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Abstract. We prove that a Hilbert domain which is quasi-isometric to a normed vector space
is actually a convex polytope.

1. Introduction

A Hilbert domain in Rm is a metric space (C, dC), where C is an open bounded convex set in
Rm and dC is the distance function on C — called the Hilbert metric — defined as follows.

Given two distinct points p and q in C, let a and b be the intersection points of the straight line
defined by p and q with ∂C so that p = (1− s)a + sb and q = (1− t)a + tb with 0 < s < t < 1.
Then

dC(p, q) :=
1

2
ln[a, p, q, b],

where

[a, p, q, b] :=
1 − s

s
×

t

1 − t
> 1

is the cross ratio of the 4-tuple of ordered collinear points (a, p, q, b).
We complete the definition by setting dC(p, p) := 0.

a

b

p

q

∂C

The metric space (C, dC) thus obtained is a complete non-compact geodesic metric space whose
topology is the one induced by the canonical topology of Rm and in which the affine open
segments joining two points of the boundary ∂C are geodesics that are isometric to (R, | · |).

For further information about Hilbert geometry, we refer to [3, 4, 8, 10] and the excellent
introduction [14] by Socié-Méthou.

The two fundamental examples of Hilbert domains (C, dC) in Rm correspond to the case when C
is an ellipsoid, which gives the Klein model of m-dimensional hyperbolic geometry (see for
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example [14, first chapter]), and the case when C is a m-simplex, for which there exists a norm
‖·‖

C
on Rm such that (C, dC) is isometric to the normed vector space (Rm, ‖·‖

C
) (see [7, pages

110–113] or [13, pages 22–23]).

Much has been done to study the similarities between Hilbert and hyperbolic geometries (see
for example [6], [15] or [1]), but little literature deals with the question of knowing to what
extend a Hilbert geometry is close to that of a normed vector space. So let us mention two
results in this latter direction which are relevant for our present work.

Theorem 1.1 ([9], Theorem 2). A Hilbert domain (C, dC) in Rm is isometric to a normed

vector space if and only if C is the interior of a m-simplex.

Theorem 1.2 ([5], Theorem 3.1). If C is an open bounded convex polygonal set in R2, then

(C, dC) is Lipschitz equivalent to Euclidean plane.

In light of these two results, it is natural to ask whether the converse of Theorem 1.2 holds.
In other words, if a Hilbert domain (C, dC) in Rm is quasi-isometric to a normed vector space,
what can be said about C? Here, by quasi-isometric we mean the following (see [2]):

Definition 1.1. Given real numbers A > 1 and B > 0, a metric space (S, d) is said to be (A, B)-
quasi-isometric to a normed vector space (V, ‖·‖) if and only if there exists a map f : S −→ V
such that

1

A
d(p, q) − B 6 ‖f(p) − f(q)‖ 6 Ad(p, q) + B

for all p, q ∈ S.

Recalling that a convex polytope in Rm is the convex hull of a finite set of points whose linear
span is the whole space Rm, we then show

Theorem 1.3. If a Hilbert domain (C, dC) in Rm is (A, B)-quasi-isometric to a normed vector

space (V, ‖·‖) for some real constants A > 1 and B > 0, then C is the interior of a convex

polytope.

2. Proof of Theorem 1.3

The proof of Theorem 1.3 is based on an idea developed by Förtsch and Karlsson in their
paper [9].

It needs the following fact due to Karlsson and Noskov:

Theorem 2.1 ([11], Theorem 5.2). Let (C, dC) be a Hilbert domain in Rm and x, y ∈ ∂C such

that [x, y] 6⊆ ∂C. Then, given a point p0 ∈ C, there exists a constant K = K(p0, x, y) > 0
satisfying

dC(xn, yn) > dC(xn, p0) + dC(xn, p0) − K

for all sequences (xn)n∈N
and (yn)n∈N

in C that converge respectively to x and y in Rm.

Now, here is the key result which gives the proof of Theorem 1.3:
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Proposition 2.1. Let (C, dC) be a Hilbert domain in Rm which is (A, B)-quasi-isometric to a

normed vector space (V, ‖·‖) for some real constants A > 1 and B > 0.
Then, if N = N(A, ‖·‖) denotes the maximum number of points in the ball {v ∈ V | ‖v‖ 6 2A}
whose pairwise distances with respect to ‖·‖ are greater than or equal to 1/(2A), and if X ⊆ ∂C
is such that [x, y] 6⊆ ∂C for all x, y ∈ X with x 6= y, we have

card(X) 6 N.

Proof.

Let f : C −→ V such that

(2.1)
1

A
dC(p, q) − B 6 ‖f(p) − f(q)‖ 6 AdC(p, q) + B

for all p, q ∈ C.

First of all, up to translations, we may assume that 0 ∈ C and f(0) = 0.

Then suppose that there exists a subset X of the boundary ∂C such that [x, y] 6⊆ ∂C for all
x, y ∈ X with x 6= y and card(X) > N + 1. So, pick N + 1 distinct points x1, . . . , xN+1 in X,
and for each k ∈ {1, . . . , N + 1}, let γk : [0, +∞) −→ C be a geodesic of (C, dC) that satisfies
γk(0) = 0, lim

t→+∞
γk(t) = xk in Rm and dC(0, γk(t)) = t for all t > 0.

This implies that for all integers n > 1 and every k ∈ {1, . . . , N + 1}, we have

(2.2)

∥

∥

∥

∥

f(γk(n))

n

∥

∥

∥

∥

6 A +
B

n

from the second inequality in Equation 2.1 with p = γk(n) and q = 0.

On the other hand, Theorem 2.1 yields

dC(γi(n), γj(n)) > 2n − K(0, xi, xj)

for all integers n > 1 and every i, j ∈ {1, . . . , N + 1} with i 6= j, and hence

(2.3)

∥

∥

∥

∥

f(γi(n))

n
−

f(γj(n))

n

∥

∥

∥

∥

>
2

A
−

1

n

(

K(0, xi, xj)

A
− B

)

from the first inequality in Equation 2.1 with p = γi(n) and q = γj(n).

Now, fixing an integer n > max{B/A, K(0, xi, xj) − B/A}, we get
∥

∥

∥

∥

f(γk(n))

n

∥

∥

∥

∥

6 2A

for all k ∈ {1, . . . , N + 1} by Equation 2.2 together with
∥

∥

∥

∥

f(γi(n))

n
−

f(γj(n))

n

∥

∥

∥

∥

>
1

2A

for all i, j ∈ {1, . . . , N + 1} with i 6= j by Equation 2.3.

But this contradicts the definition of N = N(A, ‖·‖).

Therefore, Proposition 2.1 is proved. �

Remark. Given v ∈ V such that ‖v‖ = 2A, we have ‖−v‖ = 2A and ‖v − (−v)‖ = 2 ‖v‖ =
4A > 1/(2A), which proves that N > 2.

The second ingredient we will need for the proof of Theorem 1.3 is the following:

Proposition 2.2. Let C be an open bounded convex set in R2.

If there exists a nonempty finite subset Y of the boundary ∂C such that for every x ∈ ∂C one

can find y ∈ Y with [x, y] ⊆ ∂C, then C is a polygon.
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Proof.

Assume 0 ∈ C and let us consider the continuous map π : R −→ ∂C which assigns to each
θ ∈ R the unique intersection point π(θ) of ∂C with the half-line R∗

+(cos θ, sin θ).

For each pair (x1, x2) ∈ ∂C × ∂C, denote by A(x1, x2) ⊆ ∂C the arc segment defined by
A(x1, x2) := π([θ1, θ2]), where θ1 and θ2 are the unique real numbers such that π(θ1) = x1

with θ1 ∈ [0, 2π) and π(θ2) = x2 with θ1 6 θ2 < θ1 + 2π.

We shall prove Proposition 2.2 by induction on n := card(Y ) > 1.

Before doing this, notice that adding a point of ∂C to Y does not change Y ’s property, and
therefore we may assume that n > 2.

If n = 2, writting Y = {x1, x2}, we have that for all x ∈ ∂C, [x, x1] ⊆ ∂C or [x, x2] ⊆ ∂C.

Let θ1 ∈ [0, 2π) and θ2 ∈ [θ1, θ1 + 2π) such that π(θ1) = x1 and π(θ2) = x2, and define
α0 := max{θ ∈ [θ1, θ2] | [x1, π(θ)] ⊆ ∂C}.

Then A(x1, x2) = [x1, π(α0)]∪ [π(α0), x2]. Hence, A(x1, x2) is the union of two affine segments,
and the same holds for A(x2, x1).

Since ∂C = A(x1, x2) ∪ A(x2, x1), this implies that ∂C is a union of four affine segments in R2,
and therefore C is a polygon (quadrilateral or triangle).

Now, assume Proposition 2.2 is true for some n > 2, and let Y such that card(Y ) = n + 1.

Write Y = {x1, . . . , xn+1} with x1 = π(θ1), x2 = π(θ2), . . . , xn+1 = π(θn+1), where θ1 ∈ [0, 2π)
and θ1 < θ2 < · · · < θn+1 < θn+2 := θ1 + 2π.
Then, defining xn+2 := π(θn+2) = x1, we shall consider two cases.

• Case 1: Suppose for every k ∈ {1, . . . , n + 1} and all x ∈ A(xk, xk+1), we have [x, xk] ⊆ ∂C or
[x, xk+1] ⊆ ∂C.

Considering αk := max{θ ∈ [θk, θk+1] | [xk, π(θ)] ⊆ ∂C}, then we get A(xk, xk+1) = [xk, π(αk)]∪
[π(αk), xk+1].

Since ∂C =

n+1
⋃

k=1

A(xk, xk+1), this implies that ∂C is a finite union of affine segments in R2, and

thus C is a polygon.

• Case 2: Suppose there exist k ∈ {1, . . . , n + 1} — we may assume to be equal to n + 1 up to
permutations — and x0 ∈ A(xk, xk+1) = A(xn+1, x1) such that x0 6∈ {x1, xn+1} and [x0, xi] ⊆ ∂C
for some i ∈ {2, . . . , n}.

Then C is contained in one of the two open half-planes in R2 bounded by the line passing
through the points x0 and xi, and hence either A(x0, xi) = [x0, xi], or A(xi, x0) = [x0, xi].

But x1 ∈ A(x0, xi) and xn+1 ∈ A(xi, x0), so we get either x1 ∈ [x0, xi] ⊆ ∂C, or xn+1 ∈ [x0, xi] ⊆
∂C. And this implies that Y can be replaced by Y r{x1} or Y r{xn+1} in the hypothesis of
Proposition 2.2.

Since card(Y r{x1}) = card(Y r{xn+1}) = n, we get that Proposition 2.2 is true for n + 1.

This finishes the proof of Proposition 2.2 by induction. �

Before proving Theorem 1.3, let us recall the following useful result, where a convex polyhedron

in Rm is the intersection of a finite number of closed half-spaces:

Theorem 2.2 ([12], Theorem 4.7). Let K be a convex set in Rm and p ∈
◦

K.

Then K is a convex polyhedron if and only if all its plane sections containing p are convex

polyhedra.
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Proof of Theorem 1.3.

Let (C, dC) be a nonempty Hilbert domain in Rm that is (A, B)-quasi-isometric to a normed
vector space (V, ‖·‖) for some real constants A > 1 and B > 0.

According to Theorem 2.2, it suffices to prove Theorem 1.3 for m = 2 since any plane section
of C gives rise to a 2-dimensional Hilbert domain which is also (A, B)-quasi-isometric to (V, ‖·‖).

So, let m = 2, and consider the set E := {X ⊆ ∂C | [x, y] 6⊆ ∂C for all x, y ∈ X with x 6= y}.

It is not empty since {x, y} ∈ E for some x, y ∈ ∂C with x 6= y (indeed, C is a nonempty open
set in R2), which implies together with Proposition 2.1 that n := max{card(X) | X ∈ E} does
exist and satisfies 2 6 n 6 N (recall that N > 2).

Then pick Y ∈ E such that card(Y ) = n, write Y = {x1, . . . , xn}, and prove that for every
x ∈ ∂C one can find k ∈ {1, . . . , n} such that [x, xk] ⊆ ∂C.

Owing to Proposition 2.2, this will show that C is a polygon.

So, suppose that there exists x0 ∈ ∂C satisfying [x0, xk] 6⊆ ∂C for all k ∈ {1, . . . , n}, and let us
find a contradiction by considering Z := Y ∪ {x0}.

First, since x0 6= xk for all k ∈ {1, . . . , n} (if not, we would get an index k ∈ {1, . . . , n} such
that [x0, xk] = {x0} ⊆ ∂C, which is false), we have x0 6∈ Y. Hence card(Z) = n + 1.

Next, since Y ∈ E and [x0, xk] 6⊆ ∂C for all k ∈ {1, . . . , n}, we have Z ∈ E .

Therefore, the assumption of the existence of x0 yields a set Z ∈ E whose cardinality is greater
than that of Y, which contradicts the very definition of Y.

Conclusion: C is a polygon, and this proves Theorem 1.3. �

Let us conclude by a natural question: Considering Theorem 1.1 by Förtsch and Karlsson,
we may conjecture that if the quasi-isometry in Theorem 1.3 is close to an isometry, then C
is the interior of a m-simplex. More precisely, does there exist a sufficiently small constant
A0 = A0(m) > 1 such that if a Hilbert domain (C, dC) in Rm is (A, B)-quasi-isometric to a
normed vector space for some constants A = A(m, C) ∈ [1, A0] and B = B(m, C) > 0, then C
is the interior of a m-simplex?
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