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Abstract

We provide an analysis of the dynamics of isometries of metric
spaces. Certain subsets of the boundary at infinity play a fundamen-
tal role and are identified completely for the standard boundaries of
CAT(0)-spaces, Gromov hyperbolic spaces, Hilbert geometries, certain
pseudoconvex domains, and partially for Thurston’s boundary of Te-
ichmiiller spaces. A theory of groups of isometries is developed for
any proper metric space. This extends the usual theory of hyperbolic
groups and gives in particular several new results in the special case of
CAT(0)-geometry, for example a metric Furstenberg’s lemma.

1 Introduction

In order to understand the topology of a manifold which admits a metric of
a certain kind, one is lead to analyze the action by isometry of the funda-
mental group on the universal covering space. For this and other reasons it
is of evident interest to study the automorphism group of Riemannian man-
ifolds, see [23] for an exposition of results known up until 1972. Hyperbolic
geometries and their groups are of particular importance and have a rich
theory ([28], [30], [12]).

In other contexts there are metrics which tightly connect with the struc-
tures under study (isomorphisms are isometric) and whose existence is re-
markable. The most prominent instance is the category of complex spaces
and holomorphic maps, where one has the Schwarz-Pick lemma, the Bergman
metric, Kobayashi’s pseudo-metric, etc. See [13, p. xvii] for other examples.
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Groups of matrices act by isometry on an associated symmetric space or
building. Nonpositive curvature enters here (and elsewhere) predominantly
and much work on general Cartan-Hadamard manifolds and CAT(0)-spaces
has been carried out ([4], [2], [10], [7]). At this point one may insert two more
specific facts: the representation theoretic property (T) can be characterized
in terms of (affine) isometric actions on Hilbert spaces, and several ergodic
theorems such as those of von Neumann, Birkhoff, and Oseledec can be
deduced from a single dynamical result about isometries (see [20], [19]).

As a final example we mention that any group acts by isometry on the
Cayley graph associated to some set of generators and that the subject of
geometric group theory has greatly expanded in recent years ([12], [15]).

Nevertheless, in spite of the many and diverse examples there seems to
be no well-developed general theory of isometries available. The purpose of
the present paper is to make a contribution to such a theory.

This paper studies and exploits (generalized) halfspaces and their limits,
the stars at infinity. These subsets are of fundamental importance for the
dynamics of isometries. Even though halfspaces are classical in the definition
of Dirichlet fundamental domains and appear particularly in the literature
on Kleinian groups, it seems they have not been systematically considered
previously. The stars relate well to standard concepts such as Tits geometry
of CAT(0)-spaces, Thurston’s boundary of Teichmiiller space, hyperbolicity
of metric spaces, strict pseudoconvexity, the face lattice of convex domains,
rank 1 isometries, etc. See sections 1 and 4.

In the theory of word hyperbolic groups, the study of how the group
acts on its boundary plays an important role. We extend part of this theory
in sections 2 and 3 to isometries of any (proper) metric space and discuss
among other things a generalization of Hopf’s theorem on ends, free sub-
groups, an analog of Furstenberg’s lemma, random walks and implications
of discreteness.

In some ways we thus present elements of a unified and rather general
theory. In addition, as is indicated in section 4, several of the results ob-
tained are new even in the much studied case of CAT(0)-geometry. More
theory, examples, and applications remain to be worked out.

From the point of view of metric geometry, the stars provide a framework
for boundary estimates and is hence one way of organizing asymptotic geo-
metrical information. Moreover, if Gromov’s theory of d-hyperbolic spaces
was in part motivated by Mostow’s proof of strong rigidity in rank 1, then
similarily one could say that the concept of the stars and their incidence
geometry (face lattice, curve complex, spherical building, etc.) gain motiva-
tion from Mostow’s proof in the higher rank case.
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2 Halfspaces and stars at infinity

2.1 Definitions

Let X be a metric space. For a subset W of X we let

d(z, W) = wlélva d(z,w).
Fix a base point xg. We define the halfspace defined by the subset W and
the real number C' to be

H(W,C)=H"(W,C) :={z:d(2,W) < d(z,z0) + C}.

We use the notation H(W) := H(W,0) and for two points = and y in X we
let Hy = {2 :d(z,y) <d(z,2)}, so Hj° = H({y},0). Note that the latter
sets define halfspaces in the more standard sense when X is a euclidean or
real hyperbolic space.

Let X be a complete metric space. By a bordification of X we here
mean a topological space X with X embedded as an open dense subset. The
boundary is 0X = X\ X. If X is compact we refer to it as a compactification.
We define d(x, &) = oo for any x € X and £ € X (which is consistent with
the completeness of X) and extend the definition of d(z, W) for W C X in
the expected way. A metric space is proper if every closed ball is compact.

Let V = V¢ denote the collection of open neighborhoods in X of a bound-
ary point . The star based at x( of a point £ € 90X is (the closures are taken
in X):

s7(&) = (] HV),

VeV
while the star of £ is

s©:=U N HV.0).

C>0VeV:

The latter definition in particular removes an a priori dependence of xg as
will be clear later on. Note also that because of the monotonicity built
into the definition of H, we may restrict V to some fundamental system of
neighborhoods of €.



We introduce the star-distance: Let s be the largest metric on X taking
values in [0, 0o] such that s(§,n7) = 0 if S(§) = S(n), and s(&,n) = 1 if at
least one of £ € S(n) or n € S(£) holds. More explicitly, s(£,n) equals the
minimum number & such that there are points v; with v9 = &, 7% = 7, and
S(%’,%_H) =1 for all 3.

It does not seem clear whether, or when, £ € S(n) implies n € S(§). Let

SY(€) ={n:¢€ S},

and we say that the bordification is star-reflerive when S(§) = SV (€) for all
&. The examples below turn out to have this property.

The face of a subset A of X is the intersection of all stars containing A.
The face of the empty set is defined to be the empty set. By the notation
xy, — S, where z,, is a sequence of points and S a set, we mean that for any
neighborhood U of S we have z,, € U for all sufficiently large n.

2.2 Some lemmas

Lemma 1 For any § € 0X, the sets H(V) for V. € Ve contain V and
e ST C S CcoX. If 0X is compact, then for every neighborhood U
of S*0(&) there is a neigborhood V' of & such that H(V) C U.

Proof. Note that V' C H(V). Indeed, first observe that VN X C H(V)
because d(v,V) = 0 for any v € V. Secondly, note that for any v € V
and any open neighborhood U of v, U NV is again an open neighborhood
and every open set in X has to intersect X. Finally, S%(¢) is nonempty
because ¢ is contained in every V, and S*0(¢) C S(¢) C 0X since d(V, xg) is
unbounded for V' € V.

By compactness and the monotonicity built into H(V), it follows from
considering a fundamental system of neighborhoods that for every neigh-
borhood U of §%0(§) there is a neigborhood V' of £ such that H(V) Cc U

(otherwise one would have ﬂH(V) NUC#0). m

Note that if 2z, — & and d(zp,yn) < C then every limit point of y,
belongs to S (&). A priori, S (£) depends on xg although in the examples
below this is not the case. On the other hand:

Lemma 2 The sets S(§) are independent of the base point xqy. If z, — £ €
0X, d(zn,yn) < C and y, — n, then S(§) = S(n). Moreover, £ and n belong
to the same stars.



Proof. The first statement follows from
H*™(W,C —d(x,x0)) C H*(W,C) Cc H*(W,C + d(z, x0)),

and because of the increasing union over C' > 0 in the definition of S(&).
The other two claims hold for similar reasons. m

Lemma 3 Assume that X is sequentially compact and that S(§) = S¥0(&)
for every & € 0X. Let &, and n, be two sequences in 0X converging to &
and n, respectively. If s(&n,nn) > 0 for all n, then

5(57 77) S hm 1nf 8(5713 77n)

Proof. By the assumption we can work with the S*¥0-stars. It is enough
to consider s(&,,m,) = 1 for all n, because of the sequential compactness
and the way s is defined. Moreover, we may suppose that &, € S(n,,) for all
n. Hence &, € H(V) for every neighborhood V' of 7,,. Given a neighborhood
U of n, there is a IV such that U is also a neighborhood of 7, for n > N.
We therefore have that &, € H(U) for all n > N, and hence also £ € H(U).
Because U was arbitrary, we have that £ € S(n) and so s(§,n) < 1 as re-
quired. m

2.3 Examples
2.3.1 Hyperbolic bordifications

By a hyperbolic bordification we mean the definition to be found in [22].
Examples include the usual boundary of visibility spaces or d-hyperbolic
spaces, the end-compactification, and Floyd’s boundary construction. Here
is a relation between halfspaces and hyperbolicity:

(2]2) = %(d(x,xo) +d(z,w0) — d(z, 2)) > —d(z, z0)

DN |

if and only if x € HZ°.

Proposition 4 Assume that X is a hyperbolic bordification. Then S(§) =
S*o(&) = {&} for every € € 0X.



Proof. Given U a neighborhood of ¢ in X and C' > 0. By definition
we may find R and W € W such that {z : (/W) > R— C/2} C U (see
[22]) and by making W smaller we can also arrange so that R < d(W,zg)/2
(recall that (z|W) := sup(z|w) and d(z¢, &) = 00). Now

HW,0) = {z:d(z,W) < d(z0) + C}
= {220 sup (d(z, 20) — dlzw) + O}
C {2+ d(Wio) < sup(d(z, z0) + d(w, z0) — d(z,w)) + C}
= {z:(z]lW)>R —wC/Q} cU,

which proves the proposition, because W is a fundamental system of neigh-
borhoods and C plays no role. m

2.3.2 Hilbert’s metric

Let X be a bounded convex domain in R” and 90X the usual boundary.
Recall that in this context the star of a boundary point &, Star(§), is the
intersection of 0.X with the union of all hyperplanes which are disjoint from
X but contain £&. We have:

Proposition 5 Assume that X is a bounded convex domain equipped with
Hilbert’s metric and let X be the closure in R™. Then S(£) = §% (&) =Star(€)
for every £ € 0X.

Proof. The inclusion S(§) CStar(§) follows from the inclusion

HW,0) C {z: (2|W) > ~d(W,z0) + C"}

N

proved in Proposition 4 using the same terminology, together with the proof
of Theorem 5.2 in [21]. The other inclusion follows because given W and ¢
it is simple to see that we can approximate ¢ with a point arbitrary far from
xo but staying on finite Hilbert distance to W (the Hilbert metric remains
bounded near a line segment of the boundary in the direction parallel to

this line segment). In particular, (| H(V,C) is independent of C' and equals
S0(6).



2.3.3 Nonpositive curvature

Let X be a complete CAT(0)-space. Recall that the angular metric is
Z(&,€') = suppex £p(€,€), where £,&" are points in the standard visual
boundary 0X of X. The following lemma and its proof can essentially be
found in [4]:

Lemma 6 Let ¢ and ¢ be two geodesic rays emanating from xo and let
€ =lc] and & =[] be the corresponding boundary points. Let p; denote the
projection of ¢ (i) onto c. If Z(&,&") > 7/2 then p; stays bounded as i — co.
If £(£,&) < /2, then p; is unbounded. In the case Z(&,&') = /2 then {p;}
is bounded if and only if xg, ¢, and ¢ define a flat sector.

Proof. First recall the basic angle property of projections [7, Prop.
I1.2.4]: £,,(c'(4),€) > w/2 and £,,(c'(3), o).

If p; is bounded we may assume p; — p (along some subsequence), be-
cause the points p; are restricted to a compact subset of ¢. Then by the
upper semicontinuity of angles ([7, Prop. 11.9.2]) we have:

2(€,8) > £,(&,6) > lim sup L (d(i),&) > /2.
If p; is unbounded, then in view of [7, Prop. 11.9.8] we have

4(5? 5/) = lim (7T - Zpi(cl(i)a xO) - lc’(i) (pia .1‘(]))

1—00

< /2= lim Zu)(pi, xo) < /2.

It remains to analyze the case Z(¢',€) = /2. If p; is a bounded sequence
then as above

m/2 2> Zp(¢,€) = limsup £, (¢'(4), €) = 7/2

and then [7, Cor. I1.9.9] shows that zg, ¢, and ¢ define a flat sector. The
converse is trivial: p; = zo. ®

Proposition 7 Assume X is a complete CAT(0)-space and X is the visual
bordification. Then S(§) = S*0(&) ={n: £L(n,§) < 7/2} for every £ € 0X.

Proof. Consider two rays c¢; and co from z( representing & and 7 respec-
tively. Assume that the projections of c2(i) onto ¢; are unbounded. Since
by definition projections realize the shortest distance, we then have that for



any neighborhood V' of ¢ and for every large enough i (so that p; € V)
that d(ca2(i),V) < d(ea(i),pi) < d(ca(i),zo). In the case £Z(n,§) = 7/2
and c1, co, and xg define a flat sector, then by euclidean geometry V con-
tains a point £ with Z(¢',n) < n/2. In view of Lemma 6 we hence have
{n: 2(1,€) < 7/2} C S%(¢).

Assume Z(§,n) > m/2 and given C' > 0. By definition there is a point y
such that 2, (¢, n) > /2. By continuity ([7, Prop. 11.9.2.(1)]) we can find
neigborhoods V' of £ and U of 1 in X such that Z,(z, w) > m/24 6 for every
z € Uy w €V and some 0 > 0. Further we make V' smaller (if necessary)
so that d(y,V)|cos(n/2 + 6)| > d(zg,y) + C’ for some C' > C. For any
w € VNX, ze UNX we have by the cosine inequality (i.e. comparison
with the euclidean cosine law):

d(z, w)? d(y, 2)* + d(y, w)? — 2d(y, 2)d(y, w) cos Zy(z, w)
y, 2)% +d(y,w)? + 2d(y, 2)d(y, w)| cos(m/2 + 6)|
)2+ (d(zo,y) + C")* + 2d(y, 2)(d(z0,y) + C")

= (d(zo,y) +C" +d(y, 2))”

IV IV IV
25 s
=
I3

which implies that d(z,w) > d(z,z¢) + C’ by the triangle inequality. There-
fore d(z,V) > d(z,x0) + C for all z € UN X and it follows that n ¢ S(§) as
desired. m

2.3.4 Kobayashi’s metric on bounded domains

Theorem 8 Let X be a bounded domain in C" with C?-smooth boundary
equipped with Kobayashi’s metric. If & and & are two distinct boundary
points at which X is strictly pseudoconvez, then s(&1,&2) > 2.

Proof. Combining [24, Thm. 4.5.8] with an estimate due to Forstneric-
Rosay, cf. [24, Cor. 4.5.12], one has for some constant C' and fixed z,

d(zl, 22) Z C + d(zl, 3}0) + d(ZQ, .730)

for all z; (resp. z2) sufficiently close to &; (resp. &2). Hence & ¢ S(&2) and
§£¢56) =

Corollary 9 Let X be a strictly pseudoconvex bounded domain with C?-
boundary equipped with Kobayashi’s metric. Then S(§) = S™0(§) = {&} for
every &€ € 0X.



The corollary is consistent with Proposition 4 in view of the d-hyperbolicity
of these domains ([5]). From an estimate of Diederich-Fornaess and some
additional arguments it is possible to prove:

Theorem 10 Let X be a bounded pseudoconvexr domain with real-analytic
boundary and equipped with Kobayashi’s metric. Then S(§) = S*0(&) = {&}
for every £ € 0X.

In the case when X is a convex C?-domain, Abate essentially proved that
the Kobayashi stars S(§) C Star(§) (the latter set is defined above). What
are the stars for a general bounded pseudoconvex domain with Kobayashi’s
metric? (Recall that Hilbert’s metric is an analogous metric and Teichmiiller
metric is another example.)

2.3.5 Teichmiiller space

Let M be a closed surface of genus g > 2 and let S be the set of homotopy
classes of simple closed curves on M. Denote by i(c, 3) the minimal number
of intersection of representatives of «, 5 € S. Let MF (resp. PMF) be the
set of (resp. projective equivalence classes of) measured foliations, which
coincides with the closure of the image of the embedding

a—i(a,-)

of S into RS (resp. PRS). The intersection number i extends to a biho-
mogeneous continuous function on MF x MF. A foliation F € PMUF is
called minimal if i(F,a) > 0 for every a € S. The Teichmiiller space 7°
of M is embedded into PRS by the hyperbolic length function. (Below, Ve
stands for the vertical foliation and hg the horizontal length associated to a
quadratic differential ¢, see [18] for more details.)

Lemma 11 Let ¢, be the quadratic differential corresponding (in the Te-
ichmiiller embedding with reference point xq) to x, € T. Assume ¢p — oo,
a norm one quadratic differential, and x,, — F in PMF. Whenever 8, € S
such that Ext,, (6n) < D and B, — H in PMUF, it holds that

i(Vy, H) =0 =i(F,H).

Proof. A proof analysis shows that this is proved in [25]: Denote by 1,
the terminal differential corresponding to the Teichmiiller map from z to
T,. Since

hiﬁn (ﬁn) < Ext:]cn (ﬁn)l/z < D1/2’



xn — 00 in 7, and in view of the stretching of the Teichmiiller map (hy, =
ed@ozn) ) we see that

lim i(V¢naﬁn) = lim hqﬁn(ﬂn) =0.

n—oo n—oo
Since (3, is a sequence in S converging to H in PMUF, there is a sequence
A of bounded positive scalars such that A\,3, — H in MJF. By continuity
and homogeneity of i we have i(Vy_,H) = 0.

For the second equality note that it is known that z, — F in PMF

implies that there is a sequence r,, — 0 such that i(rpz,,-) — i(F,-) in
M. From definitions we also have

i(2n, Bn) < Ay Eaty, (8,)"* < AY?DY?,

which by the same argument as before now also shows the second equality. m

The following result can be viewed as a generalization of Lemma 1.4.2
in [18] (there seems to be a misprint in their statement however) and is
obtained by the same method of proof.

Theorem 12 Let X be the Teichmiiller space of a compact surface and
equipped with the Teichmiiller metric d. Let X be the Thurston compactifi-
cation X UPMF. For F € PMF, a minimal foliation, we have

S(F) € {G :i(F,G) = 0}.

Proof. Given y, — G € S*(F), select x,, — F such that d(yn,x,) <
d(Yn,x0) + C for all n and some C > 0. From continuity and Mumford
compactness, it is a fact that sequences (3, as in Lemma 11 corresponding
to xz, always exist. Assume now that F is minimal. It is then known
(due to Rees) that, i(F,G) = 0 if and only if G is minimal and equivalent
to F'. Hence Vyg,, F' and H as in Lemma 11 are all equivalent minimal
foliations. Fix these. Note that A,, — 0 here because of the minimality. Let
0,, (resp. 1) denote the initial (resp. terminal) quadratic differential of the
Teichmiiller map from zq to y,. We have

i(Vo, M) = Anhe, (Bn)
= Aneid(ymxo)hd}n(ﬁn)
< Ape dWnmo) pedlunen)

)

where the last inequality follows from Kerckhoff’s formula for Teichmdiiller
distances. Thus i(Vp,, H) = 0, which implies what we want, since i(F,G) =

10



0 is an equivalence relation for minimal foliations and because of Lemma
11. Finally since the set on the right in the proposition is closed, we have
i(F,G)=0forall Ge S(F). m

Corollary 13 If F € UE (which is a subset of full Lebesgue measure), then
S(F) = S*(F)={F}.

Conjecturally, for any F' € PMUF, it holds that S(F) = {G : i(F,G) = 0}.

3 Dynamics of isometries

3.1 Definitions

Let X be a metric space. By an isometry we here mean a distance preserving
bijection. If the action of the isometries of X extends to an action by
homeomorphisms of X we call the bordification an Isom(X)-bordification.
Note that every proper metric space has a (typically nontrivial) metrizable
Isom(X)-compactification by horofunctions ([4], [2]).

A subset D of isometries is called bounded (resp. unbounded) if Dx is
a bounded (resp. unbounded) set. A single isometry g is called bounded
(resp. unbounded) if {g"}n>0 is bounded (resp. unbounded). Note that
these definitions are independent of xz.

Under the assumption that X is an Isom(X)-bordification, the isometries
of X act on the stars S(£) as can be seen from:

gHW,C) = {z:d(g7'2,W) <d(g~'2,20) + C}
= {z:d(z,gW) < d(z,gxo) + C},

which is included in H(gW, C+d(xo, gzo)) and contains H (gW, C—d(xo, gxo)).
Hence we have gS(§) = S(g€) and it is plain that g preserves star distances.
Note that we also have an action on the faces.

3.2 A contraction lemma

The following observation lies behind the construction of Dirichlet funda-
mental domains (see e.g. [28]): For any isometry g it holds that

—1
g(H] ¥) =H{,.

This leads to a contraction lemma, which in spite of its simplicity and
fundamental nature, we have not been able to locate in the literature:

11



Lemma 14 Let g, be a sequence of isometries such that gpxo — £ and
g7 lwg — £ in a bordification X of X. Then for any neighborhoods V* and
V= of €7 and £ respectively, there exists N > 0 such that

gn(X\NH(V7)) C H(VT)
for alln > N.

Proof. Given neighborhoods V™ and V™ as in the statement, by as-
sumption there is an N such that g,z € VT and g, 'zg € V~ for every
n > N. For any z € X outside H(V ™), so d(z,v) > d(z,x0) for every
v € V~, we have

d(gnz, V") < d(gnz, gno) = d(2,20) < d(2, g, 20) = d(gnz, o)

foreveryn > N. m

Here is a version of the contraction phenomenon when the isometries act
on the boundary:

Proposition 15 Assume that X is an Isom(X )-compactification. Let g, be
a sequence of isometries such that gnxo — £ and g, 'wg — €~ in X. Then
for any z € X \ §%0(£7),

gnz — ST(ET).

Moreover, the convergence is uniform outside neighborhoods of S (7).

Proof. Since z does not belong to S*°(£7) there is some neighborhood
V™ of £ such that z ¢ H(V~). As the latter is a closed set, there is an
open neighborhood U of z disjoint from H(V~). Given a neighborhood V*
of £ we therefore have for all sufficiently large n that ¢,(UNX) C H(V™)

for all n > N. Since g, are homeomorphisms we have that g,z C H(V1) as
required. The proposition now follows in view of Lemma 1. m

3.3 Individual isometries

Let g be an isometry of X and let

an = d(g"xo, x0).

A subsequence n; — oo is called special for g if there is a constant C' > 0
such that a,, > a,, —C for all ¢ and m < n,;. Note that being special clearly

12



passes to subsequences and by the triangle inequality it is independent of
xo (see (1) below) and invariant under the shift {n;} — {n; + N} for fixed
integer N.

Let A™(g) denote the limit points of g™z along the special subsequences.
The characteristic set F(g) of g is the face of A% (g).

Proposition 16 Assume that X is a sequentially compact bordification of
X and g an isometry of X. Then

{g"z0}tn>0NOX C{n: F(g) € Sn)}.
If in addition X is star-reflexive, then
{g"zo}ns0NOX C [ S(&).
£eAT0(g)

Proof. Suppose g is unbounded and let n; be a special sequence for g
(it is a simple fact, see [19], that special subsequences exist if and only if ¢ is
unbounded) and such that g™z converges to some point £ € 0X. Observe
that for any positive & < n; it holds that

d(g™wo, g*x0) = d(g™  * 0, 30) = A,k < an, + C = d(g" o, x0) + C.

Now suppose we have a convergent sequence ¢*izg — 1 € X, which means
that given a neighborhood V of 7, we can find j large so that g*izy € V.
Now from the above inequality we get that for all large enough ¢

gtz € H({gijo},C) C H(V,C).

Therefore £ € H(V,C) and since V was an arbitrary neighborhood we have
€ € S(n). (Note that in particular this means that A (g) and F(g) are
nonempty.) Finally, assuming star-rexlexivity we have showed that n € S(&)
for every special limit point £. =

Proposition 17 Assume that X is a sequentially compact bordification of
X. The subset F(g) C 0X is canonically associated to an isometry g. It is
empty if and only if g is bounded.

Proof. From the triangle inequality we get
ld(gFz, z) — d(g*x0, 0)| < 2d(z,x0), (1)

which implies in view of Lemma 2 that F'(g) is independent of zy. The last
part follows from Proposition 16. m

13



Proposition 18 Let g be an (unbounded) isometry and X an Isom(X )-
bordification. Then for every limit point £ € 0X of the orbit it holds that
g fizes the corresponding star, that is, S(g&) = S(§) and the corresponding
face, that is, F(g&) = F(&). Moreover, F(g), when it exists, is also fixed by

g.
Proof. Since by continuity
g€ = g(lim g™ zp) = lim ¢"*(gxo)
k—oo k—oo

we have that S(g€) = S(£) in view of Lemma 2. If £ € S(n), then g€ € S(gn)
and again we have £ € S(gn). Since g is a bijection, the final part of the
proposition follows. m

4 Groups of isometries

4.1 Generalizations of Hopf’s theorem on ends

The following extends Hopf’s theorem that the number of ends of a finitely
generated group is either 0, 1, 2, or co:

Proposition 19 Assume that X is a sequentially compact Isom(X )-bordification.
Let G be a group of isometries fizing a finite set F' C 0X, that is, GF = F.
If F' is not contained in two stars, then G is bounded.

Proof. By passing to a finite index subgroup (which does not effect
the boundedness) we can assume that G fixes F' pointwise. Now suppose
there is a sequence g, in G such that g 'zg — ¢+ € 9X. Then F must be
contained in S(£7) U S(£7) since otherwise there is is a point in F which
on the one hand should be contracted towards S(¢1) under g, but on the
other hand it is fixed by G. m

To see how this implies Hopf’s theorem: If two boundary points belong to
different ends, then their stars are disjoint. So if one has a finitely generated
group with finite number of ends, then applying the proposition with F
being the set of ends, one obtains that the number of ends must be at most
two.

By the same method of proof:
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Proposition 20 Assume that X is a sequentially compact Isom(X )-bordification.
Let G be a group of isometries which fizes some collection of stars S; in the
sense that GS; = S; for every i. Suppose that for any two arbitrary stars,
there is always an i such that S; is disjoint from these two stars. Then G is

bounded.

These two statements can perhaps be useful to rule out the existence of
compact quotients of certain Riemannian manifolds or complex domains.

4.2 Commuting isometries

The proof of Proposition 18 in fact shows the following:

Proposition 21 Let g be an isometry and X an Isom(X )-bordification.
Suppose that g"ixg — £ € 0X and let Z(g) denote the centralizer of g in

Isom(X ). Then Z(g)S(§) = S(§), Z(9)F(§) = F(£), and Z(g)F(g) = F(g)

(when it exists).

4.3 Free subgroups

Proposition 22 Assume that X is compact. Let g and h be two isometries
such that g™ — &+ € 9X, h*™ — nt € 90X for some subsequences ny,
and my. Assume that S(ET)U S(E7) and S(n™) U S(n™) are disjoint. Then
the group generated by g and h contains a noncommutative free subgroup.

Proof. By a compactness argument (similar to that in the proof of
Lemma 1) we can find large enough K such that

H{g"xobk>k) UH{g ™20 k> k)

and
H{h™zo}i>r) U H{ R ™ x0}1>k)
are disjoint. From the contraction observations in subsection 3.2 and the

usual freeness criterion ([15]), the proposition is proved. m

By a similar proof one has:

Proposition 23 Assume that X is compact. Let g and h be two isometries
such that g™ — ¢+ € 9X, ht™ — nt € 90X for some subsequences ny,
and my. Assume that S(ET), S(nt) and S(€7)U S(n~) are disjoint. Then
the group generated by g and h contains a noncommutative free semigroup.
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4.4 A metric Furstenberg lemma

The following can be viewed as an analog of Furstenberg’s lemma (see [32,
3.2.1]):

Lemma 24 Assume that X is a metrizable Isom(X )-compactification such
that S(&) = S* (&) for every & € 0X. Let g, € Isom(X) and p,v be two
probability measures on 0X. Suppose that gnu — v (in the standard weak
topology). Then either g, is bounded or the support of v is contained in two
stars.

Proof. We assume that g, is unbounded and by compactness we select
a subsequence so that g,zo — &7, g, lxg — &7, and g,&~ — €. We then
have that g, S({7) — S(§) in view of Lemma 3. Write u = p3 + p2 where
p1(0X \ S(§7)) = 0 and p2(S(§7)) = 0. By compactness we can further
assume that g,u; — v; and v = vy + v,. Since p; is supported on S({7), it
follows that 1 is supported on S(§). Suppose that f is a continuous function
vanishing on S(¢). Then

/f Jdvy = lim /f d(gnpz) = lim /f gnn)dp2 =0

by the dominated convergence theorem in view of Proposition 15. Hence we
have showed that suppr C S(£§) U S(£T) as required. m

This lemma might be useful for analyzing amenable groups of isome-
tries (let © = v be an invariant measure). For example, it could provide
an alternative approach to a theorem of Burger-Schroeder [8] extended by
Adams-Ballmann [1] dealing with CAT(0)-spaces.

4.5 Random walks

Let (2,v) be a measure space with v(2) = 1 and L a measure preserving
transformation. Given a measurable map w :  — Isom(X) we let

u(n,w) = w(w)w(Lw)..w(L" 'w).
Let a(n,w) = d(xo, u(n,w)zp) and assume that
/ a(l,w)dv(w) < oo.
Q

For a fixed w we call a subsequence n; — oo special for w if there is a
constant C' such that a(n;,w) > a(m, L™ ™w) — C for all i and m < n,.
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Let F(w) denote the face of all limit points of u(n,w)xy in X along special
subsequences.

Theorem 25 Assume that X is a metrizable Isom(X )-compactification.
Suppose that

1
lim inf / a(n,w)dv(w) > 0.
Q

Then for a.e. w,
u(n,w)zo — {n: Fw) < S(n)},

and the a.e. defined assignment ¥ : w +— F(w) has the property that
w(w)F(Lw) = F(w).

Proof. Proposition 4.2 in [20] guarantees that special subsequences ex-
ist for a.e. w. From this point on, the first part of the theorem is proved
in the same way as Proposition 16. The second part is proved by noting
that if {n;} is special for w, then {n;—1} is special for Lw (cf. [20, p. 117]). m

Let S be the space of closed nonempty subsets of 0.X with Hausdorff’s
topology and denote by F the closure in § of the set of nonempty faces of
0X. Specializing to the case when u(n,-) is a random walk we have:

Corollary 26 Let y be a probability measure on a discrete group of isome-
tries . In the case (Q,v) = [[>, (I, n) with L being the shift, and under the
assumptions of the theorem, the measure space (F,¥,(v)) is a p-boundary
of T.

Proof. Consider the path space I'“+ with the induced probability mea-
sure P from the random walk defined by u starting at e. Note that I’
naturally acts on F. The map V¥ gives rise to a map II defined on the path
space rather than . This measurable map is time shift invariant (special
subsequences are independent of the base point z() and I'-equivariant from
the theorem. Now see [17, 1.5]. m

In several situations, e.g. when X is d-hyperbolic or CAT(0) (under

some reasonable conditions) the pu-boundary obtained in the corollary is in
fact isomorphic to the Poisson boundary, see [17] and [20].
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4.6 Discrete groups

An isometric action of a group I' is (metrically) proper if for every x € X
and every closed ball B centered at z, the set {g € I' : gz € B} is finite. A
pair of stars S1 and So are mazimal if the only union of two stars containing
them is S7 U Ss.

Lemma 27 Assume that X is a Hausdorff Isom(X )-compactification and
that 0X is not the union of two stars. Suppose that g and h are two un-
bounded isometries generating a proper action and that ht%izy — £+ with
S(&1) and S(£7) disjoint and mazimal. If g fives S(£7), then h* = ghlg™!

for two nonzero integers k and l, and g fizes a star contained in S(£V1).

Proof. (Cf. [22].) Since X is a compact Hausdorff space we can find
two disjoint neighborhoods U™ and U~ of S(£1) and S(£7) respectively, so
that E:= X \ (UT UU™) is nonempty and not contained in X. Since g is a
homeomorphism fixing S(£%) we can moreover suppose that

RU- NUT = 0. (2)

Because h™" contracts toward S({7) (Proposition 15) and g is a homeo-
morphism fixing S(§~) we have that

gh ™™ (E)C U~

for all large j. In view of (2) we can find a k = k(j) such that h*)gh=" ENE
is nonempty. Let g; = Rk gh—i. Note that

g;5(67) =S(€7) (3)
and since g;S(£1) = kU gS(et), gS(€F) N gS(€~) = 0, and k(j) — oo,
g;S(€7) — S(e7). (4)

In view of (3), (4), and the assumptions on S(£¥) we have that if gj;xo —
nt € 0X, then either S(nT) = S(¢*) or S(n*) = S(£F). In either case this
contradicts that g; N E is nonempty for all large j. Therefore g; is bounded
and by properness we have g; = g; for many ¢, j different. This means that
hk = gh'g™! for two nonzero integers k and I. Hence

WES(g¢") = ghlg~1gS(ET) = gS(€") = S(g¢™)
and we conclude that S(g&*) € S(¢T), since gS(£7) equals all of S(£7). =
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It is instructive to compare Lemma 27 with the case of a Baumslag-
Solitar group < g,h : h¥ = ghlg~! > acting on its Cayley graph.

An axis of an isometry is an invariant geodesic line on which the isometry
acts by translation. We say that an isometry h fixes an endpoint of a geodesic
line ¢ if there is a C' > 0 such that d(h(c(t)),c(t)) < C for all t > 0 or all
t<0.

Proposition 28 Let g, h be two isometries generating a group which acts
properly on X. Assume that g has an axis ¢ and that h fizes an endpoint of
c. Then [h,g™] =1 for some N > 0.

Proof. Letting xy = ¢(0) we have that:
d(zo, 9~ "hg"x0) = d(g" w0, hg"xo) = d(c(ndy), he(ndy)) < C

for all n > 0 (or n < 0). As the action of the group is proper, we must then
have that for some m # n

g "hg™ =g "hg"

or in other words there is a number N > 0 such that h = g VhgV. m

5 Some consequences

A few comparisons with previous results were pointed out along the way.
Here are some further remarks:

5.1 Hyperbolic bordifications

In this situation, the previous two sections merely provide an alternative
exposition of well-known facts, see e.g. [7] for the theory of ends, [28] for
classical hyperbolic geometry, [12] for hyperbolic groups, and [22] for non-
locally compact spaces.

5.2 Hilbert’s metric

For these metric spaces, it seems that several results obtained in this paper
cannot be found in the literature. An interesting example is the planar
domain bounded by a triangle which has a transitive automorphism group.
Proposition 19 gives a criterion in terms of the simplicial diameter for when
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the automorphism group of a proper convex cone is small. For example,
it implies that the automorphism group of a planar domain bounded by an
n-gon is bounded if n > 7. However, in dimension 2 a rather complete result
can be found in [14]. The literature on symmetric or homogeneous cones
is vast. For recent works on cones where the automorphism group admits
a cocompact lattices, see [6], and see [27] for an instance where Hilbert’s
metric can be a tool in the study of Coxeter groups.

5.3 CAT(0)-spaces

All results in section 4 specialized to the CAT(0)-setting seems to be new ex-
cept Theorem 25, Propositions 21 and 28. Moreover, in view of Propositions
7 and 15 (or their proofs in the non-proper case) we have:

Theorem 29 Let X be a complete CAT(0)-space. Let g, be a sequence of
isometries such that gnxo — ¢t € 0X and g;'wg — € € 0X. Then for
any n € X with Z(n,&) > /2 we have that

gnn — {C: Z(€7,¢) < 7/2}

(in the sense that limsup Z(£1, gnn) < 7/2 when X is not proper). Assum-
ing that X is proper, the convergence is uniform outside neighborhoods of

S(€7).

Applied to iterates of a single isometry g, := h*», the theorem partially
extends (since it also deals with parabolic isometries) a lemma of Schroeder
[4] generalized by Ruane [29] to include also singular CAT(0)-spaces.

Combining Propositions 7 and 22 yields the following result which gen-
eralizes the main theorem in [29] (because no group is here assumed to act
cocompactly and properly):

Theorem 30 Let X be a proper CAT(0)-space. If g and h are two un-
bounded isometries with limit points €=, &7 and n~, n respectively (not
necessarily all distinct), with Td({¢*}, {n*}) > 7, then the group generated
by g and h contains a noncommutative free subgroup.

Compare the following consequence of Proposition 28 to [3, Lemma 4.5]:

Proposition 31 Let X be a complete CAT(0)-space and g a hyperbolic
isometry with an axis c¢. Assume that h is an isometry which fizes one
endpoint of ¢ and that g and h generate a group acting properly. Then h
fizes both endpoints of c.
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Proof. From Proposition 28 we have h = g~V hg". Therefore

h(c(£00)) = lim hgt™Nazy = lim ¢F"NVhag = ¢(+00).

n—oo

Note that [20] implies a partial converse of the main theorem in [1]: if a
group I' acts on a CAT(0)-space with finite critical exponent and the limit
set is countable, then I' is amenable. In addition, our metric Furstenberg
lemma together with [20] could give a generalization of Theorem 1 in [8], and
provide a construction of boundary maps as a first step towards superrigidity.
We hope to return to these matters elsewhere.

5.4 Holomorphic maps

We obtain the following new Wolff-Denjoy type theorem (cf. [19], [24]):

Theorem 32 Let X be a C? bounded domain in C*, f : X — X a holo-
morphic map, and d the Kobayashi distance. Then F(f) contains at most
one point of strong pseudoconvexity. If in addition X is strictly pseudocon-
vex (or real analytic, pseudoconvez), then for any z either f™(z) stays away

from 0X (F(f)=0), orlimy, o f™(2) =& for some & € 0X (F(f) ={&}).

Proof. In the proofs of Propositions 16 and 17 we in fact only need that
d(gz,gy) < d(z,y) for all z,y € X, which holds for holomorphic maps. It is
known ([24, Cor. 4.1.12]) that (X, d) is proper in the strictly pseudoconvex
case, therefore we can use [9] to guarantee that, unless the orbit {f™(2)}n>0
is bounded, it accumulates only in 9X. The rest is now clear in view of
Theorem 8. =

5.5 Mapping class groups

Although the arguments in this paper provide (especially if all stars of the
Teichmiiller spaces can be identified) an alternative explanation of some
theorems on the mapping class groups of surfaces obtained notably in [16]
and [26], it might however be preferable to study the action directly on
the Thurston boundary (or the curve complex) as is done in those works.
It is conceivable, see subsection 2.3.5, that the set of simple closed curves
S C PMUF with the star-distance restricted to it is in fact exactly the curve
complex.
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Note that pseudo-Anosov elements of the mapping class groups, hyper-
bolic isometries of a d-hyperbolic space, and rank 1 isometries (see [2], [3])
of a CAT(0)-space, are all examples of a strictly hyperbolic isometry, that
is, an isometry ¢ for which ¢"zg — ¢ and g™

that S(¢T) = {7} not equal to S(£7) = {¢ }.

rg — £ as n — 00, such

5.6 Groups with a word metric

The observation in subsection 3.2 together with the ping-pong lemma ([15])
yields the following freedom criterion: Let g and h be two elements of order
at least 3 in a group I' with word metric || - || and let A be the subgroup
generated by g and h. If for any a € A at least one of ||ag™!|| and ||ah™||
is strictly greater than [|a||, then A = F5. (There is a similar criterion for
free semigroups.)

Let I" be a finitely generated group, p the uniformly distributed proba-
bility measure on a finite generating set A, X the Cayley graph associated
to A and X the horofunction compactification. If I' is nonamenable, then
Corollary 26 provides a (probably often nontrivial) p-boundary for (I', u).

Let I' denote a finitely generated group with a boundary OI'. Consider
the incidence geometry (cf. [31]) defined by the points and the stars in 0T,
and acted upon by I'. In general or for some specific group, what can this
geometry be? In view of section 3, for example torsioness, subexponential
growth, or amenability of I' implies strong restrictions. It may be interesting
to extend the existing theory of convergence groups to the more general set-
ting where one has nontrivial incidence geometry mixed in. A first instance
of what we essentially have in mind are the ’biconvergence groups’ to be
found in [11].
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