε′j+1 and α′j,n ≡ 0 (mod qn). In both cases, while applying
lemma 5, we obtain

w =
Γn

bα′′0,naε′′1 bα′′1,n . . . aε′′m−4,nbα′′m−4,n

for n big enough, with ε′′i = ±1 and α′′j,n = k′′0,j + k′′1,jqn + k′′2,js1,nqn, where
the k′′i,j's do not depend on n.

14



And so on, and so forth, setting m′ = m
2
, we get �nally w = bα

(m′)
0,n in Γn for

n big enough, with

α
(m′)
0,n = k

(m′)
0,0 + k

(m′)
1,0 qn + k

(m′)
2,0 s1,nqn + . . . + k

(m′)
m′,0sm′−1,nqn

where the km′
i,0 's do not depend on n. It only remains to set λn = α

(m′)
0,n . ¤

Let us now introduce the homomorphisms ψq : BS(p, q) → A�(R) (for
q ∈ Z∗) given by ψq(a)(x) = q

p
x and ψq(b)(x) = x + 1.

Lemma 7 Let w ∈ F2. We have either ψq(w) = 1 for |q| big enough or
ψq(w) 6= 1 for |q| big enough.

Proof. Let us write w = bα0aε1bα1 . . . aεkbαk with εi = ±1 and αi ∈ Z. Set
next σ0 = 0, σi = ε1 + . . . + εi for 1 6 i 6 k and m = min06i6k σi. We get
by calculation that

ψq(w)(x) =

(
q

p

)σk

x +

(
q

p

)m

Pw

(
q

p

)

where Pw is the polynomial de�ned by Pw(y) =
∑k

i=0 αiy
σi−m. Let us assume

the second term of alternative not to hold, i.e. ψq(w) = 1 for in�nitely many
values of q. Hence we have σk = 0 and for all those values of q, Pw( q

p
) = 0.

As Pw is a polynomial with in�nitely many roots, it is the zero polynomial.
This shows that ψq(w) = 1 for all q. ¤
Proof of Theorem 6. It is easy to show that a word w is equal to 1 in

BS(p, q) if and only if it is in the subgroup generated by b and ψq(w) = 1.
It is also a consequence of (the proof of) Theorem 1 in [GJ03]. Let w ∈ F2.
Lemmas 6 and 7 immediately imply that either w = 1 in BS(p, qn) for n big
enough or w 6= 1 in BS(p, qn) for n big enough. ¤
Theorem 3 is now completely established. To end the paper, we prove
Theorem 4. But we before recall that Zp (for p ∈ Z, |p| > 2) is the completion
of Z with respect to the ultrametric given by the following absolute value:

|a · pm|p :=

(
1

|p|
)−m

for a relatively prime to p and m > 0 .

Let us also mention that we have Z×p = Zp \ pZp.
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Proof of Theorem 4. We show �rst that the map Ψ is uniformly con-
tinuous (endowing Z with the above ultrametric). In view of the distances
we put on G2 and Z, it is equivalent to show that for any h > 1 there exists
r > 1 such that we have q ≡ q′ (mod ph) whenever BS(p, q) and BS(p, q′)

have the same relations up to length r.
Fix h > 1. Our candidate is r = 4h + 4p + 6. Assume that BS(p, q) and

BS(p, q′) have the same relations up to length r. For 0 6 k 6 p− 1 let

wk = ah+1bpa−1b−ka−hbah+1bpa−1bka−hb−1 .

(Remark that these words are exactly those which appear in the proof of the
"only if" part of theorem 3. We are in fact improving this proof in order
to get the uniform continuity.) We have `(wk) 6 r for all k. Having by
assumption w = 1 in BS(p, q) if and only if w = 1 in BS(p, q′), lemma 3
implies q ≡ q′ (mod ph).
The space Z×p being complete and the uniform continuity of Ψ being now
proved, the existence of the uniformly continuous extension Ψ is a standard
fact (see [Dug70], Chapter XIV, Theorem 5.2. for instance).
Let us now show that Ψ is surjective. The space Xp being compact, im(Ψ)

is closed in Z×p . Moreover it is dense since it contains the set of q's relatively
prime to p and such that |q| > 2.
Finally, we consider the sequence (BS(p, 1+p+pn))n, which is convergent by
theorem 3 and we call the limit Γ. We have Ψ(Γ) = 1+ p = Ψ(BS(p, 1+ p)).
On the other hand, we have Γ 6= BS(1 + p), since abpa−1b−(p+1) = 1 in
BS(p, 1 + p) while abpa−1b−(p+1) 6= 1 in BS(p, 1 + p + pn) for all n. This is
the non-injectivity of Ψ. ¤
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