L'algorithme de Voronoï jusqu'en dimension 6 : Table des contacts et des formes eutactiques d'indice 1

François Sigrist

1 Introduction

L'algorithme de Voronoï pour la classification des formes quadratiques parfaites a été appliqué jusqu'en dimension 5 par Voronoï lui-même [Vo], en dimension 6 par Barnes en 1957 [Ba], et finalement en dimension 7 par Jaquet en 1991 [Ja].

Les graphes de contiguïté sont donnés aux pages 217 - 218 du livre de Martinet [Ma], mais il m'a semblé pertinent de donner jusqu'en dimension 6 la structure fine, en indiquant le nombre de faces contenues dans chaque orbite sous le groupe des automorphismes. J'ai évidemment renoncé à faire figurer la dimension 7 , à cause des 157 orbites de voisines de E_{7}, en renvoyant aux calculs originaux de Jaquet. J'ai en revanche recalculé indépendamment toutes les données des autres graphes. Les calculs se trouvent dans divers travaux de Jaquet, et les tables ci-dessous n'ont pas d'autre prétention que de regrouper des informations actuellement éparses. De plus, la détermination des formes eutactiques d'indice 1 , correspondant à chaque contact, est un exercice de pure routine grâce au résultat de $[\mathrm{B}-\mathrm{M}]$: la forme eutactique d'indice 1 est située sur le chemin de Voronoï au maximum du déterminant. La liste donne pour chaque forme la matrice, ainsi que les invariants habituels.

Les notations pour les formes sont celles de [C-S], et on remarquera pour contrôle que les tableaux jouissent d'une "symétrie" particulière, pondérée qu'elle est par la taille des groupes d'automorphismes. Cette formule de "doubles classes", très utile pour les recoupements des calculs faits par ordinateur, est dans [Ja].

2 Tables

Dimension 2		P_{2}^{1}
A_{2}		
	Aut.	12
P_{2}^{1}	A_{2}	12

Dimension 3		P_{3}^{1}
	Aut.	48
P_{3}^{1}	A_{3}	48
6		

Dimension 4			
	Aut.	P_{4}^{1}	P_{4}^{2}
A_{4}			

Dimension 5		$\begin{aligned} & \hline P_{5}^{1} \\ & D_{5} \end{aligned}$	$\begin{aligned} & P_{5}^{2} \\ & A_{5}^{3} \\ & \hline \end{aligned}$	P_{5}^{3} A_{5}
	Aut.	3840	1440	1440
$P_{5}^{1} \quad D_{5}$	3840	$\begin{gathered} 80 \\ 240 \end{gathered}$	40	40
$P_{5}^{2} \quad A_{5}^{3}$	1440	15	0	0
$P_{5}^{33} \quad A_{5}$	1440	15	0	0

Dimension 6			$\begin{aligned} & P_{6}^{1} \\ & E_{6} \end{aligned}$	$\begin{aligned} & P_{6}^{2} \\ & E_{6}^{*} \end{aligned}$	$\begin{aligned} & \hline P_{6}^{3} \\ & D_{6} \end{aligned}$	$\begin{gathered} P_{6}^{4} \\ A_{6,2} \end{gathered}$	P_{6}^{5} $A_{6}^{(2)}$	P_{6}^{6}	$\begin{aligned} & P_{6}^{7} \\ & A_{6} \end{aligned}$
		Aut.	103680	103680	46080	288	672	96	10080
P_{6}^{1}	E_{6}	103680	$\begin{gathered} \hline \hline 135 \\ 1440 \\ 6480 \end{gathered}$	45	$\begin{gathered} \hline \hline 432 \\ 2592 \\ 3240 \end{gathered}$	$\begin{aligned} & 3240 \\ & 4320 \end{aligned}$	3240	12960	0
P_{6}^{2}	E_{6}^{*}	103680	45	0	216	360	0	0	0
P_{6}^{3}	D_{6}	46080	$\begin{gathered} \hline 192 \\ 1152 \\ 1440 \end{gathered}$	96	960	960	0	1440	96
P_{6}^{4}	$A_{6,2}$	288	$\begin{gathered} 9 \\ \hline 9 \end{gathered}$	1	6	0	0	18	0
P_{6}^{5}	$A_{6}^{(2)}$	672	21	0	0	0	0	0	0
P_{6}^{6}		96	12	0	3	6	0	0	0
P_{6}^{7}	A_{6}	10080	0	0	21	0	0	0	0

3 Liste des formes eutactiques

La forme P_{6}^{4} n'est pas extrême, comme l'avait déjà découvert Voronoï dans son article.
"Ce n'est quà partir des formes positives à six variables que j'ai rencontré des formes positives qui jouissent de la propriété (I) et ne sont pas des formes extrêmes. J'appelle "parfaite" chaque forme quadratique positive qui jouit de la propriété (I)".

On le constatera facilement sur le tableau ci-dessous. Le calcul du paramètre est basé sur l'extrémalité du déterminant, démontrée dans [B-M]. Les valeurs du paramètre et du déterminant seront données à 4 décimales, dans le cas irrationnel.

Départ	Arrivée	Contact \rightarrow	Contact \leftarrow	Paramètre	Kiss	Déterminant
P_{2}^{1}	P_{2}^{1}	3	3	$1 / 2$	2	$4(O K)$
P_{3}^{1}	P_{3}^{1}	6	6	$1 / 2$	5	$9 / 2(O K)$
P_{4}^{1}	P_{4}^{1}	48	48	$2 / 3$	9	$16 / 3(O K)$
P_{4}^{1}	P_{4}^{2}	16	10	$1 / 2$	9	$81 / 16(O K)$
P_{5}^{1}	P_{5}^{1}	80	80	$1 / 2$	16	$5(O K)$
P_{5}^{1}	P_{5}^{1}	240	240	$1 / 2$	14	$45 / 8(O K)$
P_{5}^{1}	P_{5}^{2}	40	15	0.3675	14	$5.2811(O K)$
P_{5}^{1}	P_{5}^{3}	40	15	$3 / 4$	14	$25 / 4(O K)$
P_{6}^{1}	P_{6}^{1}	135	135	$1 / 2$	28	$4(O K)$
P_{6}^{1}	P_{6}^{1}	1440	1440	$1 / 2$	24	$75 / 16(O K)$
P_{6}^{1}	P_{6}^{1}	6480	6480	$1 / 2$	22	$21 / 4(O K)$
P_{6}^{1}	P_{6}^{2}	45	45	$1 / 3$	27	$1024 / 243(O K)$
P_{6}^{1}	P_{6}^{3}	432	192	$3 / 5$	25	$24 / 5(O K)$
P_{6}^{1}	P_{6}^{3}	2592	1152	0.5701	20	$5.9144(O K)$
P_{6}^{1}	P_{6}^{3}	3240	1440	0.5455	20	$6.0227(O K)$
P_{6}^{1}	P_{6}^{4}	3240	9	0.4296	22	$5.1407(O K)$
P_{6}^{1}	P_{6}^{4}	4320	12	0.3582	22	$5.5456(O K)$
P_{6}^{1}	P_{6}^{5}	3240	21	0.4142	21	$5.4903(O K)$
P_{6}^{1}	P_{6}^{6}	12960	12	0.4245	21	$5.5898(O K)$
P_{6}^{2}	P_{6}^{3}	216	96	0.2245	20	$5.3563(O K)$
P_{6}^{2}	P_{6}^{4}	360	1	$1 / 2$	21	$81 / 16(O K)$
P_{6}^{3}	P_{6}^{3}	960	960	$1 / 2$	20	$99 / 16(O K)$
P_{6}^{3}	P_{6}^{4}	960	6	0.3360	20	$5.5968(O K)$
P_{6}^{3}	P_{6}^{6}	1440	3	0.3736	20	$5.7305(O K)$
P_{6}^{3}	P_{6}^{7}	96	21	$4 / 5$	20	$36 / 5(O K)$
P_{6}^{4}	P_{6}^{6}	18	6	$2 / 3$	20	$45 / 8(O K)$

References

[Ba] E.S.Barnes The complete enumeration of extreme senary forms. Phil. Trans. Roy. Soc. London (A), 249,(1957), 461-506
[B-M] A.-M. Bergé et J. Martinet Sur la classification des réseaux eutactiques J. London Math. Soc 53 (1996), 417-432.
[C-S] J.H. Conway and N.J.A. Sloane. Sphere Packings, Lattices, and Groups. Springer-Verlag, 1992.
[Ja] D.-O. Jaquet-Chiffelle. Enumération complète des classes de formes parfaites en dimension 7. Ann. Inst. Fourier (Grenoble) 43,1 (1993), 21-55.
[Ma] Jacques Martinet. Les réseaux parfaits des espaces euclidiens. Masson, 1996.
[Vo] G. Voronoï. Sur quelques propriétés des formes quadratiques positives parfaites. J. reine angew. Math. 133 (1908), 97-178.

