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1 On a theorem of Bates and Robertson

In 1967, D. Kazhdan defined Property (T) for locally compact groups in terms of unitary
representations, and his first spectacular use of the notion was for showing that lattices
in appropriate semi-simple groups are finitely generated [10]. As further natural examples
were discovered, it was realized that the property makes sense for Hausdorff topological
groups which need not be locally compact; see [3] and [18].

The property was also generalized from groups to pairs H ⊂ G consisting of a closed
subgroup H of a topological group G. This appears explicitely in Margulis’ work on
finitely-additive measures on Euclidean spaces [12]. But establishing this property for the
pair K2 ⊂ K2 o SL2(K) is already the main step in Kazhdan’s original proof that SLn(K)
has Property (T) for a local field K and an integer n ≥ 3, and Property (T) for pairs occurs
also (without its name) in Margulis’ explicit construction of concentrators (see Lemma 3.15
in [11]). More recently, in [15] and in [16], S. Popa proved rigidity results on type II1 factors
that need Property (T) for pairs of countable groups such as Z2 ⊂ Z2 o SL2(Z). Thus
Property (T) for pairs of topological groups has credentials to be viewed as a very basic
notion.

It is standard that Property (T) for groups has several equivalent formulations (at
least in the most important case of locally compact groups, possibly with some extra
finiteness condition such as compact generation or σ-compactness). In 1995, T. Bates
and G. Robertson stated some of these equivalences for pairs, with a claim that standard
arguments apply. Since this last point is not strictly true, we offer here a complete proof
of a slightly extended version of Theorem 1.1 in [2] 1.

We repeat below some definitions and state the main result. Further definitions and
auxiliary results are given in Section 2; Section 3 contains a proof of the main theorem,
and Section 4 is devoted to some consequences: we prove that if G is a σ-compact locally
compact group, if L ⊂ K ⊂ H are closed subgroups of G, then Property (T) for the pair
L ⊂ G is inherited by the pair K ⊂ H, provided that the homogeneous spaces G/H and
K/L have invariant probability measures and L is normal in G. This was stated for discrete
groups in Theorems 1.4 and 1.5 in [2], and proved for locally compact second countable
groups in Proposition 3.1 of [9].

Definition 1.1. (1) Let G be a Hausdorff topological group and let (π,H) be a unitary
representation of G. For a subset Q 6= ∅ of G and a real number ε > 0, a vector ξ ∈ H is
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1A version of the present paper has been circulating since 1999 under the title “On relative property

T”; it has been used on several occasions, among others by S. Popa in [15, 16]. For the present publication,
part of the introduction, some prerequisites and Section 4 have been added.
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(Q, ε)-invariant if
(?) sup

g∈Q
‖π(g)ξ − ξ‖ < ε‖ξ‖.

(Observe that if ξ satisfies (?) then ξ 6= 0.) Say that π almost has invariant vectors if, for
any compact subset Q 6= ∅ of G and any ε > 0, there exist (Q, ε)-invariant vectors.
(2) Let moreover H be a closed subgroup of G. The pair H ⊂ G has Property (T) if,
for every unitary representation π of G which almost has invariant vectors, there exists a
vector ξ 6= 0 which satisfies π(h)ξ = ξ for every h ∈ H. In particular, the group G itself
has Property (T) if the pair G ⊂ G has Property (T).
(3) A Kazhdan pair (Q, ε) for the pair of groups H ⊂ G consists of a compact subset Q 6= ∅
of G and a real number ε > 0 such that, whenever a unitary representation π of G has a
vector ξ for which (?) holds, then π has a non-zero vector which is invariant by π(H).

For a pair H ⊂ G as above and a unitary representation π of G in H, we denote by HH

the closed subspace of H of all π(H)-invariant vectors, and by ξH the orthogonal projection
of ξ ∈ H on HH .

A complex-valued function ϕ on a Hausdorff topological group G is of positive type if
it is continuous and if

n∑
i,j=1

αiαjϕ(g−1
i gj) ≥ 0

for every integer n ≥ 1, for all elements g1, . . . , gn ∈ G and for all complex numbers
α1, . . . , αn. If moreover ϕ(1) = 1, we say that ϕ is normalized.

A complex-valued function ψ on G is conditionally of negative type if it is continuous,
if ψ(g−1) = ψ(g) for every g ∈ G and if

n∑
i,j=1

αiαjψ(g−1
i gj) ≤ 0

for every integer n ≥ 1, for all elements g1, . . . , gn ∈ G and complex numbers α1, . . . , αn

that satisfy
n∑
i=1

αi = 0.

Theorem 1.2. Let G be a Hausdorff topological group and let H be a closed subgroup
of G. Consider the following properties for the pair H ⊂ G.

(a1) There exists a Kazhdan pair for the pair H ⊂ G.

(a2) The pair H ⊂ G has Property (T).

(a3) There exists a non-empty compact subset Q of G and a positive number ε such that,
for every unitary representation π of G for which (?) is true, then the restriction of
π to H contains a non-zero finite-dimensional subrepresentation.

(a4) [respectively (a4’)] The restriction to H of every complex-valued [respectively real-
valued] function on G which is conditionally of negative type is bounded.

(b1) There exists a Kazhdan pair (Q, ε0) for H ⊂ G with the following property: for any
δ > 0 and for every unitary representation π of G which has a (Q, δε0)-invariant unit
vector ξ, its orthogonal projection ξH on HH satisfies ‖ξ − ξH‖ ≤ δ.

(b2) For every δ > 0, there exists a Kazhdan pair (Q, ε) for H ⊂ G with the following
property: for any unitary representation π of G which has a (Q, ε)-invariant unit
vector ξ, its projection ξH satisfies ‖ξ − ξH‖ ≤ δ.
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(b3) If (ϕj)j∈J is a net of normalized functions of positive type on G which converges
uniformly to 1 on compact sets, then

lim
j∈J

sup
h∈H

|ϕj(h)− 1| = lim
j∈J

‖ϕj|H − 1‖∞ = 0.

Then:

• Properties (a1) and (a2) are equivalent with each other, they imply Property (a3)
which implies Property (a4), and the latter is equivalent with Property (a4’).

• Property (b1) implies Property (b2), the latter is equivalent to Property (b3), and
both imply Property (a1). Moreover, if H is normal in G, Properties (b1), (b2) and
(b3) are equivalent with each other.

Finally, assume that the group G is locally compact and σ-compact. Then properties (a1),
(a2), (a3), (a4), (b2) and (b3) are equivalent with each other.

Remark. We have no example of a pair H ⊂ G with Property (T), where G is
σ-compact and locally compact and where H is not a normal subgroup of G, for which
Property (b1) does not hold.

Acknowledgements. My warmest thanks go to Pierre de la Harpe for his valuable
suggestions and comments and his considerable help in the presentation of this article, and
to Bachir Bekka and Ghislain Jaudon for having detected a gap in the proof of Corollary
4.1 in a preliminary version.

2 Some prerequisites

We gather first some known facts on functions of positive type and on functions which are
conditionally of negative type.

Let G be a Hausdorff topological group and let π be a unitary representation of G in H.
To every ξ ∈ H, one associates a function of positive type ϕπ,ξ on G by ϕπ,ξ(g) = 〈π(g)ξ, ξ〉
for all g ∈ G. Conversely, let ϕ be a function of positive type on G. The so-called GNS-
construction shows that, for any such function ϕ, there exists a unique (up to unitary
equivalence) triple (πϕ,Hϕ, ξϕ) where πϕ is a unitary representation of G in Hϕ and ξϕ is
a cyclic vector in Hϕ which satisfies ϕ(g) = 〈πϕ(g)ξϕ, ξϕ〉 for all g ∈ G.

A unitary representation ρ of G is weakly contained in a unitary representation π if
every function ϕρ,ξ is a uniform limit on compact subsets of sums of functions ϕπ,η. In
particular, if ρ = 1G is the trivial representation, it is weakly contained in a representation
π if and only if the latter almost has invariant vectors.

Consider next the set of functions which are conditionally of negative type on G. It is
a cone which is closed in the topology of simple convergence. By a theorem of Schoenberg
(1938), if ψ : G → R is a continuous function such that ψ(1) = 0 and ψ(g−1) = ψ(g) for
all g ∈ G, then ψ is conditionally of negative type if and only if the functions e−tψ are of
positive type for all real numbers t > 0. (See for example Theorem 5.16 in [5].) Moreover,
there exist a real Hilbert space Hψ, an orthogonal representation πψ of G on Hψ and a
cocycle b : G→ Hψ (i.e. b(gh) = b(g) + πψ(g)b(h) ∀g, h ∈ G and b(1) = 0) such that

ψ(g−1h) = ‖b(h)− b(g)‖2 ∀g, h ∈ G.

(See Proposition 5.14 in [5].) In particular, ψ(g) ≥ 0 for all g ∈ G.
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Let H be a closed subgroup of G and let ψ be a real-valued function on G which is
conditionally of negative type. The following lemma, which extends Lemma 4.4 in [8], will
be used in Section 3:

Lemma 2.1. Let G, H and ψ be as above. For t > 0, denote by (πt,Ht, ξt) the cyclic
representation of G associated with the function of positive type e−tψ. Then the restriction
of ψ to H is bounded if and only if there exists some t > 0 such that the restriction of πt
to H contains a non-zero finite-dimensional subrepresentation.

Proof. Assume that ψ|H is bounded and let c > 0 be such that ψ(h) ≤ c for every
h ∈ H. Let t > 0 be arbitrary. We are going to prove that πt|H contains the trivial one-
dimensional representation, i.e. Ht contains a non-zero vector η which satisfies: πt(h)η = η
for all h ∈ H. To do that, let C be closed convex hull of πt(H)ξt; it is the closure in Ht of

{
n∑
i=1

siπt(hi)ξt ; n ≥ 1, s1, . . . , sn ∈ [0, 1],
∑
i

si = 1, h1, . . . , hn ∈ H}.

Then we claim that ‖ξ‖ ≥ e−tc/2 for all ξ ∈ C: indeed, if s1, . . . , sn ∈ [0, 1] are such that∑
i si = 1 and if h1, . . . , hn ∈ H, then

‖
∑
i

siπt(hi)ξt‖2 =
∑
i,j

sisj〈πt(h−1
i hj)ξt, ξt〉

=
∑
i,j

sisje
−tψ(h−1

i hj)

≥
∑
i,j

sisje
−tc = e−tc.

Let η ∈ C be the element of minimal norm. Then πt(h)η = η for every h ∈ H by
uniqueness, and η 6= 0.

Before giving the proof of the converse, assume that ψ|H is unbounded and let (hn)n≥1 ⊂
H be a sequence such that ψ(hn) → ∞ as n → ∞. Then we claim that, for every t > 0
and every unit vector ξ ∈ Ht ⊗Ht, one has

(∗) lim
n→∞

‖πt(hn)⊗ πt(hn)ξ − ξ‖ =
√

2.

Indeed, it suffices to prove (∗) for ξ in the linear span of {πt(g)ξt ⊗ πt(g
′)ξt ; g, g′ ∈ G}.

Thus, write

ξ =
m∑

i,j=1

aijπt(gi)ξt ⊗ πt(g
′
j)ξt

with aij ∈ C and gi, g
′
j ∈ G for all i, j = 1, . . . ,m. As ξ has norm one, we have for every

n ≥ 1:

‖πt(hn)⊗ πt(hn)ξ − ξ‖2 = 2− 2Re

(
m∑

i,j,k,l=1

aijakl〈πt(g−1
k hngi)ξt, ξt〉〈πt(g′−1

l hng
′
j)ξt, ξt〉

)

= 2− 2Re

(
m∑

i,j,k,l=1

aijakl exp(−t[ψ(g−1
k hngi) + ψ(g′

−1
l hng

′
j)])

)

because ψ is real-valued. Let (Hψ, πψ, b) be a triple as above: Hψ is a real Hilbert space,
πψ is an orthogonal representation of G on Hψ and b is a cocycle such that

ψ(g−1h) = ‖b(h)− b(g)‖2 ∀g, h ∈ G.
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Thus, ‖b(hn)‖ → ∞ as n→∞, which implies that

ψ(g−1
k hngi) = ‖b(hngi)− b(gk)‖2

= ‖b(hn) + πψ(hn)b(gi)− b(gk)‖2

≥ (‖b(hn)‖ − ‖b(gk)− πψ(hn)b(gi)‖)2

tends to ∞ as n→∞ for all 1 ≤ i, k ≤ m and similarly for ψ(g′−1
l hng

′
j) for all 1 ≤ j, l ≤ m.

This proves (∗).
If the restriction of πt to H contains a non-zero finite-dimensional subrepresentation for

some t > 0, as is well known, this means that (πt⊗πt)|H contains the trivial representation
of H, and (∗) implies that ψ is bounded. �

The following two lemmas are certainly well known to some readers, but we include
their proofs for convenience.

Lemma 2.2. Let H be a group, let π be a unitary representation of H in a Hilbert
space H and let δ be a positive number. If there exists a unit vector ξ ∈ H such that
‖π(h)ξ − ξ‖ ≤ δ for all h ∈ H, then ‖ξH − ξ‖ ≤ δ.

Proof. As in the proof of Lemma 2.1, let C be the closed convex hull of π(H)ξ. By
assumption, one has ‖ζ − ξ‖ ≤ δ for all ζ ∈ C. Since ξH is the element of minimal norm
in C, we get the conclusion. �

Assume now that G is a locally compact group and let H be a closed subgroup of
G. Following Definition 6.1.4 in [4], we say that H is co-Følner in G if there exists a
G-invariant state on L∞(G/H) (equivalently, if the homogeneous space G/H is amenable
in the sense of Eymard [6]). It amounts to say that the quasi-regular representation λG/H
of G on L2(G/H) almost has invariant vectors. Observe that if there exists a G-invariant
probability measure on G/H then H is co-Følner in G. The next lemma will be needed in
Section 4. Lemma 2.3. Let H ⊂ G be as above and assume that H is co-Følner in G.
If π is a unitary representation of H which almost has invariant vectors, then its induced
representation σ = IndGH(π) almost has invariant vectors, too.

Proof. If π almost has invariant vectors, then the trivial representation 1H ofH is weakly
contained in π, and, by continuity of inducing, λG/H = IndGH(1H) is weakly contained in σ.
Since H is co-Følner in G, λG/H almost has invariant vectors, and so does σ. �

3 Proof of Theorem 1.2

To begin with, Properties (a4) and (a4’) are equivalent because of the following standard
fact. Let ψ : G→ C be a function which is conditionally of negative type. Then Re(ψ(g)−
ψ(1)) ≥ 0 for all g ∈ G and the real-valued function ψ0 defined by ψ0(g) = Re{(ψ(g) −
ψ(1))1/2} is also conditionally of negative type. Moreover, ψ and ψ0 are together bounded
or not on G. (See Corollary 5.19 in [5].)

The implication (a1) =⇒ (a2) is straightforward.
(a2) implies (a1). Let I be the set of all pairs (Q, ε) where Q is a non empty compact

subset of G and ε > 0. If (a1) does not hold, then for every i := (Q, ε) ∈ I, one can find a
unitary representation πi in Hi of G and a unit vector ξi ∈ Hi such that

sup
g∈Q

‖πi(g)ξi − ξi‖ < ε,

but such that HH
i = {0}. Set π =

⊕
i∈I πi. It almost has invariant vectors, hence, by (a2),

it has some non-zero vector which is invariant by π(H), and this implies that HH
j 6= {0}

for some j, which contradicts the choice of πj.
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(a1) implies (a3) obviously.
(a3) implies (a4’) follows readily from Lemma 2.1.
(b1) implies (b2) is trivial because (b2) is a special case of (b1).
(b2) implies (b3). Let (ϕj)j∈J be a net as in (b3) and denote by (πj,Hj, ξj) the GNS-

representation of ϕj for all j ∈ J . Fix a positive number δ, and let (Q, ε) be a Kazhdan
pair associated to δ/2. There exists jδ ∈ J such that

sup
g∈Q

|ϕj(g)− 1| < ε2

2

for all j ≥ jδ. Hence ‖πj(g)ξj − ξj‖ =
√

2Re(1− ϕj(g)) < ε for all g ∈ Q and all j ≥ jδ.
Thus, one has, by (b2), ‖ξHj − ξj‖ ≤ δ/2 for all j ≥ jδ. We get for all h ∈ H and all j ≥ jδ:

|ϕj(h)− 1| = |〈πj(h)ξj − ξj, ξj〉|
≤ ‖πj(h)ξj − ξj‖
≤ ‖πj(h)ξj − ξHj ‖+ ‖ξHj − ξj‖
≤ 2‖ξHj − ξj‖ ≤ δ.

(b3) implies (b2). Let again I be the set of all pairs (Q, ε) as in the proof of (a2) implies
(a1). I is a net when gifted with the following partial ordering: (Q, ε) � (Q′, ε′) if and
only if Q ⊂ Q′ and ε ≥ ε′. If (b2) does not hold, there exists δ > 0 such that for every pair
i = (Q, ε) ∈ I one can find a representation πi on Hi, a unit vector ξi ∈ Hi and hi ∈ H
such that

sup
g∈Q

‖πi(g)ξi − ξi‖ < ε

but
‖πi(hi)ξi − ξi‖ ≥ δ

by Lemma 2.2. Put ϕi(g) = 〈πi(g)ξi, ξi〉. Then ϕi → 1 uniformly on compact sets hence

sup
h∈H

|ϕi(h)− 1| → 0.

But one has ‖πi(hi)ξi − ξi‖ ≥ δ for every i, which implies that Re(1 − ϕi(hi)) ≥ δ2

2
. This

gives a contradiction.
(b2) implies (a1). This is obvious.
Assume now that H is normal in G and that Property (b2) holds. Choose δ > 0 and

let (Q, ε) be as in (b2). Set ε0 = ε/2. If (π,H) is a unitary representation of G which has
a unit vector ξ that satisfies

sup
g∈Q

‖π(g)ξ − ξ‖ ≤ δε

2

then we just need to prove that

sup
h∈H

‖π(h)ξ − ξ‖ ≤ δ.

To do that, set M(ξ) = supg∈Q ‖π(g)ξ − ξ‖, and let H1 be the orthogonal complement of
HH in H. Since H is normal in G, both subspaces are G-invariant. Write ξ = η + ζ with
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η ∈ HH and ζ ∈ H1. If ζ = 0, then ξ = η = ξH , and we are done. Assume that ζ 6= 0.
Then one has for every g ∈ Q:

‖π(g)
ζ

‖ζ‖
− ζ

‖ζ‖
‖ =

1

‖ζ‖
‖π(g)ζ − ζ‖

≤ 1

‖ζ‖
‖π(g)ξ − ξ‖ ≤ M(ξ)

‖ζ‖
.

But necessarilyM(ξ) ≥ ε‖ζ‖ because the restriction of π toH1 has no non-zeroH-invariant
vector. Thus ‖ξ − η‖ = ‖ζ‖ ≤ ε−1M(ξ), and we get for all h ∈ H:

‖π(h)ξ − ξ‖ = ‖π(h)(ξ − η)− (ξ − η)‖ ≤ 2‖ξ − η‖ ≤ 2

ε
M(ξ) ≤ δ.

Hence, when H is a normal subgroup of G, Properties (b1), (b2) and (b3) are equivalent
with each other.

Finally, let us assume that G is a locally compact, σ-compact group. In order to
complete the proof of Theorem 1.2, it remains to prove that Property (a4) implies Property
(b3). Indeed, we already know that

(a1) ⇐⇒ (a2) =⇒ (a3) =⇒ (a4)

and that
(b2) ⇐⇒ (b3) =⇒ (a1).

(a4) implies (b3). (Adapted from [1].) Suppose that there exists a sequence (ϕn)n≥1 of
functions which are normalized and of positive type on G such that ϕn → 1 uniformly on
compact sets, but with

lim inf
n→∞

‖ϕn|H − 1‖∞ = 2ε > 0.

Then there exist (hn) ⊂ H and integers kn ≥ n such that

|ϕkn(hn)− 1| ≥ ε

for all n ≥ 1. Let (Qn)n≥1 be an increasing sequence of compact subsets of G such that
G =

⋃
nQn. Taking a subsequence if necessary, we assume that

sup
g∈Qn

|ϕn(g)− 1| ≤ 4−n

and
|ϕn(hn)− 1| ≥ ε

for every n. Using the inequality:

|ϕ(s)− ϕ(t)|2 ≤ 2(1− Reϕ(s−1t))

for all s, t ∈ G and for every normalized function of positive type ϕ on G, we get:

ε2

2
≤ Re(1− ϕn(hn))

for every n. Then set

ψ(g) =
∞∑
n=1

2n Re(1− ϕn(g)),

which is a function conditionally of negative type on G. As

ψ(hn) ≥ 2n−1ε2

for every n, we see that ψ is unbounded on H.
The proof is now complete. �
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4 Consequences

Let G be a Hausdorff topological group and let H,K,L be closed subgroups of G such that
L ⊂ K ⊂ H ⊂ G. Observe that, if the pair K ⊂ H has Property (T), it follows from
the definition that the pair L ⊂ G has also Property (T). Theorem 1.2 has the following
consequence, which extends Theorem 1.5 in [2] and Proposition 3.1 in [9].

Corollary 4.1. The notation being as above, assume moreover that G is a second
countable, locally compact group and that the pair L ⊂ G has Property (T).

(1) If there exists a K-invariant probability measure on K/L, then the pair K ⊂ G has
Property (T).

(2) If H is co-Følner in G and if L is a normal subgroup of G, then the pair L ⊂ H has
Property (T).

Particular case. Let H be a locally compact, second countable group and let K be
a closed subgroup of H. Assume that there exists a H-invariant probability measure on
H/K. Then the three following properties are equivalent:

(i) the group H has Property (T),

(ii) the group K has Property (T),

(iii) the pair K ⊂ H has Property (T).

The equivalence between (i) and (ii) is already in [10]. In particular, it holds for a
lattice in a locally compact group. It is the last step of Kazhdan’s argument for showing
that lattices in appropriate semi-simple Lie groups (in particular in affine algebraic groups
over local fields which are simple of split rank at least two) are finitely-generated.

Proof of Corollary 4.1. (1) Let µ be a K-invariant probability measure on K/L and
denote by p the canonical projection from K onto K/L. Let (π,H) be a unitary repre-
sentation of G which almost has invariant vectors. We are going to prove that H contains
non-zero invariant vectors for π(K). As the pair L ⊂ G satisfies Property (b2), given some
0 < δ < 1/16, there exists a Kazhdan pair (Q, ε) as in (b2), and we assume that ε ≤ δ.
Choose a compact set C ⊂ K such that, if X = p(C), then µ(K/L \X) < δ, and choose a
unit vector ξ ∈ H which satisfies

sup
g∈Q∪C

‖π(g)ξ − ξ‖ ≤ ε.

Then there exists a unit vector η ∈ HL such that ‖η − ξ‖ ≤ 2δ. In particular, we get for
all k ∈ C:

(∗) ‖π(k)η − ξ‖ ≤ ‖π(k)η − π(k)ξ‖+ ‖π(k)ξ − ξ‖ ≤ 3δ.

Let us define then η′ : K/L→ H by η′(kL) = π(k)η for all k ∈ K. Finally, set

η1 =

∫
K/L

η′(x)dµ(x) ∈ H.

As µ is a K-invariant measure, one has π(k)η1 = η1 for all k ∈ K, and we are left to prove
that η1 6= 0. But, by the inequalities (∗), we have ‖η′(x)− ξ‖ ≤ 3δ for all x ∈ X, and this
implies that

‖
∫
X

η′(x)dµ(x)− µ(X)ξ‖ ≤ 3δ
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hence

‖
∫
X

η′(x)dµ(x)‖ ≥ µ(X)− 3δ ≥ 1− 4δ >
3

4
.

Finally, the inequality ‖η1 −
∫
X
η′(x)dµ(x)‖ ≤ δ implies that ‖η1‖ ≥

3

4
− δ > 0.

(2) Let π be a unitary representation of H which almost has invariant vectors. By
Lemma 2.3, its induced representation σ = IndGH(π) almost has invariant vectors, too.
Thus its restriction to L has an invariant unit vector ξ. We realize σ as in [7], p. 348, and
we keep S. Gaal’s notations: choose a quasi-invariant probability measure µ on G/H and
let K = K(µ) be the Hilbert space of (classes of) measurable functions η : G → H such
that, for all h ∈ H, η(gh) = π(h−1)η(g) dg-a.e., and

∫
G/H

‖η(x)‖2dµ(x) < ∞. Finally,

denote by λ(g, x) the Radon-Nikodym derivative given by the action of G on G/H. Hence
ξ : G→ H is a Borel function such that:

(a) for every h ∈ H, one has ξ(gh) = π(h−1)ξ(g) dg-a.e.,

(b)

∫
G/H

‖ξ(x)‖2dµ(x) = 1,

(c) for every l ∈ L, ξ(lg)
√
λ(l, ġ) = ξ(g) dg-a.e..

We claim that G/H has an L-invariant probability measure: indeed, set

ν(B) =

∫
G/H

χB(x)‖ξ(x)‖2dµ(x)

for every Borel subset B of G/H. Then Property (c) above shows that ν is L-invariant. As
ν is a regular measure, its support S is a closed, L-invariant subset of G/H. Let Y ⊂ G
be the preimage of S under the canonical projection of G onto G/H. Y is a closed subset
of G, it has positive Haar measure, it is left L-invariant and right H-invariant. Replacing
µ by µ′ = µ(S)ν|S + (1 − µ(S))µ|G/H\S, we get a quasi-invariant probability measure on
G/H such that the Radon-Nikodym derivative λ′(h, s) = 1 for (l, s) ∈ L× S. Realizing σ

on the Hilbert space K(µ′), the non-zero vector ξ′ = ξ
√

dµ
dµ′

restricted to Y satisfies:

(a’) for every h ∈ H, one has ξ′(yh) = π(h−1)ξ′(y) for almost all y ∈ Y ,

(b’)

∫
G/H

‖ξ′(x)‖2dµ(x) = 1,

(c’) for every l ∈ L, ξ′(ly) = ξ′(y) for almost all y ∈ Y .

Consider next the following right actions of L×H on Y and on H:

y · (l, h) = l−1yh and η · (l, h) = π(h−1)η.

Then, by Proposition B.5 of [19], there is an L ×H-invariant conull Borel subset Y0 ⊂ Y
and a Borel L ×H-map ξ′′ : Y0 → H such that ξ′′ = ξ′ a.e.. In particular, one has for all
y ∈ Y0 and all (l, h) ∈ L×H:

ξ′′(l−1yh) = π(h−1)ξ′′(y).
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Thus, choose y ∈ Y0 such that ξ′′(y) 6= 0. Then, since L is normal in G and contained in
H, one has for every l ∈ L:

π(l)ξ′′(y) = ξ′(yl−1) = ξ′′(yl−1y−1y) = ξ′′(y)

which means that ξ′′(y) is a non-zero L-invariant vector. �
Examples. (1) The existence of a K-invariant probability measure on K/L cannot

be replaced by the amenability of K/L: indeed, let H be a countable, infinite, amenable
group, let L be any finite subgroup of H and let K be an infinite subgroup of H which
contains L. Then the pair L ⊂ H obviously has Property (T), but the pair K ⊂ H does
not: the regular representation of H almost has invariant vectors, and its restriction to K
has no non-zero invariant vectors.
(2) We give an example where Corollary 4.1 applies: Set Γ0 = SL2(Z), let Γ1 = [Γ0,Γ0]
be the commutator subgroup of Γ0 and set Γ2 = [Γ1,Γ1]. It is proved in [6] that Γ2 is
co-Følner in SL2(R), but that the homogeneous space SL2(R)/Γ2 has no SL2(R)-invariant
probability measure. As the pair R2 ⊂ R2 o SL2(R) has Property (T), the pairs R2 ⊂
R2 o Γ2 and Z2 ⊂ Z2 o Γ2 have also Property (T).

Remarks. (1) We don’t know whether the second statement of Corollary 4.1 remains
true if L is not normal in G.
(2) Recently, R. Nicoara, S. Popa and R. Sasyk found a characterization of Property (T)
for pairs of countable groups in terms of projective representations which is similar to our
condition (b2): see Theorem 3.1 in [13].
(3) Let H be a closed subgroup of a topological group G. Say that G has Property (T)
relative to H if any unitary representation π of G which almost has invariant vectors and
which has non-zero invariant vectors by H has also non-zero vectors invariant by G. (In
particular, Property (T) for the group G itself means that G has Property (T) relative
to {1}.) This property plays its role in Popa’s articles [14] and [17], but it should not be
confused with Property (T) for the pair H ⊂ G.
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