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Abstract

We give a description and some algebraic properties of groups obtained as limit

of Baumslag-Solitar groups marked with a canonical set of generators. We discuss

other examples of converging families of marked groups with parameters.

Introduction

The set of marked groups on k generators (see section 1 for de�nitions) was given a natural

topology which turns it to a compact totally disconnected space. This topology received

several names: �topology on marked groups�, �Cayley topology�, �Grigorchuk topology�. . .

The principle is that two marked groups are close if there are large balls of their Cayley

graphs which are isomorphic.

This topology has been used for several purposes. Let us cite the following examples :

• Stepin [Step93] used it to prove the existence of amenable but non elementary

amenable groups.

• To prove that every �nitely generated Kazhdan group is a quotient of some �nitely

presented Kazhdan group, Shalom proved in [Sh00] that Kazhdan's property (T)

de�nes an open subset of the space of marked groups.

• In [CG04], Champetier et Guirardel gave a characterization of limit groups of Sela

in terms of the topology on marked groups.
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There also exists several papers about questions whose formulation involves the topology

on marked groups language. Let us cite the following ones :

• In [Ch00], Champetier showed that the quotient of the space of marked groups on

k generators by the group isomorphism relation is not a standard Borel space. He

also studied the closure of non elementary hyperbolic groups.

• In [St05], the second author gave an almost complete characterization of convergent

sequences among Baumslag-Solitar groups.

We are interested in the closure of Baumslag-Solitar groups and its elements, which we

study for their own right. Theorem 6 of [St05] allows us to de�ne the following elements

of the closure (De�nition 1.6):

BS(m, ξ) = lim
n→∞

BS(m, ξn)

where m ∈ Z∗, ξ ∈ Zm, ξn is any sequence of integers such that ξn → ξ in Zm and

|ξn| → ∞ (for n→∞).

Outline of the paper and description of results Section 1 contains the material

we want to recall and the de�nitions of the main groups appearing in the article.

In the spirit of [St05], we treat in Section 2 the problem of convergence of Torus knots

groups. The solution happens to be simpler, for the one-parameter sequences are all

convergent (Proposition 2.1). We also discuss the cases of Baumslag-Solitar groups with

changing markings (Theorem 2.4) and other Baumslag's one-relator groups (Proposition

2.5).

Section 3 achieves the characterization, which was not complete in [St05], of convergent

sequences of Baumslag-Solitar groups (Theorem 3.7) and gives a necessary and su�cient

condition for marked groups BS(m, ξ) and BS(m, η) to be equal (Corollary 3.10).

In Section 4, we show that the map Zm → G2; ξ 7→ BS(m, ξ) is continuous and injective

on Z×
m.

It is well-known that a Baumslag-Solitar group acts on its Bass-Serre tree by automor-

phisms and on Q by a�ne transformations. Section 5 is devoted to construct actions of

BS(m, ξ). First BS(p, ξ) acts a�nely on Qp when p is a prime (Theorem 5.1). Second,

we construct an action of BS(m, ξ) by automorphisms on a tree which is in some sense a

�limit� of Bass-Serre trees (Theorem 5.3).
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The tree action allows us to prove in Section 6 that the BS(m, ξ)'s are extensions of

free groups by the wreath product Z o Z (Theorem 6.2), so that they have the Haagerup

property (Corollary 6.4).

We �nally deal in Section 7 with presentations of the BS(m, ξ)'s. We show �rst that

almost none of them is �nitely presented (Proposition 7.1). Second, we exhibit a presen-

tation, which is again related to the tree action (Theorem 7.4).

Acknowledgements We would like to thank Laurent Bartholdi for having pointed out

Theorem 2.4 (a) to us. We would also thank our advisors, Goulnara Arzhantseva and

Alain Valette, for their comments on previous versions of this article.

1 De�nitions and preliminaries

1.1 The ring of m-adic integers

Let m ∈ Z∗. As seen in [St05], the ring of m-adic integers Zm is the projective limit (in

the category of topological rings) of the system

. . .→ Z/mhZ → Z/mh−1Z → . . .→ Z/m2Z → Z/mZ

where the arrows are the canonical (surjective) homomorphisms. This shows that Zm

is compact. We collect now some easy facts about m-adic integers which are useful in

following sections.

Proposition 1.1 Let m be a nonzero integer and let m = ±pk1
1 · · · pk`

` be its decomposi-

tion in prime factors:

(a) One has an isomorphism of topological rings Zm
∼= Zp1 ⊕ . . . ⊕ Zp`

. In particular,

for m not prime, the ring Zm has zero divisors.

(b) The group of invertible elements of Zm is given by

Z×
m = Zm \ (p1Zm ∪ . . . ∪ pkZm) ;

(c) Any ideal of Zm is principal. Moreover any ideal of Zm containing a nonzero integer

can be written pi1
1 · · · p

i`
` Zm with i1, . . . i` ∈ N.

(d) Assume |m| ≥ 2. For any i1, . . . i` ∈ N, one has Z ∩ pi1
1 · · · p

i`
` Zm = pi1

1 · · · p
i`
` Z.
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Proof. Notice �rst that statements (a)-(d) are trivial in case |m| = 1 (i.e. ` = 0). We

assume then |m| > 2 in what follows.

(a) Consider the following commutative diagrams (for h > 2):

Z/mhZ

∼=��

// // Z/mh−1Z

∼=��⊕̀
s=1

Z/phks
s Z // //

⊕̀
s=1

Z/p(h−1)ks
s Z .

Passing to projective limits gives Zm
∼= Zp1 ⊕ . . .⊕ Zp`

.

(b) For any prime p, it is well known that the group of invertible p-adic integers is

Z×
p = Zp \ pZp. In view of (a), the conclusion follows obviously.

(c) Let I be an ideal of Zm. It corresponds by (a) to an ideal of Zp1 ⊕ . . .⊕ Zp`
, which

has to have the form I1 ⊕ . . .⊕ I` where Is is an ideal of Zps . Since it is well known, for

any prime p, that the nonzero ideals of Zp are exactly the phZp's for h ∈ N, one gets, for
every s, Is = pis

s Zps or Is = 0. Set ξ = (ξ1, . . . , ξ`) with ξs = pis
s if Is = pis

s Zps and ξs = 0

if Is = 0. Set e1 = (1, 0, . . . , 0), . . . , e` = (0, . . . , 0, 1). The ideal I is obviously generated

by e1ξ, . . . , e`ξ, hence by ξ. Consequently, I is a principal ideal.

Assume now that I contains a nonzero integer k. Since k does not vanish in any Zps , one

has I = pi1
1 Zp1⊕. . .⊕p

i`
` Zp`

with i1, . . . , i` ∈ N and ξ = (pi1
1 , . . . , p

i`
` ). Setting ηs =

∏
t6=s p

it
t ,

we obtain an invertible element η = (η1, . . . , η`) such that ηξ = pi1
1 · · · p

i`
` · (1, . . . , 1). This

implies I = pi1
1 · · · p

i`
` Zm.

(d) The inclusion ⊇ is obvious. To show the converse, take n ∈ Z ∩ pi1
1 · · · p

i`
` Zm. For

any s, consider the following sequence of (canonical) morphisms

Z → Zm → Z/misZ → Z/pis
s Z

whose composition is the canonical projection Z → Z/pis
s Z. Since n is in pi1

1 · · · p
i`
` Zm, it

is in the kernel of all those maps and thus in pi1
1 · · · p

i`
` Z. 2

De�nition 1.2 Let m be an integer such that |m| > 2 and let p1, . . . , p` be its prime

factors. If E is a subset of Zm containing a nonzero integer, the greatest common divisor

(gcd) of the elements of E is the (unique) number pi1
1 · · · p

i`
` (with i1, . . . , i` ∈ N) such that

the ideal generated by E is pi1
1 · · · p

i`
` Zm.

If |m| = 1, we set by convention gcd(Zm) = 1.
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Lemma 1.3 Let m ∈ Z∗ and let m′ be a divisor of m. Let us write m′ = ±pj1
1 · · · p

j`′
`′

and m = ±pk1
1 · · · pk`

` their decomposition in prime factors (`′ 6 ` and js 6 ks for all

s = 1, . . . , `′). Let π : Zm → Zm′ the morphism induced by projections Z/mhZ → Z/m′hZ
(for h > 1). Then the following holds:

(a) One has π(n) = n for any integer n;

(b) For any d = ±pi1
1 · · · p

i`′
`′ with i1, . . . , i`′ ∈ N, one has π−1(dZm′) = dZm.

Proof. Assertion (a) is obvious. The morphism π corresponds by Proposition 1.1 (a) to

the projection ⊕̀
s=1

Zps �
`′⊕

s=1

Zps .

For any d, one has then clearly

π−1(dZm′) = π−1

(
`′⊕

s=1

pis
s Zps

)
=

`′⊕
s=1

pis
s Zps ⊕

⊕̀
s=`′+1

Zps = dZm,

which proves (b). 2

1.2 Marked groups and their topology

Introductory expositions of these topics can be found in [Ch00] or [CG04]. We only recall

some basics and what we need in following sections.

The free group on k generators will be denoted by Fk, or FS (with S = (s1, . . . , sk))

if we want to precise the names of (canonical) generating elements. A marked group on

k generators is a pair (Γ, S) where Γ is a group and S = (s1, . . . , sk) ∈ Γk is a family

which generates Γ. A marked group (Γ, S) comes always with a canonical epimorphism

φ : FS → Γ, giving an isomorphism of marked groups between FS/ kerφ and Γ. Hence a

class of marked groups can always be represented by a quotient of FS. In particular if a

group is given by a presentation, this de�nes a marking on it. The nontrivial elements of

R := kerφ are called relations of (Γ, S). Given w ∈ Fk we will often write "w = 1 in Γ"

or "w =
Γ

1" to say that the image of w in Γ is trivial.

Let w = xε1
1 · · ·xεn

n be a reduced word in FS (with xi ∈ S and εi ∈ {±1}). The integer
n is called the length of w and denoted |w|. If (Γ, S) is a marked group on k generators,

and γ ∈ Γ the length of γ is

|γ|Γ := min{n : γ = s1 · · · sn with si ∈ S t S−1}

= min{|w| : w ∈ FS, φ(w) = γ} .
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Let Gk be the set of marked groups on k generators (up to marked isomorphism). Let

us recall that the topology on Gk comes from the following ultrametric: for (Γ1, S1) 6=
(Γ2, S2) ∈ Gk we set d

(
(Γ1, S1), (Γ2, S2)

)
:= e−λ where λ is the length of a shortest element

of Fk which vanishes in one group and not in the other one. But what the reader has to

keep in mind is the following characterization of convergent sequences.

Lemma 1.4 [St05, Proposition 1] Let (Gn)n>0 be a sequence of marked groups in Gk.

The sequence (Gn)n>0 is converging if and only if for any w ∈ Fk, we have either w = 1

in Gn for n large enough, or w 6= 1 in Gn for n large enough.

The reader could remark that the latter condition characterizes exactly Cauchy se-

quences. Another useful statement we will use in the paper is the following:

Lemma 1.5 [CG04, Lemma 2.3] If a sequence (Gn)n>0 in Gk is converging to a marked

group G ∈ Gk which is given by a �nite presentation, then, for n large enough, Gn is a

marked quotient of G.

We address the reader to the given references for proofs.

1.3 Notations and conventions

We give now some notations and conventions which hold in the whole paper. First, recall

that we de�ne the Baumslag-Solitar groups by

BS(m,n) =
〈
a, b

∣∣ abma−1 = bn
〉

(m,n ∈ Z∗) .

Then, we de�ne a new family of groups in the following way:

De�nition 1.6 For m ∈ Z∗ and ξ ∈ Zm, one de�nes a marked group on two generators

BS(m, ξ) by the formula

BS(m, ξ) = lim
n→∞

BS(m, ξn)

where ξn is any sequence of integers such that ξn → ξ in Zm and |ξn| → ∞ (for n→∞).

Notice that BS(m, ξ) is well de�ned for any ξ ∈ Zm by Theorem 6 of [St05]. Note

also that for any n ∈ Z∗, one has BS(m,n) 6= BS(m,n). Indeed, the word abma−1b−n

represents the neutral element in BS(m,n), but not in BS(m,n).
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When appearing as marked groups, the free group F2 = F(a, b), the Baumslag-Solitar

groups and the groups BS(m, ξ) are all (unless stated otherwise) supposed to be marked

by the pair (a, b).

Another group which plays an important role in this article is

Z o Z = Z nt Z[t, t−1] ∼= Z ns

⊕
Z

Z

where the generator of the �rst copy of Z acts on Z[t, t−1] by multiplication by t or,

equivalently, on
⊕

Z Z by shifting the indices. This group is assumed (unless speci�ed

otherwise) to be marked by the generating pair consisting of elements (1, 0) and (0, t0).

The last groups we introduce here are Γ(m,n) = Zn n
m

Z[gcm(m,n)
lcm(m,n)

] (m,n ∈ Z∗) where the

generator of the �rst copy of Z acts on Z[gcm(m,n)
lcm(m,n)

] by multiplication by n
m
. This group

is assumed (unless speci�ed otherwise) to be marked by the generating pair consisting of

elements (1, 0) and (0, 1). The latter elements are the images of (1, 0) and (0, t0) by the

homomorphism Z o Z → Z n Z[gcm(m,n)
lcm(m,n)

] given by the evaluation t = n
m
; they are also the

images of the elements a and b of BS(m,n) by the homomorphism de�ned by a 7→ (1, 0)

and b 7→ (0, 1). Notice last that the group Z n Z[gcm(m,n)
lcm(m,n)

] acts a�nely on Q (or R) by
(1, 0) · x = n

m
x and (0, y) · x = x+ y.

We introduce the homomorphism σa : F2 → Z de�ned by σa(a) = 1 and σa(b) = 0.

It factories through all groups BS(m,n), BS(m, ξ),Z o Z,Z n n
m

Z[gcm(m,n)
lcm(m,n)

]. The induced

morphisms are also denoted σa. To end this section we de�ne the homomorphism¯: F2 →
F2 given by ā = a and b̄ = b−1. Note that it is compatible with quotient maps and

also de�nes homomorphisms¯: BS(m,n) → BS(m,n) for m,n ∈ Z∗ and¯: BS(m, ξ) →
BS(m, ξ) for m ∈ Z∗, ξ ∈ Zm.

2 Converging sequences of some marked one-relator

groups with parameters

2.1 Limits of torus knots groups

We de�ne the groups

Tm,n =
〈
a, b

∣∣ am = bn
〉

and Tm =
〈
a, b

∣∣ [am, b] = 1
〉
, m, n ∈ Z∗.

When m and n are relatively prime, the group Tm,n is the fundamental group of S3 \Km,n

where Km,n is the knot drawn on the torus T2 ' R2/Z2 obtained as the image of the map
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t 7−→ (mt, nt). Given with their natural ordered set of generators (a, b), the groups Tm,n

and Tm are marked groups of G2.

Proposition 2.1 i) The limit of Tm,n in G2, when m and n tend both to in�nity, is

the free group F2 =< a, b > marked with its natural set of generators.

ii) Assume now that m is �xed. The limit in G2 of Tm,n as n tends to in�nity is Tm.

Proof. Notice �rst that Tm,n is the free product of 〈a〉 ' Z by 〈b〉 ' Z with amalgam-

mation over 〈am〉 ' Z and 〈bn〉 ' Z (see [LS77], Ch.IV for de�nition).

Let us prove i). It su�ces to show that for any freely reduced word w on {a, b}±, there
is some integer L = L(w) such that

(1) w =
F2

1 ⇒ w =
Tm,n

1 for all m,n > L,

(2) w 6=
F2

1 ⇒ w 6=
Tm,n

1 for all m,n > L.

As (1) is trivial, we only need to prove (2). Let w be a freely reduced word on {a, b}±.
By the normal form theorem ([LS77], Ch.IV, Th.2.6,pp 187) for free products with amal-

gammation, the image of w in Tm,n is trivial for all m,n > |w| if and only if w =
F2

1, which

completes the proof of i).

Let us show the statement ii). By Dycke's theorem, the map a 7−→ a, b 7−→ b induces

an epimorphism of Tm onto Tm,n for all n,m ∈ Z. It su�ces to show that for any reduced

word w on {a, b}±, there is some integer L = L(w) such that

(1) w =
Tm

1 ⇒ w =
Tm,n

1 for all n > L,

(2) w 6=
Tm

1 ⇒ w 6=
Tm,n

1 for all n > L.

As (1) is trivial, we only need to show (2). Let w = aα1bβ1 . . . aαlbβl be a freely reduced

word. We claim that we can write

w =
Tm

asv with s ∈ Z and v = 1 or v = bβ
′
1aα′2 . . . bβ

′
t−1aα′t (2.1)

where β′j is a non-zero sum of some βi's, α′j ∈ {1, . . . ,m− 1} for all j ∈ {2, . . . , t− 1} and
α′t ∈ {0, . . . ,m − 1}. We call such a decomposition a suitable decomposition of w. We

show (2.1) by induction on l. The case l = 1 is clear.
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We can write for each i ∈ {1, . . . , l}, αi = qim + ri with ri ∈ {0, . . . ,m − 1}. We set

α′i = ri. Hence, w =
Tm

w′ = aα′1+
Pl

i=1 qimbβ1aα′2 · · · bβl−1aα′lbβl . If ri > 0 for all i ∈ {2, . . . , l},
then the last decomposition is suitable. If not we have then w =

Tm

w′′ where w′′ is the free

reduction of w′ and we apply the induction hypothesis to w′′.

Assume that n > |w| and let w = asv in Tm with s ∈ Z, v = 1 or v = bβ
′
1aα′2 . . . bβ

′
taα′t

be a suitable decomposition. We have |β′j| ≤
∑t

i=1 |βj| ≤ |w| < n, for j = 1, . . . , t. By

the normal form theorem for free product with amalgammation, the image of w in Tm,n

is trivial only if s = 0 and v =
F2

1. In this case, the image of w in Tm is also trivial, which

proves statement (2). 2

Proposition 2.2 The groups Tm and Tm′ are isomorphic if and only if |m| = |m′|.

Proof. We begin by proving that the center Z(Tm) of Tm is the cyclic group Cm =

〈am〉. Obviously, Cm ≤ Z(Tm). The presentation
〈
a, b

∣∣ am = 1
〉
is a presentation for

the quotient Tm/Cm. Thus Tm/Cm is isomorphic to the free product Z ∗ Z/mZ. As non
trivial free products are centerless, we have Z(Tm/Cm) = {1}. Since the quotient map

Tm −→ Tm/Cm maps central elements on central elements, we have then Z(Tm) = Cm. If

the groups Tm and Tm′ are isomorphic, then Tm/Z(Tm) ' Z ∗ Z/mZ and Tm′/Z(Tm′) '
Z ∗ Z/m′Z. are also isomorphic. This can occur only if |m| = |m′|.
Conversely, if m′ = −m, we check easily that the map a 7−→ a−1, b 7−→ b induces an

isomorphism between Tm and Tm′ . 2

2.2 Limits of Baumslag-Solitar groups with changing markings

Let us note Γ(m,n) = Z n n
m

Z[ lcm(m,n)
gcm (m,n)

] (these groups are de�ned in Section 1.3). No-

tice that Γ(1, n) = BS(1, n). It is known from [St05] that the limit of the sequence

(BS(1, n))n≥1 in G2 is the marked group Z o Z. Let φ be the endomorphism of F2

induced by the map a 7−→ a, b 7−→ bm. We notice that it induces endomorphisms

φ : BS(m,n) → BS(m,n) of Baumslag-Solitar groups.

Remark 2.3 The morphism φ : BS(m,n) → BS(m,n) is an epimorphism if and only

if m and n are relativeley prime integers. More precisley, Imφ ∩ 〈b〉 = 〈bgcd(m,n)〉 (see
Lemma A.30 of [Sou00] for a proof). Hence, if gcd(m,n) = 1, the image of (a, b) under

φk is the generating set (a, bm
k
) of BS(m,n).

Let us �x a nonzero integer m.
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For any n ∈ Z∗ and any ` ∈ N, we denote by Γn,` the subgroup of BS(m,n) generated by

a and bm
`
(We use the latter two elements as marking). Note that if m and n are coprime,

then for any ` ∈ N one has Γn,` = BS(m,n) (as groups). The result we are aiming at is

the following.

Theorem 2.4 Let m ∈ Z∗. The following statements hold:

(a) For any n and for `→∞, one has Γn,` → Γ(m,n) = Z n n
m

Z[gcm(m,n)
lcm(m,n)

];

(b) For |n| → ∞ and `→∞, one has Γn,` → Z o Z.

Result (a) was known by Baumslag in [Bau76]. He proved also that Γ(2, 3) is the

metabelianization of BS(2, 3) and that it is not �nitely presented but has trivial Schur

multiplicator. This convergence was used in [AB+03] to prove that BS(m,n), for m and

n relatively prime, is not uniformly non-amenable and in [Os02] to show that BS(m,n)

is weakly amenable.

Proof. The morphism φ : F2 → F2 de�nes marked epimorphisms Γn,` → Γn,`+1 for all

n ∈ Z∗ and ` ∈ N. Consequently, for all n ∈ Z∗, ` ∈ N and w ∈ F2, one has

w =
Γn,`

1 ⇐⇒ φ`(w) =
BS(m,n)

1 . (2.2)

Let us now take w ∈ F2. Thanks to (2.2), it is su�cient to prove that:

(i) For any n, one has w =
Γ(m,n)

1 =⇒ φ`(w) =
BS(m,n)

1 for ` large enough;

(ii) For any n, one has w 6=
Γ(m,n)

1 =⇒ φ`(w) 6=
BS(m,n)

1 for ` large enough;

(iii) One has w =
ZoZ

1 =⇒ φ`(w) =
BS(m,n)

1 for |n| and ` large enough;

(iv) One has w 6=
ZoZ

1 =⇒ φ`(w) 6=
BS(m,n)

1 for |n| and ` large enough.

We write w = ai1bβ1a−i1 · · · aikbβka−ikaσ. Up to conjugate, we may assume that we have

i1, . . . , ik > 0. Set now `w = max(i1, . . . , ik). For all ` > `w and n ∈ Z∗, one has

φ`(w) = ai1bm
`β1a−i1 · · · aikbm

`βka−ikaσ

=
BS(m,n)

bm
`−i1ni1β1 · · · bm`−iknikβkaσ

= bm
`
Pk

s=1 βs( n
m)

is

aσ .
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Proof of (i). Fix n ∈ Z∗. The equality w = 1 in Γ(m,n) implies
∑k

s=1 βs

(
n
m

)is
= 0 and

σ = 0. Consequently, one has φ`(w) = 1 in BS(m,n) for all ` > `w.

Proof of (ii). Fix n ∈ Z∗. In the case σ 6= 0, one would have φ`(w) 6= 1 in BS(m,n) for all

` ∈ N. Thus we assume σ = 0 and the inequality w 6= 1 in Γ(m,n) gives
∑k

s=1 βs

(
n
m

)is 6=
0. Consequently, for any ` > `w, one has

φ`(w) =
BS(m,n)

bm
`
Pk

s=1 βs( n
m)

is

6=
BS(m,n)

1 .

Proof of (iii). The equality w = 1 in Z o Z implies σ = 0 and
∑k

s=1 βst
is = 0 (as

polynomials). Consequently, one has φ`(w) = 1 in BS(m,n) for all ` > `w and n ∈ Z∗.

Proof of (iv). In the case σ 6= 0, one would have φ`(w) 6= 1 in BS(m,n) for all ` ∈ N and

n ∈ Z∗. Thus we assume σ = 0 and the inequality w 6= 1 in Z o Z gives
∑k

s=1 βst
is 6= 0

(as polynomials). The polynomial
∑k

s=1 βst
is having only �nitely many roots, one has∑k

s=1 βs

(
n
m

)is 6= 0 for |n| large enough. Consequently, for any ` > `w and for |n| large
enough, one has

φ`(w) =
BS(m,n)

bm
`
Pk

s=1 βs( n
m)

is

6=
BS(m,n)

1 .

This completes the proof. 2

2.3 Limits of other Baumslag's one-relator groups

We denote by BS(m,n, l) the group de�ned by the presentation〈
a, b

∣∣ (abmb−1a−n)l = 1
〉
with m,n, l ∈ Z∗.

This family of one-relator groups with torsion was introduce by Baumslag in [Bau67]. He

proved there that such groups are residually �nite if |m| 6= 1 6= |n|, n and m are coprime

and l > 1

Proposition 2.5 Consider the family of marked groups BS(m,n, l) (endowed with the

canonical marking (a, b)) with m,n ∈ Z∗ and l > 2. One has BS(m,n, l) → F2 in G2

whenever |m|, |n| or |l| tends to in�nity.

Proof. This is a straightforward corollary of the following result of B.B. Newman [LS77,

Ch. 5, Pr. 5.28]. If X is a set of letters and w is any word on X± which is trivial in the

one-relator group with torsion
〈
X
∣∣ rk = 1

〉
, then the length |w| of w with respect to the

word metric induced by X is not less than (k − 1)|r|. 2

11



3 A necessary and su�cient condition for the conver-

gence of sequences of marked Baumslag-Solitar

groups

Proposition 3.1 Letm, d ∈ Z∗ and (ξn)n≥0 be a sequence of integers such that |ξn| → ∞.

If (ξn)n≥0 de�nes a converging sequence in Zm then the sequence of marked groups

(BS(md, ξnd))n≥0 converges in G2

We get this proposition by adaptating quite readily Theorem 6 in [St05]. Nevertheless,

we give a proof based on the following lemmas.

Lemma 3.2 Let w ∈ F2. Under the hypothesis of Proposition 3.1, the following alterna-

tive holds :

(a) either w = bλn in BS(md, ξnd) for n large enough;

(b) or w is in BS(md, ξnd) \ 〈b〉 for n large enough.

We recall that the map a 7−→ (x 7→ n
m
x), b 7−→ (x 7→ x + 1) de�nes an homomorphism

ψn : BS(m,n) −→ Aff(R).

Lemma 3.3 [St05, Lemma 7] Let w = bα0aε1 . . . aεhbαh with εi = ±1 and αi ∈ Z. We

have either ψn(w) = 1 for |n| large enough or ψn(w) 6= 1 for |n| large enough. Moreover,

if ψl(w) = 1 for some |l| > |α0|+ |α1| · · ·+ |αh|, then ψn(w) = 1 for all n.

The proof of Lemma 3.2 relies on a corollary of Lemma 5 in [St05]. Before to state it,

we recall the following statement, whose notations will be used :

Lemma 3.4 [St05, Lemma 4] Let m,n, n′ ∈ Z∗ and h > 1. If n ≡ n′ (mod mh), there

exists s0, . . . , sh; s
′
0, . . . , s

′
h; r1, . . . , rh, which are unique, such that:

(i) 0 6 ri < m ∀i; s0 = 1 = s′0;

(ii) si−1n = sim+ ri and s
′
i−1n

′ = s′im+ ri ∀ 1 6 i 6 h;

(iii) si ≡ s′i (mod mh−i) ∀ 0 6 i 6 h.

The reader is addressed to the reference for the proof.
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Lemma 3.5 Let m,n, n′, d ∈ Z∗ and h ≥ t ≥ 1. Assume that n ≡ n′ (mod mh) and let

α = k0 + k1nd+ k2s1nd+ · · ·+ ktst−1nd

α′ = k0 + k1n
′d+ k2s

′
1n

′d+ · · ·+ kts
′
t−1n

′d

where |k0| < min(|n|, |n′|) and s0, . . . , sh; s
′
0, . . . , s

′
h are given by Lemma 3.4. Let us also

take r1, . . . , rh as in Lemma 3.4.

(i) We have α ≡ 0 (modmd ) if and only if α′ ≡ 0 (modmd ). If it happens we get

abαa−1 =
BS(md,nd)

bβ and abα
′
a−1 =

BS(md,n′d)
bβ

′
with

β = l1nd+ l2s1nd+ · · ·+ lt+1stnd

β′ = l1n
′d+ l2s

′
1n

′d+ · · ·+ lt+1s
′
tn
′d

and

l1 =
1

m
(k0 + k1r1 + · · ·+ ktrt), li = ki−1 for 2 ≤ i ≤ t+ 1.

(ii) We have α ≡ 0 (modnd) if and only if α′ ≡ 0 (modn′d ). If it happens we get

a−1bαa =
BS(md,nd)

bβ and a−1bα
′
a =

BS(md,n′d)
bβ

′
with

β = l0d+ l1nd+ l2s1nd+ · · ·+ lt−1st−2nd

β′ = l0d+ l1n
′d+ l2s

′
1n

′d+ · · ·+ lt−1s
′
t−2n

′d

and

l0 = k1m− k2r1 − · · · − ktrt−1, li = ki+1 for 1 ≤ i ≤ t.

In particular the li's depend only on the common congruence class of n and n′ modulo

mh. The case d = 1 corresponds to [St05, Lemma 5].

Proof of Lemma 3.5. (i) By Lemma 3.4 which ensures that si ≡ s′i (mod m) for all

i = 1, . . . , t− 1, we have α ≡ α′ (modmd ). Assume now that

α ≡ 0 ≡ α′ (modmh ).

We set α = α
d
and α′ = α′

d
. We have then

α = k0 + k1n+ k2s1n+ · · ·+ ktst−1n

13



α′ = k0 + k1n
′ + k2s1n

′ + · · ·+ ktst−1n
′

where k0 = k0

d
. By Lemma 5 (i) [St05], we have the following identies

abαa−1 = abdαa−1 = bβd = bβ in BS(md, nd)

abα
′
a−1 = abdα′a−1 = bβ

′d = bβ
′
in BS(md, n′d)

with

β = βd and β = l1n+ l2s1n+ · · ·+ lt+1stn

β′ = β
′
d and β

′
= l1n

′ + l2s
′
1n

′ + · · ·+ lt+1s
′
tn
′

and

l1 =
1

m
(k0 + k1r1 + · · ·+ ktrt), li = ki−1 for 2 ≤ i ≤ t+ 1

which comes from the proof of [St05, Lemma 5]. Hence (i) is proved.

(ii) As |n| > |k0| and |n′| > |k0|, we have α ≡ 0 (mod nd) if and only if k0 = 0 if and

only if α′ ≡ 0 (mod n′d). Suppose now that it is the case. By Lemma 5 (ii) [St05], we

have then

a−1bαa = a−1bαda = bβd = bβ in BS(md, nd)

a−1bα
′
a = abα

′da−1 = bβ
′d = bβ

′
in BS(md, n′d)

with

β = βd and β = l0 + l1n+ l2s1n+ · · ·+ lt−1st−2n

β′ = β
′
d and β

′
= l0 + l1n

′ + l2s
′
1n

′ + · · ·+ lt−1s
′
t−2n

′

and

l0 = k1m− k2r1 − · · · − ktrt−1, li = ki+1 for 1 ≤ i ≤ t

which comes from the proof of [St05, Lemma 5]. Hence (ii) is proved. 2

Proof of Lemma 3.2. We de�ne Γn = BS(md, ξnd). Let us write

w = bα0aε1bα1 . . . aεhbαh with εi = ±1 and αi ∈ Z, reduced in the sense that αi = 0 ⇒
εi = εi+1 for all i ∈ {1, . . . , h − 1}. We assume (b) not to hold, i.e. w = bλn in Γn of

in�nitely many n's. Then the sum ε1 + · · ·+ εh has clearly to be zero (in particular h is

even). We have to show that w = bλn for n large enough.

For n large enough, we may assume that |ξn| > |αj| for all j ∈ {0, . . . , h} and the ξn's are

all congruent modulo mh. We take a value of n such that moreover w = bλn in Γn(there
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are in�nitely many ones) and apply Britton's Lemma. This ensures the existence of an

index j such that εj = 1 = −εj+1 and αj ≡ 0 (mod md) (since |ξnd| > |αj| for all j). For
all n large enough, Lemma 3.5 implies

w =
Γn

bα0 . . . aεj−1bαj−1+βj+αj+1aεj+2 . . . bαr

with βj = l1ξnd = αj
ξn

m
(depending on n). Hence we are allowed to write

w =
Γn

bα
′
0,naε′1bα

′
1,n . . . aε′h−2bα

′
h−2,n

for n large enough, with ε′i = ±1 and α′i,n = k′0,i + k′1,iξnd, where the ε
′
i's and k

′
l,i's do not

depend on n.

Now, for n large enough, we may assume that |ξn| > |k′0,i| for all 0 ≤ j ≤ h − 2 (and

the ξn's are all congruent modulo mh). Again, we take a value of n such that moreover

w = bλn in Γn and apply Britton's Lemma. This ensures the existence of an index j such

that either ε′j = 1 = −ε′j+1 and α′j,n ≡ 0 (mod md), or ε′j = −1 = −ε′j+1 and α′j,n ≡ 0

(mod ξnd). In both cases, while applying Lemma 3.5, we obtain

w =
Γn

bα
′′
0,naε′′1 bα

′′
1,n . . . aε′′h−4bα

′′
h−4,n

for n large enough, with ε′′i = ±1 and α′′i,n = k′′0,i + k′′1,iξnd+ k′′2,is1,nξnd, where the ε′′i 's and

k′′l,i's do not depend on n.

And so on, and so forth, setting h′ = h
2
, we get �nally w = bα

(h′)
0,n in Γn for n large enough,

with

α
(h′)
0,n = k

(h′)
0,0 + k

(h′)
1,0 ξnd+ k

(h′)
2,0 s1,nξnd+ · · ·+ k

(h′)
h′,0sh′−1,nξnd

where the k(h′)
i,0 's do not depend on n. It only remains to set λn = α

(h′)
0,n . 2

Proof of Proposition 3.1. It is easy to show that a word w is equal to 1 in BS(m,n)

if and only if it is in the subgroup generated by b and ψn(w) = 1. Let w ∈ F2. Lemmata

3.2 and 3.3 immediately imply that either w = 1 in BS(md, ξnd) for n large enough or

w 6= 1 in BS(md, ξnd) for n large enough. 2

Corollary 3.6 Let m, d ∈ Z∗ with |m| ≥ 2 and let ξ ∈ Zm. We �x η ∈ Zmd such that

π(η) = ξ, where π : Zmd −→ Zm is the map de�ned in Lemma 1.3.

Let h ≥ 1 and w = bα0aε1bα1 . . . aε2hbα2h ∈ F2 with εi = ±1 reduced in the sense that

αi = 0 ⇒ εi = εi+1 for all i ∈ {1, . . . , 2h − 2}. We set K0 = |α0| + |α1 + · · · + |α2h|. We

�x an integer n such that n ≡ ξ (modmhZm ) and |nd| > K0(h+ 1)!|m|h−1.

Then w = 1 in BS(md, ηd) if and only if w = 1 in BS(md, nd).

Hence, the word problem is solvable in BS(md, ηd).
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Proof. Reasonning as in the proof of Proposition 3.1 and related lemmata, we see that

if w = 1 in BS(md, ηd) then there is a sequence of h cancellations for w

(0) w = bα0aε1bα1 . . . aεhbα2h ,

(1) w′ = bα
′
0,naε′1bα

′
1,n . . . aε′h−2bα

′
h−2,n ,

(2) w′′ = bα
′′
0,naε′′1 bα

′′
1,n . . . aε′′h−4bα

′′
h−4,n ,

...
...

(h) w(h) = bα
(h)
0,n = b0 = 1.

which occurs in all BS(md, nd) provided that

|nd| > |αj|, |k(t)
0,i | for 0 ≤ j ≤ 2h, 1 ≤ t ≤ h, 0 ≤ i ≤ 2h− 2t (3.1)

where the k(t)
0,i 's are the integers appearing in the proof of Lemma 3.2 and

n ≡ ξ (mod mhZm). (3.2)

Conversely, if w = 1 in BS(md, nd) for some n satisfying both conditions (3.1), (3.2) and

|nd| > |α0|+ |α1|+ · · ·+ |α2h| = K0 (3.3)

a repeated use of the Britton's lemma in the same way as in the proof of Proposition

3.1 and related lemmata gives rise to a sequence of h cancellations of w leading to the

trivial word. By Lemma 3.5 and Lemma 3.3, all these cancellations still occur in any

BS(md, n′d) whenever n′ satis�es (3.1) and (3.2). Hence, w = 1 in BS(md, ηd).

We set k(0)
0,i = |αi| for i = 0, . . . , 2h and K(t) = max

0≤s≤t,0≤i≤2h−2s
|k(s)

0,i |. . Because of (3.1)

and (3.3), it su�ces to bound roughly K := K(h) by K(0)h!|m|h.
For all t = 0, 1, . . . , h− 1, there is a choosen index c(t) ∈ {1, . . . , 2h− 2t− 1} such that

either α(t)
c(t),n is congruent to 0 (mod md) (case i) or to 0 (mod nd) (case ii) for all n

satisfying (3.1) and (3.2) . We have the identities :

α
(t+1)
i,n =


α

(t)
i,n if 0 ≤ i ≤ c(t)− 2

α
(t)
c(t)−1,n + βc(t) + α

(t)
c(t)+1,n if i = c(t)− 1

α
(t)
i+2,n if c(t) ≤ i ≤ 2h

(3.4)

with α(t)
c(t),n = k

(t)
0,c(t)+k

(t)
1,c(t)nd+k

(t)
2,c(t)s1,nnd+· · ·+k(t)

t,c(t)st−1,nnd and βc(t) = l0d+l1s1,nnd+

· · ·+lt+1st,nnd where l0, l1, . . . , lt+1 are given by Lemma 3.5 and s1,n, s2,n, . . . , st,n are given

by Lemma 3.4. By Lemma 3.5, we know that the integers l1, . . . , lt+1 don't depend on n

and we have the following identities :
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( case i )

l0 = 0, l1 =
1

m
(k

(t)
0,t + k

(t)
1,c(t)r1 + · · ·+ k

(t)
t,c(t)rt), li = k

(t)
i−1,c(t) for 2 ≤ i ≤ t+ 1. (3.5)

( case ii )

l0 = k
(t)
1,tm− k

(t)
2,c(t)r1 − · · · − k

(t)
t,c(t)rt−1, li = k

(t)
i+1,c(t) for 1 ≤ i ≤ t− 1, lt = lt+1 = 0,

(3.6)

with r1, r2, . . . , rt ∈ {0, . . . ,m − 1} depend only on the class of n modulo mhZm.

Finally, we get from (3.4) :

k
(t+1)
j,i =


k

(t)
j,i if i ≤ c(t)− 2

k
(t)
j,c(t)−1 + lj + k

(t)
j,c(t)+1 if i = c(t)− 1

k
(t)
j,i+2 if c(t) ≤ i ≤ h

(3.7)

We deduce from (3.5),(3.6) and (3.7) that for t ∈ {1, . . . , h − 1} either K(t+1) ≤ K(t) +
1
|m| |m|(t+ 1)K(t) +K(t) (case i) or K(t+1) ≤ K(t) +mtK(t) +K(t) (case ii). Hence

K(t+1) ≤ (|m|t+ 2)K(t) for t ≥ 1 and K(1) ≤ 2K(0)

because the �rst cancellation is of type (i). We get then K ≤ K(0)(h+ 1)!|m|h−1.

2

Theorem 3.7 Let m ∈ Z∗ and (ξn)n≥0 be sequence of integers such that |ξn| −→
n→∞

∞.

The sequence (BS(m, ξn))n≥0 converges in G2 if and only if the following conditions both

hold :

(i) there is some integer d such that gcd(m, ξn) = d for all n large enough;

(ii) ( ξn

d
)n≥0 de�nes a converging sequence of Zm

d
.

First, we need the following lemma :

Lemma 3.8 Let mi, di, ki ∈ Z∗ for i = 1, 2 such that

m1d1 = m2d2, |k2d2| 6= 1, gcd(m2, k2) = 1 and d1 doesn't divide d2.

Then, the distance between BS(m1d1, k1d1) and BS(m2d2, k2d2) in G2 is not less than

e−δ with δ = 10 + 2d1m
2
1.
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Proof of Lemma 3.8. Consider r = a2bd1m2
1a−2b and let w = rr. On one hand, we

have r = bd1k2
1+1 in BS(m1d1, k1d1), which implies w = 1 in BS(m1d1, k1d1). On the

other hand, r = abm1d2k2a−1b in BS(m2d2, k2d2). As m2 and k2 are coprime integers,

we notice that m2d2 divides m1d2k2 if and only if d1 divides d2. Under the assumptions

of the lemma, the writing abm1d2k2a−1bab−m1d2k2a−1b−1 is then a reduced form for w in

BS(m2d2, k2d2). By Britton's Lemma, w 6= 1 in BS(m2d2, k2d2). As |w| = 10 + 2d1m
2
1,

we get the conclusion. 2

Proof of Theorem 3.7. Notice that Theorem 2 of [St05] shows the theorem in the

case m = ±1. We assume then |m| ≥ 2.

Let us show �rst that (i) and (ii) are necessary. If (i) doesn't hold, we can �nd two

subsequences (ξ′n)n≥0 and (ξ′′n)n≥0 of (ξn)n≥0 such that gcd(m, ξ′n) = d1, gcd(m, ξ
′′
n) =

d2, |ξ′′n| > 1 for all n and d1 doesn't divide d2. Then Lemma 3.8 clearly shows that

(BS(m, ξn))n≥0 is not a converging sequence in G2.

To show that (ii) is necessary, we assume now that (BS(m, ξn))n≥0 converges and that

there is some d ∈ Z∗ such that gcd(m, ξn) = d for all n large enough. The marked

subgroup Γξn,d of BS(m, ξn) generated by (a, bd) is equal to BS(m
d
, ξn

d
) endowed with

its canonical ordered set of generators (a, b). The sequence of the BS(m
d
, ξn

d
)'s is then

also converging in G2. By Theorem 3 [St05], the sequence of integers ( ξn

d
)n≥0 de�nes a

converging sequence in Zm
d
.

Finally, we see by Proposition 3.1 that (i) and (ii) are also su�cient. 2

Remark 3.9 Theorem 3.7 still holds if we replace BS(m, ξn) by BS(m, ξn) where (ξn)n≥0

is any sequence in Zm and if we write (π( ξn

d
))n≥0 instead of (

ξn

d
)n≥0 in (ii) where π : Zm −→

Zm
d
is the map de�ned in Lemma 1.3.

Corollary 3.10 Let m ∈ Z∗ and let ξ, η ∈ Zm. The equality of marked groups

BS(m, ξ) = BS(m, η)

holds if and only if there is some d ∈ Z∗ such that gcd(ξ,m) = gcd(η,m) = d and

π( ξ
d
) = π(η

d
) in Zm

d
.

Proof of Corollary 3.10.

Choose a sequence of integers (ξn)n≥0 such that

ξ2n −→
Zm

, ξ, ξ2n+1 −→
Zm

η and |ξn| −→ ∞ as n tends to in�nity.
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One has BS(m, ξ) = BS(m, η) if and only if the sequence BS(m, ξn) converges. By

Theorem 3.7 it is equivalent to have gcd(m, ξn) = d for n large enough (for some d ∈ Z∗)

and the sequence π( ξn

d
) converges in Zm

n
. Finally, it is equivalent to have gcd(m, ξ) = d =

gcm(m, η) and π( ξ
d
) = π(η

d
). 2

Corollary 3.11 Let m ∈ Z∗ and let ξ, η ∈ Zm with ξ 6= η. If no prime factor of m divides

both ξ and η, then one has BS(m, ξ) 6= BS(m, η).

Proof of Corollary 3.11. We may suppose that gcd(m, ξ) = gcd(m, η) = d by

Corollary 3.10). Then d = 1 by assumption and π(ξ) = ξ 6= η = π(η). By Corollary 3.10,

one gets BS(m, ξ) 6= BS(m, η). 2

Lemma 3.12 Let m, d ∈ Z∗ and ξ ∈ Zmd. The marked subgroup of BS(md, ξd) gen-

erated by (a, bd) is equal to BS(m,π(ξ)) where π : Zmd −→ Zm is the map de�ned in

Lemma 1.3.

Proof of Lemma 3.12. Let (ξn)n≥0 be a sequence of integers such that |ξn| −→
∞, ξn −→

Zmd

ξ as n tends to in�nity. Since BS(md, ξnd) is converging to BS(md, ξd) as

n tends to in�nity, the marked subgroup Gn of BS(md, ξnd) generated by (a, bd) is con-

verging to the subgroup G of BS(md, ξd) generated by (a, bd). As Gn =
G2

BS(m, ξn), we

have G =
G2

BS(m,π(ξ)). 2

4 Topological inclusion of Z×
m in G2

In this section, we are to show that the parameterization of the limits of Baumslag-Solitar

groups by the m-adic integers is coherent with the topology inherited from G2. Precise

statements are as follows:

De�nition 4.1 For m ∈ Z∗, let us de�ne the following subsets of G2:

Ym = {BS(m,n) : n ∈ Z∗} ;

Zm =
{
BS(m, ξ) : ξ ∈ Zm

}
.

Theorem 4.2 For all m ∈ Z∗, the application

BSm : Zm → Zm ; ξ 7→ BS(m, ξ)

is continuous, onto and injectiv on Z×
m.
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For |m| > 2, note that if we endow Z with the m-adic ultrametric, the analogue map

Z∗ → Ym ; n 7→ BS(m,n)

is not continuous anywhere. Indeed, one has n+pk → n for k →∞, while BS(m,n+pk) →
BS(m,n). (We recall that one has BS(m,n) 6= BS(m,n), since the word abma−1b−n

de�nes the trivial element in BS(m,n) but not in BS(m,n).)

Proof of theorem 4.2. Let us �x m ∈ Z∗. Surjectivity of BSm is obvious. As Zm is

compact, we only have to show that BSm is continuous and injective.

Continuity: Let (ξn)n be a sequence in Zm which converges to ξ. A standard diagonal

argument shows that for all n, there exists ξn ∈ Z such that:

(i) |ξn| > n;

(ii) dm(ξn, ξn) < 1
n
;

(iii) d
(
BS(m, ξn), BS(m, ξn)

)
< 1

n
.

In view of (ii), the sequence (ξn)n is convergent with limit ξ and we get

BS(m, ξn) −→
n→∞

BS(m, ξ) due to (i). We �nish by combining this with (iii) to obtain

BS(m, ξn) −→
n→∞

BS(m, ξ).

2

We now "particularize to the case of invertible elements" and show that, in this case,

the BS groups form the boundary of the BS groups. Precise statements are as follows:

De�nition 4.3 For m ∈ Z∗, we de�ne:

Xm =
{
BS(m,n) : n is relatively prime to m

}
;

Z×m =
{
BS(m, ξ) : ξ ∈ Z×

m

}
.

By convention, we say that Z×±1 is empty.

Corollary 4.4 For all m ∈ Z∗, the boundary of Xm in G2 is Z×m. It is homeomorphic to

the set of invertible m-adic integers.

Proof. Theorem 3 of [St05] implies that the elements of Xm are the BS(m,n)'s with n

relatively prime to m and the BS(m, ξ) with ξ ∈ Z×
m. One sees easily that the BS(m,n)'s

are isolated points in Xm (consider the word abma−1b−n). The equality ∂Xm = Z×m follows

immediately. The second statement is a direct consequence of Theorem 4.2. 2
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5 Actions of limits of marked Baumslag-Solitar groups

It is well known that, being a HNN-extension of Z, a Baumslag-Solitar group BS(m,n)

acts naturally on its Bass-Serre tree [Se77]. Also well known is the a�ne action of

BS(m,n) on the real line given by a · x = n
m
x and b · x = x + 1. The purpose of

this section is to give similar actions for the groups BS(m, ξ). The a�ne action will

not be used in the paper but the tree action will be of interest to prove that the groups

BS(m, ξ) have the Haagerup property and to exhibit presentations.

A�ne action. We restrict to the case where m is a prime number, which we denote by

p. Let ξ ∈ Zp and let (ξn)n be a sequence of integers such that |ξn| → ∞ and ξn → ξ. For

n ∈ N, we set

ψn = ψξn :


BS(p, ξn) −→ A�(Qp)

a 7−→ (x 7→ ξn

p
x)

b 7−→ (x 7→ x+ 1)

where Qp is the �eld of fractions of Zp. These actions are are well de�ned exactly for the

same reasons as the above a�ne actions on R.

Theorem 5.1 Let p be a prime number and let ξ ∈ Zp, ξ 6= 0. There is an a�ne action

of BS(p, ξ) on Qp de�ned by

ψξ :


BS(p, ξ) −→ A�(Qp)

a 7−→ (x 7→ ξ
p
x)

b 7−→ (x 7→ x+ 1)

.

Proof. It is su�cient to show that the a�ne action of F2 on Qp given by

ψ :


F2 −→ A�(Qp)

a 7−→ (x 7→ ξ
p
x)

b 7−→ (x 7→ x+ 1)

satis�es ψ(w) = id for all w such that w = 1 in BS(p, ξ).

Take (ξn)n a sequence of integers such that |ξn| → ∞ and ξn → ξ. For n ∈ N, we
denote again ψn the action corresponding to the above action of BS(p, ξn). We have that

ψn(a)(x) = ξn

p
x → ψ(a)(x) and ψn(b)(x) = x + 1 → ψ(b)(x) for n → ∞ (x ∈ Qp). It

follows easily that ψn(w)(x) → ψ(w)(x) for all w ∈ F2. Now, if w = 1 in BS(p, ξ), it

implies w = 1 in BS(p, ξn) for n su�ciently large. For those values of n, the equality

ψn(w)(x) = x holds for all x ∈ Qp, so that we get ψ(w) = id. 2
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Remark 5.2 The Z-action by translations on R is proper, but the Z-action by trans-

lations on Qp is not. In particuler, the action of BS(p, ξ) on Qp is not proper, even if

restricted to the subgroup generated by b.

Tree action. We are to produce a tree on which the group BS(m, ξ) will act in a

reasonable way. This tree will be constructed from the Bass-Serre trees of the groups

BS(m, ξn). It will be shown that the tree we construct does not depend on the auxiliary

sequence (ξn)n.

We recall that BS(m,n) is the fundamental group of the following graph of groups (G, Y )

[Se77, Section 5.1].

P &%
'$s

6y
GP = 〈b〉 ∼= Z; Gy = 〈c〉 ∼= Z
cy = bm; cȳ = bn

Notice that, a is the element of π1(G, Y, P ) associated to the edge y. To be precise, we

set the Bass-Serre tree of BS(m,n) to be the universal covering associated to (G, Y ),

the maximal subtree P and the orientation given by the edge ȳ [Se77, Section 5.3]. We

choose the edge ȳ instead of y to minimize the dependence on n of the set of tree edges.

Denoting by T the Bass-Serre tree of BS(m,n), one has:

V (T ) = BS(m,n)/〈b〉 ; E(T ) = BS(m,n)/πỹ tBS(m,n)/π˜̄y ; wπỹ = wπ˜̄y

where πỹ = 〈bm〉 = π˜̄y. The origin and terminal vertex are given by:

o(wπỹ) = wa−1〈b〉 ; t(wπỹ) = w〈b〉 ;

o(wπ˜̄y) = w〈b〉 ; t(wπ˜̄y) = wa−1〈b〉 .

We choose an orientation on T which is preserved by the BS(m,n)-action by setting

E+(T ) = BS(m,n)/π˜̄y = BS(m,n)/〈bm〉 .

Given m ∈ Z∗, ξ ∈ Zm and (ξn)n a sequence of integers such that |ξn| → ∞ and ξn → ξ

in Zm, we denote by Hn (resp Hm
n ) the subgroup of BS(m, ξn) generated by b (resp bm)

and by Tn the Bass-Serre tree of BS(m, ξn). We set

Y =

(∏
n∈N

V (Tn)

)
/ ∼ =

(∏
n∈N

BS(m, ξn)/Hn

)
/ ∼

Y m =

(∏
n∈N

E+(Tn)

)
/ ∼ =

(∏
n∈N

BS(m, ξn)/Hm
n

)
/ ∼
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where ∼ is de�ned by (xn)n ∼ (yn)n ⇐⇒ ∃n0 ∀n > n0 : xn = yn in both cases. We now

de�ne an oriented graph X = Xm,ξ by

V (X) = {x ∈ Y : ∃w ∈ F2 such that (xn)n ∼ (wHn)n}
E+(X) = {y ∈ Y m : ∃w ∈ F2 such that (yn)n ∼ (wHm

n )n}
o
(
(wHm

n )n

)
= (wHn)n =

(
o(wHm

n )
)

n

t
(
(wHm

n )n

)
= (wa−1Hn)n =

(
t(wHm

n )
)

n

The map o is well de�ned since (vHm
n )n ∼ (wHm

n )n implies (vHn)n ∼ (wHn)n. In the

other hand, the map t is well de�ned since (vHm
n )n ∼ (wHm

n )n implies v−1w ∈ Hm
n for n

large enough, whence (va−1)−1(wa−1) = av−1wa−1 ∈ Hn for those values of n. It follows

that (va−1Hn)n ∼ (wa−1Hn)n. The graph X is thus well de�ned and the free group

F2 acts obviously on it by left multiplications. The statement we want to prove is the

following:

Theorem 5.3 Let m ∈ Z∗, ξ ∈ Zm and (ξn)n a sequence of integers such that |ξn| → ∞
and ξn → ξ in Zm. The graph X = Xm,ξ (seen here as unoriented) has the following

properties:

(a) It is a tree;

(b) It does not depend (up to equivariant isomorphism) on the choice of the sequence

(ξn)n;

(c) The obvious action of F2 on X factors through the canonical projection F2 →
BS(m, ξ).

Before the proof, we state an immediate consequence of [St05, Lemma 6]:

Lemma 5.4 Let (vHn)n and (wHn)n be two vertices of the graph X. If vHn = wHn for

in�nitely many values of n, then (vHn)n = (wHn)n in X.

Proof of theorem 5.3. (a) Let us show �rst that the graph X is connected. We

show by induction on |w| that any vertex (wHn)n (w ∈ F2) is connected to (Hn)n. The

case |w| = 0 is trivial. If |w| = ` > 0, there exists x ∈ {a±1, b±1} such that wx has

length ` − 1. By induction hypothesis, it is su�cient to show that (wHn)n is connected

to (wxHn)n. If x = a, then the edge (wxHm
n )n connects (wxHn)n to (wHn)n, if x = a−1,

then then the edge (wHm
n )n connects (wHn)n to (wxHn)n and if x = b±1, then one has

even (wHn)n = (wxHn)n.
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Second, we show that X has no circuit. We assume by contradiction that X has a circuit

whose vertices and edges are

(v0Hn)n, (w1H
m
n )n, (v1Hn)n, . . . , (w`H

m
n )n, (v`Hn)n = (v0Hn)n .

(The formulas (w1H
m
n )n 6= (w`Hm

n )n and (wi+1H
m
n )n 6= (wiHm

n )n are assumed to hold.)

For any n, the sequence

v0Hn, w1H
m
n , v1Hn, . . . , w`H

m
n , v`Hn

forms a path in the tree Tn. For in�nitely many values of n, we have moreover w1H
m
n 6=

w`Hm
n , wi+1H

m
n 6= wiHm

n and v`Hn = v0Hn by construction of X. We have obtained a

circuit in some Tn, in contradiction with the fact it is a tree.

(b)We show now that X does not depend (up to equivariant isomorphism) on the choice

of the sequence (ξn)n. Take another sequence (k′n)n satisfying both |k′n| → ∞ and k′n → ξ

in Zm and consider the associated tree X ′. We construct the sequence (k′′n)n given by

k′′n =

 kn
2

if n is even

k′n−1
2

if n is odd

which satis�es again both |k′′n| → ∞ and k′′n → ξ in Zm and the associated tree X ′′. There

are obvious equivariant surjective graph morphisms X ′′ → X and X ′′ → X ′. We have to

show the injectivity of these morphisms, which we can check on vertices only, for we are

dealing with trees. But Lemma 5.4 precisely implies the injectivity on vertices.

(c) Take w ∈ F2 such that w = 1 in BS(m, ξ). We have to prove that w acts trivially

on X. As X is a simple graph, we only have to prove that w acts trivially on V (X).

Let (vHn)n be a vertex of X. For n large enough, we have w = 1 in BS(m, ξn), so that

wvHn = vHn. Hence we have w · (vHn)n ∼ (vHn)n, as desired. 2

Remark 5.5 The action of BS(m, ξ) on X is transitive and the stabilizer of the vertex

(Hn)n is the subgroup of elements which are powers of b in all but �nitely many BS(m, ξn).

It does not coincide with the subgroup of BS(m, ξ) generated by b, since the element

abma−1 is not in the latter subgroup, but stabilizes the vertex.

We end this section by statements about the structure of the tree Xm,ξ. The �rst one is

the analogue of Lemma 5.4 for edges.
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Lemma 5.6 Let (vHm
n )n and (wHm

n )n be two edges of the graph X. If one has vHm
n =

wHm
n for in�nitely many values of n, then (vHm

n )n = (wHm
n )n in X.

Proof. By assumption, one has vHn = wHn and va−1Hn = wa−1Hn for in�nitely many

values of n. By Lemma 5.4, we get (vHn)n = (wHn)n and (va−1Hn)n = (wa−1Hn)n. The

edges (vHm
n )n and (wHm

n )n having the same origin and terminal vertex, they are equal,

since X is a simple graph. 2

Proposition 5.7 Let m ∈ Z∗ and ξ ∈ Zm. Each vertex of the tree Xm,ξ has exactly

|m| outgoing edges. More precisely, (given a sequence (ξn)n of nonzero integers such

that |ξn| → ∞ and ξn → ξ) the edges outgoing from the vertex (wHn)n are exactly

(wHm
n )n, (wbH

m
n )n, . . . , (wb

|m|−1Hm
n )n.

Proof. It su�ces to treat the case w = 1. The edges (Hm
n )n, (bHm

n )n,. . . , (b|m|−1Hm
n )n

are clearly outgoing from (Hn)n and distinct. Let now (vHm
n )n be an edge outgoing from

(Hn)n. In particular, we have (vHn)n = (Hn)n, so that v = bλn in BS(m, ξn) for n large

enough. There exists necessarily λ ∈ {0, . . . , |m| − 1} such that we have λn ≡ λ (mod m)

for in�nitely many values of n, so that vHm
n = bλHm

n for in�nitely many values of n. By

Lemma 5.6, we get (vHm
n )n = (bλHm

n )n and we are done. 2

6 A structure theorem

We recall that Z n n
m

Z[gcm(m,n)
lcm(m,n)

] act a�nely on R and that it is a marked quotient of both

BS(m,n) and Z o Z (see Section 1.3).

Proposition 6.1 For any m ∈ Zast amd ξ ∈ Zm, the morphism of marked groups

q : F2 � Z o Z factors through a morphism qm,ξ : BS(m, ξ) � Z o Z.

Proof. Take (ξn)n≥0 a sequence of integers such that one has |ξn| −→ ∞
n→∞

and ξn −→
n→∞

ξ

in Zm. One has the following diagram

BS(m, kn)

����

n→∞ // BS(m, ξ)

Γ(m, kn) n→∞ // Z o Z

by De�nition 1.6 and Theorem 2.4. Given w ∈ F2 with w = 1 in BS(m, ξ), it is now clear

that w = 1 in Z o Z, so that the proposition holds.
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2

We now are able to state the main results of this section, which are the following:

Theorem 6.2 Consider the exact sequence (where Nm,ξ is the image of N in BS(m, ξ))

1 −→ Nm,ξ −→ BS(m, ξ)
qm,ξ−→ Z o Z −→ 1 .

For any m ∈ Z∗ and ξ ∈ Zm, the group Nm,ξ = ker qm,ξ is free.

Remark 6.3 The second derived subgroup of BS(m, ξ) is then a free group. Thus

BS(m, ξ) enjoys the same property as the generalized Baumslag-Solitar groups [Kr90,

Corollary 2]

Corollary 6.4 For any m ∈ Z∗ and ξ ∈ Zm, the group BS(m, ξ) has the Haagerup

property and is residually solvable.

Proof of Corollary 6.4. Looking at the exact sequence

1 −→ Nm,ξ −→ BS(m, ξ)
q−→ Z o Z −→ 1 ,

we see that the quotient group is amenable (it is even metabelian) and the kernel group

has the Haagerup property by Theorem 6.2. We conclude by [CC+01, Example 6.1.6]. As

a free group is residually solvable, BS(m, ξ) is then the extension of residually solvable

group by a solvable one and hence is residually solvable. 2

Proof of Theorem 6.2. Take m ∈ Z∗, ξ ∈ Zm and (ξn)n a sequence of integers such

that |ξn| → ∞ and ξn → ξ in Zm. Set X to be the tree constructed in section 5. By [Se77,

Section 3.3, Theorem 4], it is su�cient to prove that Nm,ξ acts freely on X, i.e. that any

w′ ∈ N which stabilizes a vertex satis�es w = 1 in BS(m, ξ).

Let us take w′ ∈ N and (vHn)n a vertex of X which is stabilized by w′. Thus w = v−1w′v

stabilizes the vertex (Hn)n, i.e. w is a power of b in all but �nitely many BS(m, ξn)'s. On

the other hand, as w ∈ N , Proposition 6.1 implies that the polynomial Pw associated to

w is zero. Hence, (5) implies ψξn(w) = id for all but �nitely many ξn's. Together, these

two facts imply w = 1 (and w′ = 1) in BS(m, ξ). 2

7 Presentations for the groups BS(m, ξ)

7.1 In�nite presentability of the groups BS(m, ξ)

Our �rst goal in this Section is to prove:
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Proposition 7.1 For any m ∈ Z∗ and ξ ∈ Zm \mZm, the group BS(m, ξ) is not �nitely

presented.

Notice that the Proposition excludes also the existence of a �nite presentation of a

group BS(m, ξ) (ξ ∈ Zm \ mZm) with another generating set. See for instance [dlH00,

Proposition V.2]. By Corollary 3.10, there is only one remaining case, the case ξ = 0,

where it is still unknown wether BS(m, 0) is �nitely presented or not. We nevertheless

make the following remark.

Remark 7.2 For |m| = 1, the limits BS(±1, ξ) are not �nitely presented.

Proof. The result [St05, Theorem 2] implies BS(±1, ξ) = Z o Z for the unique element

ξ ∈ Z±1 and the result [Bau61] of Baumslag on the presentations of wreath products

ensures that Z o Z is not �nitely presented. 2

Lemma 7.3 Let m ∈ Z∗ and ξ ∈ Zm \ mZm. Let ` be the maximal exponent in the

decomposition of m in prime factors and set d = gcd(m, ξ), m1 = m/d.

(a) There exists a sequence (ξn)n in Z∗ such that for all n > 1 one has |ξn| > |ξn−1| and

ξn ≡ ξ (mod mnZm) ;

ξn 6≡ ξ (mod m`n+1
1 dZm) .

(b) This sequence satis�es |ξn| → ∞, ξn → ξ and

ξn ≡ ξr (mod mn) ∀r > n ;

ξn 6≡ ξ`n+1 (mod m`n+1
1 d) ∀n .

Proof. (a) Let p be a prime factor of m1 (there exists one, for ξ 6∈ mZm). The

sequence (ξn) is constructed inductively. We choose for ξ0 any nonzero integer such that

ξ0 − ξ 6∈ mZm. At the n-th step, we begin by noticing that the exponent of p in the

decomposition of mn (respectively m`n+1
1 d) is at most `n (respectively at least `n + 1).

Hence, m`n+1
1 d is not a multiple of mn, so that there exists α ∈ Z with ξ ≡ α (mod mn)

but ξ 6≡ α (mod m`n+1
1 d).

Notice now that we may replace α by any element of the class α +mnm`n+1
1 dZ, so that

it su�ces to choose ξn among the elements β in the latter class which satisfy |β| > |ξn−1|.
(b) The properties ξn ≡ ξ (mod mnZm) and |ξn| > |ξn−1| imply clearly ξn → ξ, |ξn| → ∞
and ξn ≡ ξr (mod mn) for r > n (for the latter one, Proposition 1.1 (d) is used).
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Finally, combining the properties ξ`n+1 ≡ ξ (mod m`n+1Zm) and ξn 6≡ ξ (mod m`n+1
1 dZm)

gives ξn 6≡ ξ`n+1 (mod m`n+1
1 d). 2

Proof of Proposition 7.1. The hypothesis ξ ∈ Zm \ mZm implies m > 2. Take

`, d,m1 and a sequence (ξn) as in Lemma 7.3. One has then BS(m, ξn) → BS(m, ξ). It

is thus su�cient by Lemma 1.5 to prove that the BS(m, ξn)'s are not marked quotients

of BS(m, ξ) (for n large enough).

Notice now that (for n large enough) one has gcd(m, ξn) = d since ξn ≡ ξ (mod mZm)

holds. Set the words

wn = an+1bma−1b−ξna−nban+1b−ma−1bξna−nb−1.

Part (b) of Lemma 7.3 combined with Lemma 3 of [St05] give wn = 1 in BS(m, ξr) for

all r > n, hence wn = 1 in BS(m, ξ) (for n large enough). On the other hand we get

w`n+1 6= 1 in BS(m, ξn) the same way, so that BS(m, ξn) is not a marked quotient of

BS(m, ξ) (for n large enough). 2

7.2 De�ning a presentation for BS(m, ξ)

For m ∈ Z∗ and ξ ∈ Zm, we de�ne the set R = Rm,ξ by

Rm,ξ =
{
ww̄ : w = abα1 · · · abαka−1bαk+1 · · · a−1bα2k

with k ∈ N∗, αi ∈ Z (i = 1, . . . , 2k) and w · v0 = v0

}
where v0 is the favoured vertex (Hn)n of the tree Xm,ξ de�ned in Section 5.

Recall that the stabilizer of the vertex v0 consists of elements which are powers of b in all

but �nitely many BS(m, ξn), where (ξn)n is any sequence of integers such that |ξn| → ∞
and ξn → ξ in Zm (see Remark 5.5). It follows that we have w · v0 = v0 ⇔ w̄ · v0 = v0.

The aim of the present Section is to prove the following statement.

Theorem 7.4 For all m ∈ Z∗ and ξ ∈ Zm, the marked group BS(m, ξ) admits the

presentation
〈
a, b

∣∣ Rm,ξ

〉
.

Set Γ =
〈
a, b

∣∣ Rm,ξ

〉
for this Section. It is obvious that the elements of Rm,ξ are trivial

in BS(m, ξ), so that one has a marked (hence surjective) homomorphism Γ → BS(m, ξ).

Theorem 7.4 is thus reduced to the following proposition, which gives the injectivity.

Proposition 7.5 Let w be a word on the alphabet {a, a−1, b, b−1}. If one has w = 1 in

BS(m, ξ), then the equality w = 1 also holds in Γ.
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Before to prove Proposition 7.5, we need to introduce some notions what can give rise

to geometric interpretations.

From words to paths. Let us call path (in a graph) any �nite sequence of vertices such

that each of them is adjacent to the preceding one. Let w be any word on the alphabet

{a, a−1, b, b−1}. It de�nes canonically a path in the Cayley graph of Γ (or BS(m, ξ))

which starts at the trivial vertex. Let us denote those paths by pΓ(w) and pBS(w). The

map Γ → BS(m, ξ) de�nes a graph morphism which sends the path pΓ(w) onto the path

pBS(w).

The word w de�nes the same way a �nite sequence of vertices in Xm,ξ starting at v0 and

such that each of them is equal or adjacent to the preceding one. Indeed, let f be the map

V
(
Cay(BS(m, ξ), (a, b))

)
→ V (Xm,ξ) de�ned by f(g) = g · v0 for any g ∈ BS(m, ξ). If

g, g′ are adjacent vertices in Cay(BS(m, ξ), (a, b)), then f(g) and f(g′) are either adjacent

(case g′ = ga±1), or equal (case g′ = gb±1). The sequence associated to w is the image by

f of the path pBS(w). Now, deleting consecutive repetitions in this sequence, we obtain

a path that we denote by pX(w).

It follows that if the word w satis�es w = 1 in BS(m, ξ) (or, stronger, w = 1 in Γ), then

the path pX(w) is closed (i.e. its last vertex is v0).

Height and Valleys. Recall that one has a homomorphism σa from BS(m, ξ) onto Z
given by σa(a) = 1 and σa(b) = 0. Given a vertex v in Xm,ξ, we call height of v the number

h(v) = σa(g) where g is any element of BS(m, ξ) such that g · v0 = v. It is easy to check

that any element g′ of BS(m, ξ) which de�nes an elliptic automorphism of Xm,ξ satis�es

σa(g
′) = 0, so that the height function is well-de�ned. It is clear from construction that

the height di�erence between two adjacent vertices is 1.

Given L > 1 and k > 1, we call (L, k)-valley any path p in Xm,ξ such that one has:

• p = (v0, v1, . . . , vL = ν0, ν1, . . . , ν2k), where v0 is the favoured vertex;

• h(v0) = 0 = h(νk) and h(ν0) = −k = h(ν2k);

• h(v) < 0 for any other vertex v of p;

• ν0 = ν2k.

Given a (L, k)-valley p = (v0, v1, . . . , vL = ν0, ν1, . . . , ν2k), the subpaths (ν0, . . . , νk) and

(νk, . . . , ν2k = ν0) have to be geodesic, for the heigth di�erence between ν0 = ν2k and νk

is k. Thus, one has ν1 = ν2k−1, . . . , νk−1 = νk+1.
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Lemma 7.6 Let w be a word on the alphabet {a, a−1, b, b−1} such that the path pX(w)

is a (L, k)-valley, say pX(w) = (v0, v1, . . . , vL = ν0, ν1, . . . , ν2k). There exists a word w′

such that the equality w′ = w holds in Γ and the path pX(w′) is (v0, v1, . . . , vL).

Proof. We argue by induction on L.

Case L = 1: In that case, one has k = 1, pX(w) = (v0, v1 = ν0, ν1, ν2). Up to replacing

w by a word which de�nes the same element in F2 (hence in Γ) and the same path in X,

we may assume to have w = bα0a−1bα1abβ1a−1bβ2 . Set r = ab−β1a−1b−α1abβ1a−1bα1 . Since

ν0 and ν2 are equal, the subword abβ1a−1 (of w) de�nes a closed subpath in X, so that we

obtain ab−β1a−1b−α1 · v0 = v0. Consequently, we get r ∈ R, whence r = 1 in Γ. Inserting

r in next to last position, we obtain

w =
Γ
bα0+β1a−1bα1+β2 =: w′ .

This equality also implies that the paths pX(w) and pX(w′) have the same endpoint.

Hence one has pX(w′) = (v0, ν2) = (v0, v1) and we are done.

Induction step: We assume L > 1 to hold. Up to replace w by a word which de�nes

the same element in F2 (hence in Γ) and the same path in X, we may write

w = bα0aε1bα1 · · · aεLbαL · abβ1 · · · abβka−1bβk+1 · · · a−1bβ2k

with εi = ±1 and αi ∈ Z for all i. We distinguish two cases:

(1) the vertex vL−1 is higher than vL (i.e. εL = −1);

(2) the vertex vL−1 is lower than vL (i.e. εL = 1).

Case (1): Set

r = ab−β2k−1 · · · ab−βka−1b−βk−1 · · · a−1b−β1a−1b−αL ·

ab+β2k−1 · · · ab+βka−1b+βk−1 · · · a−1b+β1a−1b+αL .

Since ν0 and ν2k are equal, the subword abβ1 · · · abβka−1bβk+1 · · · a−1bβ2k−1a−1 (of w) de�nes

a closed subpath in X, so that (when considered as a word on its own right) it stabilizes

the vertex v0. Inverting it, we get

ab−β2k−1 · · · ab−βka−1b−βk−1 · · · a−1b−β1a−1 · v0 = v0 .
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It implies r ∈ R, whence r = 1 in Γ. Inserting r in next to last position, we obtain

w =
Γ
w∗ := bα0aε1bα1 · · · aεL−1bαL−1+β2k−1 ·

abβ2k−2 · · · abβka−1bβk−1 · · · a−1bβ1 ·

a−1bαL+β2k .

We write w∗ = w′′a−1bαL+β2k . Since the words w and w∗ begin the same way and since

one has w = w∗ in Γ, the path pX(w∗) has the form

(v0, v1, . . . , vL−1 = ω0, ω1, . . . , ω2k−2, vL) .

Since vL−1 is higher than vL, we have h(vL−1) = −(k − 1). Contemplating w∗, one sees

that we have h(ωk−1) = 0, h(ω2k−2) = −(k − 1), so that the subpaths (ω0, . . . , ωk−1) and

(ωk−1, . . . , ω2k−2, vL)) are geodesic. On the other hand, the geodesic between ωk−1 and vL

passes through vL−1 = ω0, so that we have ω2k−2 = vL−1. It follows that pX(w′′) has the

form (v0, v1, . . . , vL−1 = ω0, ω1, . . . , ω2k−2 = vL−1), so that it is a (L− 1, k− 1)-valley. We

apply the induction hypothesis to w′′ and get a word w′′′ such that w′′ = w′′′ holds in Γ

and pX(w′′′) = (v0, . . . , vL−1). It su�ces to set w′ = w′′′a−1bαL+β2k to conclude.

Case (2): In this case, we have h(vL) = −k and h(vL−1) = −(k + 1), so that the

edge linking these vertices goes from vL to vL−1. By Proposition 5.7, there exists λ ∈
{0, . . . |m| − 1} such that wbλa−1 · v0 = vL−1. Set w∗ = wbλa−1 and w′ = w∗ab−λ, so

that w = w′ holds in Γ. The path pX(w∗) is a (L − 1, k + 1)-valley, so that we may

apply the induction hypothesis to w∗. This gives a word w′′ such that w′′ = w∗ in Γ and

pX(w′′) = (v0, . . . , vL−1). We conclude by setting w′ = w′′ab−λ. 2

Proof of Proposition 7.5. Let w be a word which de�nes the trivial element in

BS(m, ξ). Up to replacing w by a word which de�nes the same element in F2 (hence in

Γ), we may write

w = bα0aε1bα1 · · · aε`bα`

with εi = ±1 and αi ∈ Z for all i. The path pX(w) is closed and has length `. We argue

by induction on `.

Case ` = 0: In this case, one has w = bα0 , so that bα0 = 1 in BS(m, ξ). It follows

α0 = 0, hence w = 1 in Γ.

Induction step (` > 0): Let us write pX(w) = (v0, v1, . . . , v`−1, v` = v0). Up to replace

the word w by a cyclic conjugate, we may assume (without changing `) that h(vi) 6 0
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for all i. Denote by k0 = 0 < k1 < . . . < ks = ` the indices such that h(vk) = 0. We now

distinguish two possibilities:

(1) The path pX(w) turns back at some vki
(i.e. ∃i with 1 6 i 6 s − 1 such that

vki+1 = vki−1.)

(2) The path pX(w) does not turn back at any vki
(i.e. ∀i with 1 6 i 6 s − 1 one has

vki+1 6= vki−1.)

Case(1): Let i be an index (with 1 6 i 6 s − 1) such that vki+1 = vki−1. The subword

w′ = aεki−1+1bαki−1+1 · · · aεkibαkiaεki+1 de�nes by construction a (ki − ki−1 − 1, 1)-valley in

the tree X. Lemma 7.6 furnishes then a word w′′ such that w′′ = w′ holds in Γ and the

path pX(w′′) is strictly shorter than pX(w′). We construct a word w∗ by replacing w′

by w′′ in w. The path pX(w∗) is strictly shorter than pX(w) and one has w∗ = w in Γ.

Applying the induction hypothesis to w∗, we get w∗ = 1 in Γ, hence w = 1 in Γ.

Case (2): Suppose �rst that s = 1. All vertices of pX(w) but v0 and vL have strictly

negative height. It follows that α0 = −α`, for we have w = 1 in Z oZ by hypothesis. Since

we also have ε1 = −1 and ε` = 1 by construction, we get

ab−α0wbα0a−1 =
Γ
bα1aε2bα2 · · · aε`−1bα`−1 =: w′ .

Since the path pX(w′) is strictly shorter than pX(w), we may apply the induction hypoth-

esis to w′ and we obtain w′ = 1, hence w = 1, in Γ.

The case s = 2 is impossible, for it would imply that the path pX(w) turns back at vk1 ,

which is incompatible with case (2).

From now on, we suppose s > 3. There exists some i in {1, . . . , s− 2} such that one has

vki
= vki+1

(think at the vki
which is at most far from v0). We set

w∗ := aεki+1bαki+1 · · · aεki+1−1bαki+1−1aεki+1

(it is a subword of w). Let us now �x a sequence (ξn)n of nonzero integers such that

|ξn| → ∞ and ξn → ξ in Zm. Then, we consider the morphisms ψn : BS(m, ξn) → A�(R)

given by ψn(a)(x) = ξn

m
x and ψn(b)(x) = x+1. The word w∗ stabilizing v0 by construction,

we get w∗ = bλn in BS(m, ξn), which implies ψn(w∗) = x+ λn (with λn ∈ Z), for n large

enough. In the other hand, seeing the word w∗ itself, we get

λn =

ki+1−1∑
j=ki+1

αj

(
ξn
m

)h(vj)
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for those values of n. Then, taking absolute values, this gives

|λn| 6
ki+1−1∑
j=ki+1

|αj

(
ξn
m

)h(vj)

| 6 |m|
|ξn|

ki+1−1∑
j=ki+1

|αj| .

It follows that |λn| < 1 holds for n large enough, since |ξn| tends to ∞. For those values

of n, we get w∗ = b0 = 1 in BS(m, ξn). Consequently, we get w∗ = 1 in BS(m, ξ).

By construction (we use the assumption i ∈ {1, . . . , s− 2}), the path pX(w∗) is strictly

shorter than pX(w), so that we apply the induction hypothesis to w∗ and get w∗ = 1 in

Γ. Erasing, w∗ in w, one gets

w =
Γ
w′ = bα0aε1bα1 · · · aεkibαki

+αki+1aεki+1+1bαki+1+1 · · · aε`bα` .

Applying the induction hypothesis to w′, we get w = 1 in Γ. 2
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