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Since the work of P. Buser in [6], it is known that in order to understand the
spectrum of the Laplacian associated to a compact Riemannian manifold,
A = —div(grad), it may be very powerful to discretize the manifold. Using
this technique, P. Buser considered manifolds with Ricci curvature and injec-
tivity radius bounded below and gave an uniform estimate of the spectrum,
depending only on these bounds (see Theorem 6.2 in [6]). The estimate of the
k' eigenvalue turned out to be very precise for large k’s (i.e for k larger than
a constant proportional to the volume of the manifold). However, for the
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beginning of the spectrum, the result is not strong enough to decide whether
the eigenvalues may be close to zero or not.

Since, this question has been investigated by R. Brooks ([2], [3]), M. Burger
[4], and P. Buser himself'in [7]. In these papers, the manifolds were especially,
closely related to Cayley graphs of groups or to Schreier graphs associated
to a family of covering spaces, (in another context see also the work of M.

Kanai [13], [14]).

The point of view that will interest us here is the one taken up by I. Chavel
in his book [8], where the question of discretization is very well explained
and where he studies in particular the case of isoperimetric inequalities ([8],
Chapter V) and Sobolev inequalities ([8], Chapter VI). This book will be the

main reference for this paper.

The purpose of this note is to compare the spectrum of a compact Rieman-
nian manifold (M7, g) to the spectrum of the combinatorial Laplacian of an
associated discretization X (defined as in [8]). More precisely, if M(n,«,ro)
denotes the set of all compact n-dimensional Riemannian manifolds with
Ricci curvature and injectivity radius uniformly bounded below (i.e. with
Ricci(M,g) > —(n — 1)kg, & > 0 and Inj(M) > ro > 0, see Definition
3.6), we will show in Theorem 3.7 that there exist positive constants ¢, C
(depending only on n, k, rg) such that for all manifolds M in M(n,x,rq)
and X a discretization associated to M, we have

¢ < Ae(M)
AR(X)
for all & < |X|. Remark that | X| behaves as the volume of M.

<C

After defining precisely in Section 2 the notion of discretization and the
Laplacian related to it, Section 3 will be concerned with the proof of this
result.

In Section 4, as a corollary of our result, we present a very simple proof of
Theorem 1 of R. Brooks in [2], which says that the first non-zero eigenvalue
of a tower of covering spaces of a compact manifold goes to zero if and only if
the Cheeger constant of the discretizations associated to the covering spaces
does. Tn fact, we prove that the k' eigenvalue of a tower of covering spaces
of a compact manifold goes to zero if and only if the k" eigenvalue of the
discretizations associated to the covering spaces does, which implies obviously
the result of R. Brooks (see Theorem 4.1). Note that our proof avoids integral
geometry and some not obvious considerations on the boundary of Dirichlet’s
fundamental domains.



In Section 5, we compare the spectrum of two compact Riemannian manifolds
M € M(m,k,19) and N € M(n,k,ro) which are close with respect to the
Gromov-Hausdorfl distance (see Theorem 5.1). In particular, as m = n we

show in Corollary 5.2 that we have an uniform control ¢ < :\\’;(]\A{) < (C for all k
and where ¢, C' > 0 depend on n, &, rg and on the Gromov-Hausdorff distance
between M and N (for the behaviour of the spectrum under convergence of

manifolds with respect to the Gromov-Hausdorff distance see Section 7 of
[10]).

We conclude this note with Section 6, where we give an example to show
that the assumption on the injectivity radius is essential in Theorem 5.1 ; the
spectra of two manifolds with Ricci curvature bounded below and arbitrarily
Gromov-Hausdorfl close may strongly differ.

2 Spectrum of roughly isometric graphs

Let X = (V, E) be a finite graph, where V' denotes the set of vertices and F
the set of edges, and consider the path metric on this graph so that it becomes
a metric space (see [8] p.140). Denote by N(v) the set of neighbours of v € V,
that is to say the set of vertices at distance 1 from v for the path metric.
We will refer to m(v) as the number of neighbours of v € V and to vx as an
upper bound for m(v) (i.e. vx is such that for all v € V', m(v) < vy).

For such a finite graph, we can define a combinatorial Laplacian as in [15]
(Section 4.2) and the spectrum of this Laplacian will be denoted by

Spec(X) = {0 = Ao(X) < M(X) < ... < N(X)}

where [ = | X| — 1 and |X| denotes the number of vertices of the graph. We
have the following variational characterization of Spec(X) (see [1] p.268).
For a function f: V — R, consider the Rayleigh quotient of f,

e
ROY= e

where [|df||* = 3 ey [dfI(v) = Yoev Yuen [/ (w) = f(0)|* and |[fI]* =
Y ovev f*(v). Then, for any (k + 1)-dimensional vector subspace W+ of
the vector space F(V) = {f : V — R}, the k' eigenvalue of X satisfies

Ae(X) <sup{R(f) : feWw™D f£o}

So, if A(W) denotes the supremum of Rayleigh’s quotients of non-zero func-

tions in W (i.e A(W) =sup{R(f) : f €W, f#0}) and if Ex4i denotes
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the set of all (k 4 1)-dimensional vector subspaces of F(V), then we have

M(X)=inf {AW) : WE Epn}

Moreover, let us recall that a rough isometry is an application between metric
spaces @ : (X1,d;) — (Xz,d;) such that there exist some constants a > 1,
b >0, 7 > 0 satisfying

Vo, € Xo,  a”'di(z, 1) — b < dy(®(21), ®(y1)) < adi(z1,p1) + b

and Uzex, B(®(z),7) = X, (see [8] p.142). The constants a, b and 7 will be

referred as the constants of rough isometry.

Theorem 2.1 Let X and Y be finite, connected graphs. Then, for each
rough isomelry between X and Y, there ewist posilive constants ¢ and C
depending only on vx, vy and on the constants of rough isometry such that

K(X)
Ae(Y)

>

c < <

for all k < min{|X|,|Y]}.
Note that the constants ¢ and C are independent of k, |X| and |Y|.
Proof : 1t suffices to prove that it exists C' > 0 such that

Me(X) < OX(Y) (1)

We proceed in two steps.

First, we show that it exists a constant ¢ > 0 independent of k, such that if
M(Y) < ¢ then (1) is true for some C' > 0. Let X and Y denote also the

set of vertices of the respective graphs. Let ® : X — Y be a rough isometry.
To each f:Y — R, we associate

f=fod:X >R

It can be shown that, there are positive constants ¢i, ¢z, ¢3, ¢4 depending
only on vy, vy and on the constants of rough isometry such that

1e=fII* < allflP? (2)
ld(@*NI* < ealldf|” (3)
AP < ealldfII* + call @ /] (4)

(see [8], lemma VI1.5.2 and VI.5.4).



Then, consider fo, ..., fr 1 Y — R eigenfunctions associated to Ao(Y), ...,
Ae(Y') and the corresponding functions on X, ®*fy, ..., ®*f, : X — R.
Denote by V' the subspace spanned by the f;’s, V. = (fo,..., fx) and by W
the corresponding space, W = (®* fo, ..., ®* fi).

It )\k(Y) ¢ = (2¢3)7" then W is of dimension k + 1 : indeed, let g =
ZZ 0 @ ®" f; with at least one non-zero a;. In fact, g can be rewritten as
g = ®*f with [ = Zi:o a; f;. So, f is a non-zero function of V and satisfies
47 < Ae(¥)]L I Then by (4)

lll” = 191" 2 < (IAI° = eslldfII”) = M AP (L = eshe(Y)) (5)

In particular, as Ay(Y) < ¢ = (2¢3)7", the function g is not zero and this
implies that W is (k+ 1)-dimensional. Moreover, under the same assumption
on Ax(Y) and using (3) and (5), we have R(®*f) < 2¢csR(f). Finally, we
get

M(X) < sup{R(g) | g € W —{0}}
sup{R(®"f) | f € V —{0}}
2¢2¢4 0 (Y)

It remains to show that (1) is still true if Ag(Y) > ¢ = (2¢3)~". But by this
assumption, we have A (X) < A (X)A, (V). So, in order to conclude, we
need an upper bound on A, (X). For each f: X — R, we have

ldfI* = Yoex Xyene) () = F(y)I*
QerX ZyEN(m) (| ( |2 + |f )
dvx]|fI*

This implies that R(f) < 4vx for all f # 0 and A\(X) < 4vx. Finally, we
get /\k(X) < 41/Xc'_1/\k(Y). O

IA 1A

IAIA I

3 Comparison of spectra between a manifold
and its discretization

Let (M",g) be a connected, compact Riemannian manifold. Consider the
Laplacian associated to M

Af = —div(gradf)
and denote its spectrum by

Spec(M) = {0 = M(M) < (M) < ...}



The characterization of the eigenvalues we will use subsequently is given by
Rayleigh quotients and Min-Max Theorem (see [16] p.269, Min-Max Theo-
rem). So for F': M — R define the Rayleigh quotient of F' to be

Jdr)? fMHdF (o)]|2dV ()
[FF = [ Fapdvis)

R(F) =

where dV denotes the volume form on (M,g). Then, for any (k + 1)-
dimensional vector subspace W1 of the vector space C*(M) of smooth
functions on M, the k' eigenvalue of M satisfies

Me(M) < sup{R(F) : Fe W) p£0}

So, if A(W) denotes the supremum of Rayleigh’s quotients of non-zero func-
tions in W (i.e A(W) =sup{R(F) : Fe W , F#0}) and if Ex41 denotes
the set of all (k 4 1)-dimensional vector subspaces of C*(M ), then we have

M(M) = inf {A(W) : W€ Eppr}

Now, we associate a graph to a Riemannian manifold following [8] (section
V.3.2). Let (M",g) be a connected compact n-dimensional Riemannian ma-
nifold. A discretization of M, of mesh ¢ > 0, is a graph X = (V, F) such
that the set V of vertices is a maximal e-separated subset of M (so it verifies
that for any v, w € V, v # w, we have d(v,w) > ¢ and Uyey B(v,e) = M).
Moreover, the graph structure of X is entirely determined by the collection of
neighbours that we define as follows. For each v € V, w € V is a neighbour
of v, if 0 < d(v,w) < 3¢ (see [§] p.140). We denote by N(v) the set of

neighbours of v.

Furthermore, X is roughly isometric to M (see [8] p.147). So we will use on
X the metric induced by M rather than the path metric.

Fix once and for all € smaller than %[n](M) Denote by £ > 0 a constant such
that Ricci(M,g) > —(n — 1)kg. Then, by the Bishop-Gromov comparison
theorem, vx is bounded above by a constant depending only on n, £ and €.
So we can assume vx = v(n, &, ¢). Furthermore, using Croke’s Inequality (cf.
[8] p-136) and Bishop’s comparison theorem, we have

n

Vol(M) < |V| < Vol(M)

V_i(e)

ene(n)

where V_,(¢) denotes the volume of the ball of radius ¢ in the simply con-
nected space of constant sectional curvature —x and of dimension n.



The goal of this section is to compare Spec(X) and Spec(M) using the same
idea as in the case of roughly isometric graphs. So we have to associate
functions on M to functions on V' and vice versa. This leads us to use the
smoothing and the discretization applications considered in Chavel’s book.
Let us recall the main definitions and results from [8] (section VI.5) we will
need.

First, to go from the discretization X = (V, F) to the manifold M, we need
to smooth discrete functions.

Definition 3.1 Let {¢, }ev be a partition of unity subordinate to the cover
{B(v,2¢)}yev of M. Then for each f : V — R, the smoothing of f is defined
by F=8f: M —-R

(SF)(x) =Y dul2)f(v)

veV

Lemma 3.2 There exist positive constants ¢; and ¢y depending only on n,
k and on the mesh of the discretization such that

ISFAIF < el (6)
ldSHIP < clldf|’ (7)

Proof : see [8] V1.5.2.

Then, to go in the other direction, we want to discretize smooth functions.

Definition 3.3 For each F' : M — R the discretization of F' is defined by
f=DF:V =R

DF(v) = g (Bl(v’%)) /B L PV

where dV denotes the volume form on (M, g).

Lemma 3.4 There exist positive constants Cy and Cy depending only on n,
k and on the mesh of the discretization such that

IPFII* < Gl F|I® (8)
lADR)* < ColldF|? (9)

Proof : see [8] VI.5.1.
Finally, compose § and D and look at how it differs from the identity.
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Lemma 3.5 There exist posilive constants c3 and C3 depending only on n,
k and on the mesh of the discretization such that

If =DSII” < esldfl’ (10)
|F — SDF|> < Cs||dF|? (11)

Proof : see [8] VI.5.4 and VL5.5.
We now state and prove the main technical theorem of this note.
Definition 3.6 For k > 0 and ro > 0 define M(n,k,ro) as the set of

all connected, compact n-dimensional Riemannian manifolds (M",g) with
Ricei curvature and injectivity radius uniformly bounded below i.e. with

Ricci(M,g) > —(n — 1)kg and Inj(M) > rq.

Theorem 3.7 There exist positive constants ¢, C' such that for all M €
M(n, k,r9) and for any discretization X of M (with mesh < %7‘0), we have

<C

forall k < |X]|.
The constants ¢ and C depend only on n, k£ and on the mesh of X.

In particular, if we fix the mesh equal to iro, then these constants depend
only on the local geometry of M i.e. on n, k and ro. Note moreover that all
constants are independent of k.

Theorem 3.7 is a direct consequence of Theorem 3.8 and Theorem 3.9. In
fact, the proof of Theorem 3.7 goes in two steps as for the discrete case. The
first step deals in some sense with small eigenvalues ; we show that Theorem
3.7 is true for eigenvalues smaller than some constant, using Chavel’s results
(see Theorem 3.8). The second step of the proof of Theorem 3.7 consists in
showing that Theorem 3.7 is true even if the eigenvalues are "big”, that is to
say bigger than the constants appearing in Theorem 3.8. The proof here is
really different from the previous one and uses basic facts on eigenvalues of
Laplacian (see Theorem 3.9).

Theorem 3.8 There exist positive constants a, A, ¢ and C' such that for
all M € M(n,k,r) and for any discretization X of M (with mesh < ]57“0),

we have

i) If \e(X) < a, then

<d



ii) If \e(M) < A, then A(X)

forall k < |X].
The constants a, A, ¢ and C" depend only on n, £ and on the mesh of X.

Proof of i) The idea of the proof is exactly the same as in Theorem 2.1, using
the above lemma in order to bound Rayleigh quotients. Let M € M(n, x,ro)
and X = (V| F) a discretization with mesh < %TO. Then, consider fy, ...,
fe + V. — R eigenfunctions associated to the first & + 1 eigenvalues of X.
Denote by W the subspace spanned by these eigenfunctions. Smooth each f;
to obtain Foy =8fy, ..., Fr =Sfr : M — R and SW the subspace spanned
by the F;’s.

Then, if \y(X) < a = ¢!, SW is (k 4 1)-dimensional. In order to prove
this fact, let F' be an element of SW, F = Zf:o a; F; with at least one non-
zero coefficient. In fact, F' is the smoothing of a discrete f € W such that
f= Zf:o a;fi and by (10), we have || f — DS f||* < es||df||*. So the norm of
F' satisfies (by (8))

IF|| > CTPDE| = CT (] = I = DSF) = O (1]l = e2lldfl) (12)

But f is a non-zero function belonging to the subspace W, so it satisfies

lldf ]| < /Ax(X)||f]| and by assumption on Ax(X) and by (12), we get

1 _1
IFI= eI (13)

As the eigenfunctions of X are linearly independent, this shows that the
dimension of SW is the same as the dimension of W, that is to say k + 1.
Moreover, under the same assumption on A;z(X) and using (13), we obtain

R(Sf) < dR(f)
for all f € W — {0}. This leads now to the conclusion. Using Min-Max

Theorem, we have

M(M) < sup{R(F)| F € SW - {0}}
¢ sup{R(P) | € W —{0}}

C’)\k(X>

A IA

and this ends the proof of the theorem. The second part of the proof can be
carried out exactly in the same way, because of the symmetry of the results
concerning the smoothing and the discretization of functions. So it would
not bring more informations to do it here. O



Theorem 3.9 Let a and A as in Theorem 3.8. Then, there exist positive

constants " and C" such that for all M € M(n,k,ro) and for any discretiza-
tion X of M (with mesh < Lrq), we have

i) If \e(X) > a, then i’z((]\;; <
Ae(X)
Ae(M)

< C//

i) If \e(M) > A, then

forall k < |X]|.
The constants ¢" and C" depend only on n, £ and on the mesh of X.

Proof : i) As M(X) > a, then A\ (M) < a“l)\k(X))\k(M). So, it suffices to
show that Ar(M) < Af(5), where Af($) denotes the first non-zero eigenvalue

of the Dirichlet problem on the ball of radius 5 in the simply connected

space of constant sectional curvature —k and of same dimension as M. We
prove this result as follows. For each vertex v; of X, 7 > 1, we can consider
fi o+ M — R the first eigenfunction of the Dirichlet problem for the ball

B(v;, §) extended by 0 outside the ball. By Cheng’s comparison Theorem
R(f:) < Af (%) (see [9], p.74).
Now, consider V; the subspace spanned by fi,..., f;. As the balls of radius

¢ are disjoint, the f;’s are orthogonal and so V; is of dimension 7. We can

apply Min-Max Theorem and get for all & < | X]|

M(M) < sup{R(f) = f€ Vi, [#0}

= Ssup {%Z%mﬁ]"l; : f = Eazfz S ‘/k+1af 74 0}
< SUP{W : fzzaz'fievkﬂaf?éo}
< M)

Finally, we get A (M) < a™'Af(5)Ak(X).

i) As Ay (M) > A, then M\ (X) < A" A (M)A, (X). We have seen in Theorem
2.1 that M\ (X) < 4vx. So we get A (X) <4A 'wx A\ (M). O

4  Application to the spectrum of a tower of
coverings

As a first application, we will discuss the following theorem.
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Theorem 4.1 Let (M",g) be a compact n-dimensional Riemannian man-
ifold. Let {M;}is>1 be a family of finite-sheeted covering spaces of M with
induced Riemannian melric. Let T'; be the Schreier graph of the subgroup
m(M;) of mi(M). Then, there exist constants ¢, C > 0 such thal for all
A (M)
e (1)

c < <(C

In particular, for all k

Me(M;) = 0 when 1 — oo <= A (I';) = 0 when ¢ — oo

For k = 1, it is exactly the result of R. Brooks (see [2] Theoreml).

We prove the result in two steps. First, we associate to M; a discretization
X; of sufficiently small mesh, in order to compare Spec(M;) to Spec(X;) (as
in Section 3). Secondly, we show that X; and I'; are roughly isometric, which
allows us to apply Theorem 2.1 to Spec(I';) and Spec(X;), so that we obtain
the desired result between Spec(M;) to Spec(T’;).

The first step is really a direct application of Theorem 3.7 and is stated in
Theorem 4.2.

Theorem 4.2 Let M and {Mi}Q] be as in Theorem 4.1. Let X be a dis-
cretization of M (with mesh < $Inj(M)) and lift it to M; to obtain a dis-
cretization X; of M;. Then, there exist positive constants ¢ and C indepen-

dent of © such that for all k < |X;|.

In particular, for all k

Ae(M;) = 0 when 1 — o0 <= A\ (Xi) = 0 when ¢ — oo

Proof : If (M”,g) € M(n,k,ro), then M; € M(n,k,ro), as M; is provided
with the induced Riemannian metric. Moreover, X; is a discretization of M;
with same mesh of X smaller than %T’O. So we can apply Theorem 3.7 to
each pair (M;, X;) and get constants independent of 7. O

In the second step, we have to compare the Schreier graph I'; appearing in
Theorem 4.1 to the discretization X; of M; appearing in Theorem 4.2. This
is the next result.
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Theorem 4.3 Let {(X;,T;)}is1 be as in Theorems 4.1 and 4.2. Then, there

exist positive constants ¢ and C independent of i such that for all k < |T]|

< e (X5) <
e (1)

C

In particular, for all k

M (Xi) = 0 when © — 0o <= Ai(I;) = 0 when i — oo

Proof :  Geometrically, the graph T'; corresponds to the lift of a graph T
in M, where T' consists of a unique point (see [1] p.254 for a definition of
Schreier graphs). As M is compact, I' and X are roughly isometric (see [§]
p.147). Let us call I', T'; and X, X; the set of vertices of the respective graphs
too and ® : I' = X a rough isometry such that d(g, ®(g)) < ¢. We can lift
® and get @, : I'; — X, in the following way. If g € T';, then by construction
of Xj, there exists ®;(g) = = with m;(z) = ®(m;(g9)) and d(z,g) < ¢ (where
m; denotes the canonical projection of M; onto M). Clearly, ®; is a rough
isometry with same constants of rough isometry as ®. So we can apply
Theorem 2.1 to each pair (X;,I';) and get constants independent of ;. O

Note that, as any two discretizations of a compact manifold are roughly
isometric, then we can replace I'; by the lift of any discretization of M and
Theorem 4.1 is still true.

5 Gromov-Hausdorff close manifolds have com-
parable spectra

Another application of Theorem 3.7 is the following result.

Theorem 5.1 Let (M™, gy) € M(m,k,10) and (N", gn) € M(n,k,ro).
Suppose thal the Gromov-Hausdorff distance between M and N is smaller
than > 0. Then, there exist posilive constants ¢ and C' (depending only on
n, K, ro and on the dimensions) and K > 0 (proportional to the volume of

M and N) such that for all k < K

Ap(M
¢ < K(M)

Ak(N)
and there exist ¢ and C' (depending on the dimensions, 1, £ and rq) such
that for all k > K

<C



Corollary 5.2 Let M and N be two same dimensional compact Riemannian
manifolds i.e M, N € M(n,k,ro). Suppose that the Gromov-Hausdor[f dis-
tance between M and N is smaller than n > 0. Then, there exist positive
constants ¢ and C (depending only on n, n, k and ro) such that for all k

Ae(M)
e (V)

c < <C

Proof of Theorem 5.1 : Recall (from Section 3) that if Xas is a discretization
of M € M(m,k,rq) of mesh ¢ < 3ro, then

m

Vol(M) < | Xu| < Vol(M)

1
V_.(e)
Let Xy be a discretization of M € M(m,k,r) and Xy a discretization of

N € M(n,k,rg) with same mesh ¢ < %ro. Moreover, choose ¢ < %7“0 such
that

eme(m)

Xn

Vol(N)

il g g

2m-|-2 2n+2
} ZmaX{Vol(M) }

(¢ depend only on m, n, k and o).

Then, the proof is done in two steps. First, if & < min{|Xn|, |Xn|}, we
will apply Theorem 2.1 and Theorem 3.7 (as will follow) and second, for
k> min{|X|, | Xn|}, we will use a result of P. Buser (Theorem 6.2 in [6]).

Consider the case k& < min{|X|,|Xn|}. By definition of the Gromov-
Hausdorfl distance (see [12]) there exist Z a Riemannian manifold and two
isometric embeddings f : M — Z, g : N — Z such that Uyems B(f(z),n) D
g(N) and Uyen B(g(y),n) D f(M). Then, Xpr and Xn are roughly isometric
via ® : Xpyr — Xy defined as follows. For each # € Xy there exist 2/ € N
and z” € Xy such that d(f(z),g(z")) < n and d(2',2") < . Then define
O(z) = 2" so that d(f(z),g(¢(x))) < n+e. Then, we clearly have that

d(z,y) — 20 + <) < d(B(x), B(y)) < d(x,y) + 20 + )

Moreover, if z € Xy then there exist y € M and =z € Xj,; such that
d(g(z), f(y)) < n and d(z,y) < e. This implies that

d(®(z),z) < d(g(®(z)), [(z)) + d([(2), [(y)) + d([(y), 9(2)) < 2(n + )

and so Uzex,, B(®(z),2(n +¢)) O Xn. Note that the constants of rough
isometry depend only on ¢ and 7. To conclude this first part, it suffices to
apply Theorem 3.7 to (M, Xar) and (N, Xn) and Theorem 2.1 to (Xar, Xn).
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Now, consider the case k > min{|Xy/|, | Xn|}. In this case and by assumption
on ¢, we can apply Theorem 6.2 of [6] to M and N which leads to the result

where ¢; and ¢y are constants depending on m, k and r¢. Similarly

<V%(N'>)%03§)\k(]\/’>§ (V%(NO%Q

where ¢3 and ¢4 are constants depending on n, £ and ro. Putting both
inequalities together, we get that there exist constants ¢ and ¢g depending
only on the dimensions, x and rq

T L)

Furthermore, we have seen in Section 3 that there exist constants ¢z, ¢g, ¢9
and ¢1o depending only on the dimensions, k and r¢ such that

er| Xm| < Vol(M) < es| Xl

CQ|XN| S VOZ(N) S 010|XN|

As we have shown in the first part of the proof the discretizations are roughly
isometric (the constants of rough isometry depend only on ¢ and ). This
implies that there exist constants ¢;; and ¢;2 depending on ¢ and 5 such that

These last inequalities give us upper and lower bounds (depending only on
Vol(M)
Vol(N)

Finally, we get that there exist constants ¢, C' > 0 depending only on 7, m,

n, m, n, £ and rq) for

n, k£ and ro such that for all &

< (M)

SR <o
— M(N)y T

[

In particular, the constants do not depend on k. O
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6 An example

Let us now discuss an example in order to show that the assumption on the
injectivity radius in Theorem 5.1 is necessary. Consider M. the manifold
obtained by taking two hyperbolic cylinders, gluing them together at both
ends and "smoothing the angles”.

More precisely, for 0 < & < 1 take

M. =[~1 = pe1+p] xS'/.
where ~ identifies the ends (i.e. (p1,t1) ~ (p2,12) if and only if p; = p; =
+(1+p.) and ¢, = t3) and p. = arccosh(e_%). Provide M, with the Rieman-

nian metric

ds® = dp® + [(p)*di?

where
ecosh(p 4+ p. + 1) it pel=1—pe—1]
fp) = g ((+vT=o)p* — 20143vT=0)p® + o45vT=2) if p € [—1;1]
gcosh(—p+p. +1) if pe[l;1+p.]

The manifold M,

Then, M. has sectional curvature uniformly bounded (i.e independently of ¢)
and injectivity radius comparable to . Moreover, as M. admits an involution
and if D. = {(p,t) : p €[-1—p;0],t € R/Z}, then A\ (M,) is either the
first non-zero eigenvalue of D, for the Neumann problem )\JIV(DE) or the first
eigenvalue of D, for the Dirichlet problem AP(D.), where D, is provided
with the same Riemannian metric as M.. But D, can be provided with an
hyperbolic metric ds? = dp* + &* COShQ(p +p: + 1)dt2 and we can easily show
that there are positive constants ¢; and ¢, independent of & such that

c1ds? < ds™ < cyds?.
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Then, applying a result of Dodziuk (see [11] Proposition 3.3), we get a con-
stant ¢z independent of & such that

ANP(D,,ds?) > esA)P(D., ds™)

But, we know that for thin hyperbolic cylinders )\JIV’D(DE,dS’Q) > i (see [5]
p.35). Finally, we have shown that A;(M.) > ¢ > 0 where ¢ is independent
on €.

Moreover, M. is Hausdor{fl-Gromov close to the circle S, of length 2p. 4 2
and A1(S:) goes to zero when ¢ goes to zero too. So

A1 (M)

h
M(S.) — oo when ¢ — 0

Then, this quotient cannot be bounded and the theorem is not true for the
family (M., S.), because the injectivity radius of M, is not uniformly bounded
below.
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