Isometric group actions on Hilbert spaces: structure of orbits Yves de Cornulier, Romain Tessera, Alain Valette November 8, 2005 #### Abstract Our main result is that a finitely generated nilpotent group has no isometric action on an infinite dimensional Hilbert space with dense orbits. In contrast, we construct such an action with a finitely generated metabelian group. Mathematics Subject Classification: Primary 22D10; Secondary 43A35, 20F69. Key words and Phrases: Affine actions, Hilbert spaces, minimal actions, nilpotent groups. ## 1 Introduction The study of isometric actions of groups on affine Hilbert spaces has, in recent years, found applications ranging from the K-theory of C^* -algebras [HiKa], to rigidity theory [Sh2] and geometric group theory [Sh3, CTV]. This renewed interest motivates the following general problem: How can a given group act by isometries on an affine Hilbert space? This paper is a sequel to [CTV], but can be read independently. In [CTV], we focused, given an an isometric action of a finitely generated group G on a Hilbert space $\alpha: G \to \text{Isom}(\mathcal{H})$, on the growth of the function $g \mapsto \alpha(g)(0)$. Here the emphasis is on the structure of orbits. In $\S 2$, we consider affine isometric actions of \mathbf{Z}^n or \mathbf{R}^n . On finite-dimensional Euclidean spaces, the situation is clear-cut: such an action is an orthogonal sum of a bounded action and an action by translations. Even if the general case is more subtle, something remains from the finite-dimensional case. We say that a convex subset of a Hilbert space is *locally bounded* if its intersection with any finite dimensional subspace is bounded. **Theorem.** (see Theorem 2.2) Let either \mathbb{Z}^n or \mathbb{R}^n act isometrically on a Hilbert space \mathcal{H} , with linear part π . Let \mathcal{O} be an orbit under this action. Then there exist - a subspace T of \mathcal{H} (the "translation part"), contained in the invariant vectors of π , of finite dimension $\leq n$, and - ullet a closed, locally bounded convex subset U of the orthogonal subspace T^{\perp} , such that \mathcal{O} is contained in $T \times U$. In §3, we address a question due to A. Navas: which locally compact groups admit an affine isometric action with *dense* orbits (i.e. a minimal action) on an infinite-dimensional Hilbert space? The main result of the paper is a negative answer in the case of finitely generated nilpotent groups. **Theorem.** (see Theorem 3.15 and its corollaries) A compactly generated, nilpotent-by-compact group does not admit any affine isometric action with dense orbits on an infinite-dimensional Hilbert space. Actually, for compactly generated nilpotent groups, one can describe all affine isometric actions with dense orbits; see Corollary 3.16. In the course of our proof, we introduce the following new definitions: a unitary or orthogonal representation π of a group is *strongly cohomological* if it satisfies: for every nonzero subrepresentation $\rho \leq \pi$, we have $H^1(G,\rho) \neq 0$. It is easy to observe that the linear part of a affine isometric action with dense orbits is strongly cohomological. The non-trivial step in the proof of the main theorem is the following result. **Proposition.** (see Corollary 3.14) Let π be an orthogonal or unitary representation of a second countable, nilpotent group G. Suppose that π is strongly cohomological. Then π is a trivial representation. Another case for which we have a negative answer is the following. **Theorem.** (see Theorem 3.18) Let G be a connected semisimple Lie group. Then G has no isometric action on a nonzero Hilbert space with dense orbits. It is not clear how the main theorem can be generalized, in view of the following example. **Proposition.** (see Proposition 3.2) There exists a finitely generated metabelian group admitting an affine isometric action with dense orbits on $\ell_{\mathbf{R}}^2(\mathbf{Z})$. Recall that an isometric action $\alpha: G \to \mathrm{Isom}(\mathcal{H})$ almost has fixed points if for every $\varepsilon > 0$ and every compact subset $K \subset G$ there exists $v \in \mathcal{H}$ such that $\sup_{g \in K} \|v - \alpha(g)v\| \le \varepsilon$. There is a link between this notion and strongly cohomological representations. **Proposition.** (see Proposition 3.10) Let G be a topological group and α an isometric action on a Hilbert space that does not almost have fixed points. Then its linear part π has a nonzero subrepresentation that is strongly cohomological. However the converse is not true as shown by the following example. **Proposition.** (see Proposition 3.4) There exists a countable group admitting an affine isometric action with dense orbits, almost having fixed points on $\ell_{\mathbf{R}}^2(\mathbf{N})$ (more precisely, every finitely generated subgroup has a fixed point). **Acknowledgements.** We thank A. Fathi and A. Navas for a useful indication concerning Theorem 2.2. ## 2 Actions of \mathbb{Z}^n and \mathbb{R}^n Let \mathcal{H} be a Hilbert space. **Definition 2.1.** A convex subset K of \mathcal{H} is said to be locally bounded if $K \cap F$ is bounded for every finite-dimensional subspace F of \mathcal{H} . **Theorem 2.2.** Let $G = \mathbb{Z}^n$ or \mathbb{R}^n act isometrically on a Hilbert space \mathcal{H} , with linear part π . Let \mathcal{O} be an orbit under this action. Then there exist - a subspace T of \mathcal{H} , contained in $\mathcal{H}^{\pi(G)}$, of finite dimension $\leq n$, and - ullet a closed, locally bounded convex subset U of T^{\perp} , such that \mathcal{O} is contained in $T \times U$. *Proof.* The case of \mathbb{R}^n is reduced to the case of \mathbb{Z}^n by taking a dense, free abelian subgroup of finite rank in \mathbb{R}^n . Let (π, \mathcal{H}) be a unitary representation of \mathbf{Z}^n . Let $b \in Z^1(\mathbf{Z}^n, \pi)$ define an affine action of \mathbf{Z}^n with linear part π , and let \mathcal{O} be an orbit. We can suppose that $0 \in \mathcal{O}$, so that \mathcal{O} is the range of b. To emphasize the main idea of the proof, let us start with the case when n = 1. Write $\mathcal{H}_0 = \text{Ker}(\pi(1) - \text{Id}) = \mathcal{H}^{\pi(G)}$. The representation decomposes as $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$. Denote by π_0 and π_1 the corresponding subrepresentations of π . The cocycle b decomposes as $b = b_0 + b_1$. Note that b_0 is an additive morphism: $\mathbf{Z} \to \mathcal{H}_0$; define T as the linear subspace generated by $b_0(1)$. On the other hand, let us show that the sequence $(b_1(k))_{k \in \mathbf{Z}}$ is contained in a locally bounded convex subset of \mathcal{H}_1 . First, note that $$\|(\pi(1) - \operatorname{Id})b(k)\| \le 2\|b(1)\|.$$ Indeed, since $b(k) = \sum_{j=0}^{k-1} \pi(1)^j b(1)$, we get $$(\pi(1) - \mathrm{Id})b(k) = (\pi(k) - \mathrm{Id})b(1).$$ Moreover, since $\mu = \pi_1(1)$ – Id is injective, it follows that the closed convex set $U = \mu^{-1}(B(0, 2||b(1)||))$ is locally bounded, and \mathcal{O} is contained in $T \times U$. Let us turn to the general case. Write $I = \{1, ..., n\}$. Let $e_1, ..., e_n$ be the canonical basis of \mathbb{Z}^n . Define, for every subset $J \subset I$, a closed subspace \mathcal{H}_J of \mathcal{H} , as follows: $\mathcal{H}'_J = \{\xi \in \mathcal{H}, \forall i \in I - J, \ \pi(e_i)\xi = \xi\}$, and \mathcal{H}_J is the orthogonal subspace in \mathcal{H}'_J of $\sum_{K \subseteq J} \mathcal{H}'_K$. It is immediate that \mathcal{H} is the direct sum of all \mathcal{H}_J 's $(J \subset I)$, and that \mathcal{H}_J is \mathbb{Z}^n -stable, defining a subrepresentation π_J of π . The cocycle b decomposes as $b = \sum_J b_J$. Since π_{\emptyset} is a trivial representation, b_{\emptyset} is given by a morphism: $\mathbf{Z}^n \to \mathcal{H}_{\emptyset}$. Let T_{π} denote the (finite-dimensional) subspace generated by $b_{\emptyset}(\mathbf{Z}^n)$. Let J be any nonempty subset of I, and fix $i \in J$. Then $\pi_J(e_i) - 1$ is injective. For all $j \notin J$, so that $\pi_J(e_j) = 1$, we have $b_J(e_j) = 0$. Indeed, expanding the relation $b_J(e_i + e_j) = b_J(e_j + e_i)$, we obtain $(\pi(e_i) - 1)b(e_j) = 0$. Thus, the affine action associated to b_J is trivial on all e_j , $j \notin J$. Set $\mu_J = \prod_{j \in J} (\pi_J(e_j) - 1)$. Then μ_J is injective on \mathcal{H}_J . Let $\Omega_J \subset \mathcal{H}_J$ be the range of b_J . We easily check that $$\mu_J\left(b_J\left(\sum_j n_j e_j\right)\right) \le \sum_{j \in J} 2^n \|b_J(e_j)\|,$$ which is bounded. Thus, Ω_J is contained in $\mu_J^{-1}(B_J)$ for some ball B_J ; since μ_J is injective, $\mu_J^{-1}(B_J)$ is a locally bounded convex set. Write $U = \bigoplus_{J \neq \emptyset} \mu_J^{-1}(B_J)$: this is a closed locally bounded convex subset of \mathcal{H} , contained in the orthogonal of \mathcal{H}_{\emptyset} . By construction, the orbit Ω of zero for the action associated to b is contained in $T_{\pi} \times U$. ## 3 Actions with dense orbits We owe the following question to A. Navas. Question 1 (Navas). Which finitely generated groups acts isometrically on a infinite-dimensional separable Hilbert space with a dense orbit? More generally, the question makes sense for compactly generated groups. In the case of \mathbb{Z}^n or \mathbb{R}^n , the answer is provided by Theorem 2.2. Corollary 3.1. Any isometric action with dense orbits of either \mathbb{Z}^n or \mathbb{R}^n on a Hilbert space \mathcal{H} , factors through an additive homomorphism with dense image to \mathcal{H} (so that \mathcal{H} is finite-dimensional). #### 3.1 Existence results Here is a first positive result regarding Navas' question. **Proposition 3.2.** There exists an isometric action of a metabelian 3-generator group on a infinite-dimensional separable Hilbert space, all of whose orbits are dense. *Proof.* Observe that $\mathbf{Z}[\sqrt{2}]$ acts by translations, with dense orbits, on \mathbf{R} ; so the free abelian group of countable rank $\mathbf{Z}[\sqrt{2}]^{(\mathbf{Z})}$ acts by translations, with dense orbits, on $\ell^2_{\mathbf{R}}(\mathbf{Z})$. Observe now that the latter action extends to the wreath product $\mathbf{Z}[\sqrt{2}] \wr \mathbf{Z} = \mathbf{Z}[\sqrt{2}]^{(\mathbf{Z})} \rtimes \mathbf{Z}$, where \mathbf{Z} acts on $\ell^2_{\mathbf{R}}(\mathbf{Z})$ by the shift. That wreath product is metabelian, with 3 generators. **Corollary 3.3.** There exists an isometric action of a free group of finite rank on a Hilbert space, with dense orbits. \Box In the example given by Proposition 3.2, the given isometric action clearly does not almost have fixed points, i.e. it defines a non-zero element in reduced 1-cohomology. The next result shows that this is not always the case. **Proposition 3.4.** There exists a countable group Γ with an affine isometric action α on a Hilbert space, such that α has dense orbits, and every finitely generated subgroup of Γ has a fixed point. In particular, the action almost has fixed points. *Proof.* We first construct an uncountable group G and an affine isometric action having dense orbits and almost having fixed points. In $\mathcal{H} = \ell^2_{\mathbf{R}}(\mathbf{N})$, let A_n be the affine subspace defined by the equations $$x_0 = 1, x_1 = 1, ..., x_n = 1,$$ and let G_n be the pointwise stabilizer of A_n in the isometry group of \mathcal{H} . Let G be the union of the G_n 's. View G as a discrete group. It is clear that G almost has fixed points in \mathcal{H} , since any finite subset of G has a fixed point. Let us prove that G has dense orbits. Claim 1. For all $x, y \in \mathcal{H}$, we have $\lim_{n\to\infty} |d(x, A_n) - d(y, A_n)| = 0$. By density, it is enough to prove Claim 1 when x, y are finitely supported in $\ell^2_{\mathbf{R}}(\mathbf{N})$. Take $x = (x_0, x_1, ..., x_k, 0, 0, ...)$ and choose n > k. Then $$d(x, A_n)^2 = \sum_{j=0}^k (x_j - 1)^2 + \sum_{j=k+1}^n 1^2 = n + 1 - 2\sum_{j=0}^k x_j + \sum_{j=0}^k x_j^2,$$ so that $d(x, A_n) = \sqrt{n} + O(\frac{1}{\sqrt{n}})$, which proves Claim 1. Claim 2. G has dense orbits in \mathcal{H} . Observe that two points $x, y \in \mathcal{H}$ are in the same G_n -orbit if and only if $d(x, A_n) = d(y, A_n)$. Fix $x_0, z \in \mathcal{H}$. We want to show that $\lim_{n\to\infty} d(G_n x_0, z) = 0$. So fix $\varepsilon > 0$; by the first claim, $|d(x_0, A_n) - d(z, A_n)| < \varepsilon$ for n large enough. So we find $y \in \mathcal{H}$ such that $||y - z|| < \varepsilon$ and $d(x_0, A_n) = d(y, A_n)$. By the previous observation, y is in $G_n x_0$, proving the claim. Using separability of \mathcal{H} , it is now easy to construct a countable subgroup Γ of G also having dense orbits on \mathcal{H} . Question 2. Does there exist an affine isometric action of a *finitely generated* group on a Hilbert space, having dense orbits and almost having fixed points? #### 3.2 Non-existence results Let us show that locally compact, compactly generated nilpotent groups cannot act with dense orbits on an infinite-dimensional separable Hilbert space. We actually prove something slightly stronger. **Definition 3.5.** We say that an isometric action of a group G on a metric space (X, d) has coarsely dense orbits if there exists $C \ge 0$ such that, for every $x, y \in X$, $$d(x, G.y) \le C.$$ Observe that, for an action of a topological group, having coarsely dense orbits is stable under passing to a cocompact subgroup. **Definition 3.6.** If G is a topological group and π a unitary representation, we say that π is *strongly cohomological* if every nonzero subrepresentation of π has nonzero first cohomology. **Lemma 3.7.** Let G be a topological group and π a unitary representation, admitting a 1-cocycle b with coarsely dense image. Then π is strongly cohomological. *Proof.* If σ is a nonzero subrepresentation of π , let b_{σ} be the orthogonal projection of b on \mathcal{H}_{σ} , so that $b_{\sigma} \in Z^1(G, \sigma)$. Then $b_{\sigma}(G)$ is coarsely dense in \mathcal{H}_{σ} , in particular b_{σ} is unbounded. So b_{σ} defines a non-zero class in $H^1(G, \sigma)$. The following Lemma is Proposition 3.1 in Chapitre III of [Gu2]. **Lemma 3.8.** Let π be a unitary representation of G that does not contain the trivial representation. Let z be a central element of G. Suppose that $1 - \pi(z)$ has a bounded inverse (equivalently, 1 does not belong to the spectrum of $\pi(z)$). Then $H^1(G,\pi)=0$. *Proof.* If $g \in G$, expanding the equality b(gz) = b(zg), we obtain that $(1 - \pi(z))b(g)$ is bounded by 2||b(z)||, so that b is bounded by $2||(1 - \pi(z))^{-1}|||b(z)||$. **Lemma 3.9.** Let G be a locally compact, second countable group, and π a strongly cohomological representation. Then π is trivial on the centre Z(G). *Proof.* Fix $z \in Z(G)$. As G is second countable, we may write $\pi = \int_{\hat{G}}^{\oplus} \rho \, d\mu(\rho)$, a disintegration of π as a direct integral of irreducible representations. Let $\chi: \hat{G} \to S^1: \rho \mapsto \rho(z)$ be the continuous map given by the value of the central character of ρ on z. For $\varepsilon > 0$, set $X_{\varepsilon} = \{\rho \in \hat{G}: |\chi(\rho) - 1| > \varepsilon\}$ and $\pi_{\varepsilon} = \int_{X_{\varepsilon}}^{\oplus} \rho \, d\mu(\rho)$, so that π_{ε} is a subrepresentation of π . Since $|\rho(z) - 1|^{-1} < \varepsilon^{-1}$ for $\rho \in X_{\varepsilon}$, the operator $(\pi_{\varepsilon}(z)-1)^{-1} = \int_{X_{\varepsilon}}^{\oplus} (\rho(z)-1)^{-1} d\mu(\rho)$ is bounded. We are now in position to apply Lemma 3.8, to conclude that $H^1(G, \pi_{\varepsilon}) = 0$. By definition, this means that π_{ε} is the zero subrepresentation, meaning that the measure μ is supported in $\hat{G} - X_{\varepsilon}$. As this holds for every $\varepsilon > 0$, we see that μ is supported in $\{\rho \in \hat{G} : \rho(z) = 1\}$, to the effect that $\pi(z) = 1$. \square **Proposition 3.10.** Let G be a topological group, and π a unitary representation of G. Suppose that $\overline{H^1}(G,\pi) \neq 0$. Then π has a nonzero subrepresentation that is strongly cohomological. *Proof.* Suppose the contrary. Then, by an standard application of Zorn's Lemma, π decomposes as a direct sum $\pi = \bigoplus_{i \in I} \pi_i$, where $H^1(G, \pi_i) = 0$ for every $i \in I$, so that $\overline{H^1}(G, \pi) = 0$ by Proposition 2.6 in Chapitre III of [Gu2]. Remark 3.11. The converse is false, even for finitely generated groups: indeed, it is known (see [Gu1]) that every nonzero representation of the free group F_2 has non-vanishing H^1 , so that every unitary representation of F_2 is strongly cohomological. But it turns out that F_2 has an irreducible representation π such that $\overline{H^1}(F_2,\pi)=0$ (see Proposition 2.4 in [MaVa]). Corollary 3.12. Let G be a locally compact, second countable group, and let π be a unitary representation of G without invariant vectors. Write $\pi = \pi_0 \oplus \pi_1$, where π_1 consists of the Z(G)-invariant vectors. Then - (1) π_0 does not contain any strongly cohomological subrepresentation (in particular, $\overline{H^1}(G, \pi_0) = 0$); - (2) every 1-cocycle of π_1 vanishes on Z(G), so that $H^1(G, \pi_1) \simeq H^1(G/Z(G), \pi_1)$. *Proof.* (1) follows by combining lemma 3.9 and Proposition 3.10. For (2), we use the idea of proof of Theorem 3.1 in [Sh2]: if $b \in Z^1(G, \pi_1)$, then for every $g \in G$, $z \in Z(G)$, $$\pi_1(q)b(z) + b(q) = b(qz) = b(zq) = b(q) + b(z)$$ as $\pi_1(z) = 1$. So $\pi_1(g)b(z) = b(z)$; this forces b(z) = 0 as π has no G-invariant vector. So b factors through G/Z(G). Observe that Corollary 3.12 provides a new proof of Shalom's Corollary 3.7 in [Sh2]: under the same assumptions, every cocycle in $Z^1(G,\pi)$ is almost cohomologous to a cocycle factoring through G/Z(G) and taking values in a sub-representation factoring through G/Z(G). From Corollary 3.12 we immediately deduce Corollary 3.13. Let G be a locally compact, second countable, nilpotent group, and let π be a representation of G without invariant vectors. Let (Z_i) be the ascending central series of G ($Z_0 = \{1\}$, and Z_i is the centre modulo Z_{i-1}). Let σ_i denote the subrepresentation of G on the space of Z_i -invariant vectors, and finally let π_i be the orthogonal of σ_{i+1} in σ_i , so that $\pi = \bigoplus \pi_i$. Then $H^1(G, \pi_i) \simeq H^1(G/Z_i, \pi_i)$ for all i, and π is not a strongly cohomological subrepresentation. In particular, $\overline{H^1}(G, \pi) = 0$. Note that the latter statement is a result of Guichardet [Gu1, Théorème 7], which can be stated as: G has Property H_T (i.e. every unitary representation with non-vanishing reduced cohomology contains the trivial representation). If we define Property H_{CT} to be: every strongly cohomological representation is trivial, then, as a corollary of Proposition 3.10, Property H_{CT} implies Property H_T ; we have actually proved that locally compact, second countable nilpotent groups have Property H_{CT} . Corollary 3.14. If G is a locally compact, second countable nilpotent group, and π is a strongly cohomological representation, then π is a trivial representation. \square **Theorem 3.15.** Let G be a locally compact, second countable nilpotent group. Then G has a isometric action on a (real) Hilbert space \mathcal{H} with coarsely dense orbits if and only there exists a continuous morphism: $u: G \to (\mathcal{H}, +)$ with coarsely dense image. *Proof.* Suppose that such an action exists, and let π be its linear part. By lemma 3.7, π is strongly cohomological, hence trivial by Corollary 3.14. So the action is given by a morphism $u: G \to (\mathcal{H}, +)$ with coarsely dense image. The converse is obvious. The following generalizes Corollary 3.1. Corollary 3.16. Let G be a locally compact, compactly generated nilpotent group, and let \mathcal{H} be a (real) Hilbert space. Then - G has a isometric action on \mathcal{H} with coarsely dense orbits if and only \mathcal{H} has finite dimension k, and G has a quotient isomorphic to $\mathbf{R}^n \times \mathbf{Z}^m$, with $n+m \geq k$. - G has a isometric action on \mathcal{H} with dense orbits if and only \mathcal{H} has finite dimension k, and G has a quotient isomorphic to $\mathbf{R}^n \times \mathbf{Z}^m$, with $\max(n+m-1,n) \geq k$. *Proof.* Since G is σ -compact, by [Com, Theorem 3.7] there exists a compact normal subgroup N such that G/N is second countable. Let α be an affine isometric action of G with coarsely dense orbits. Then G/N has an isometric action with coarsely dense orbits on the set of $\alpha(N)$ -fixed points (which is nonempty as N is compact). So we can assume that G is second countable. Let u be the morphism $G \to \mathcal{H}$ as in Theorem 3.15. Let W be its kernel, so that A = G/W is a locally compact, abelian group, which embeds continuously, coarsely densely in a Hilbert space. By standard structural results, A has an open subgroup, containing a compact subgroup K, such that A/K is a Lie group. Since K embeds in a Hilbert space, it is necessarily trivial, so that A is an abelian Lie group without compact subgroup. So A is isomorphic to $\mathbb{R}^n \times \mathbb{Z}^m$ for some integers n, m. Since A embeds coarsely densely in \mathcal{H} , the latter must have finite dimension $k \leq n + m$. If the action has dense orbits, then either m=0 and $n \geq k$, or $m \geq 1$ and $m \geq k-n+1$; this means that $k \leq \max(n+m-1,n)$. Conversely, if $k \leq n+m-1$, then, since **Z** has a dense embedding in the torus $\mathbf{R}^k/\mathbf{Z}^k$, \mathbf{Z}^{k+1} has a dense embedding in \mathbf{R}^k , and this embedding can be extended to $\mathbf{R}^n \times \mathbf{Z}^m$. \square From Corollary 3.16, we immediately deduce **Corollary 3.17.** A compactly generated, nilpotent-by-compact group does not admit any isometric action with coarsely dense orbits on an infinite-dimensional Hilbert space. Proposition 3.2 on the one hand, and Corollary 3.17 on the other, isolate the first test-case for Navas'question: **Question 3.** Can a polycyclic group admit an affine isometric action with dense orbits on an infinite-dimensional Hilbert space? Let us prove a related result for semisimple groups. **Theorem 3.18.** Let G be a connected, semisimple Lie group. Then G cannot act on a Hilbert space $\mathcal{H} \neq 0$ with coarsely dense orbits. Proof. Suppose by contradiction the existence of such an action α , and let π denote its linear part. Then π is strongly cohomological. By Lemma 3.9, π is trivial on the centre of G. Thus the centre acts by translations, generating a finite-dimensional subspace V of \mathcal{H} . The action induces a map $p: G \to O(V) \ltimes V$. Since G is semisimple, the kernel of p contains the sum $G_{\rm nc}$ of all noncompact factors of G, and thus factors though the compact group $G/G_{\rm nc}$. Thus $H^1(G,V)=0$, and since π is strongly cohomological, this implies that V=0. It follows that α is trivial on the centre of G, so that we can suppose that G has trivial centre. Then G is a direct product of simple Lie groups with trivial centre. We can write $G = H \times K$ where K denotes the sum of all simple factors S of G such that $\alpha(S)(0)$ is bounded (in other words, $H^1(S, \pi|_S) = 0$). Then the restriction of α to H also has coarsely dense orbits. Moreover, every simple factor of H acts in an unbounded way, so that, by a result of Shalom [Sh1, Theorem 3.4]¹, the action of H is proper. That is, the map $i: H \to \mathcal{H}$ given by $i(h) = \alpha(h)(0)$ is metrically proper and its image is coarsely dense. By metric properness, the subset $X = i(H) \subset \mathcal{H}$ satisfies: X is coarsely dense, and every ball in X (for the metric induced by \mathcal{H}) is compact. Suppose that \mathcal{H} is infinite dimensional and let us deduce a contradiction. For some d > 0, we have $d(x, X) \leq d$ for every $x \in \mathcal{H}$. If \mathcal{H} is infinite dimensional, there exists, in a fixed ball of radius 7d, infinitely many pairwise disjoint balls $B(x_n, 3d)$ of radius 3d. Taking a point in $X \cap B(x_n, 2d)$ for every n, we obtain a closed, infinite and bounded discrete subset of X, a contradiction. ¹Shalom only states the result for a simple group, but the proof generalizes immediately. See for instance [CLTV] for another proof, based on the Howe-Moore Property. Thus \mathcal{H} is finite dimensional; since every simple factor of H is non-compact, it has no non-trivial finite dimensional orthogonal representation, so that the action is by translations, and hence is trivial, so that finally $\mathcal{H} = \{0\}$. **Remark 3.19.** The same argument shows that a semisimple, linear algebraic group over any local field, cannot act with coarsely dense orbits on a Hilbert space. ## References - [Com] W. Wistar Comfort. *Topological groups*. p.1143-1263 in: "Handbook of Set-Theoretic Topology", edited by K. Kunen and J. E. Vaughan, North Holland, Amsterdam, 1984. - [CTV] Yves DE CORNULIER, Romain TESSERA, Alain VALETTE. *Isometric* group actions on Hilbert spaces: growth of cocycles. Preprint, 2005. - [CLTV] Yves de Cornulier, Nicolas Louvet, Romain Tessera, Alain Valette. Howe-Moore Property and isometric actions on Hilbert spaces. In preparation, 2005. - [Gu1] Alain Guichardet. Sur la cohomologie des groupes topologiques II. Bull. Sci. Math. **96**, 305–332, 1972. - [Gu2] Alain GUICHARDET. Cohomologie des groupes topologiques et des algèbres de Lie. Paris, Cédic-Nathan, 1980. - [HaVa] Pierre DE LA HARPE, Alain VALETTE. La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175, SMF, 1989. - [HiKa] Nigel Higson, Gennadi Kasparov. Operator K-theory for groups which act properly and isometrically on Hilbert space. Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 131-142. - [MaVa] Florian MARTIN, Alain VALETTE. Reduced 1-cohomology of representation, the first ℓ^p -cohomology, and applications. Preprint, 2005. - [Sh1] Yehuda Shalom. Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group. Ann. of Math. (2) **152**(1), 113-182, 2000. - [Sh2] Yehuda Shalom. Rigidity of commensurators and irreducible lattices. Invent. Math. 141, 1–54, 2000. [Sh3] Yehuda Shalom. Harmonic analysis, cohomology, and the large scale geometry of amenable groups. Acta Math. 193, 119-185, 2004. Yves de Cornulier École Polytechnique Fédérale de Lausanne (EPFL) Institut de Géométrie, Algèbre et Topologie (IGAT) CH-1015 Lausanne, Switzerland E-mail: decornul@clipper.ens.fr Romain Tessera Équipe Analyse, Géométrie et Modélisation Université de Cergy-Pontoise, Site de Saint-Martin 2, rue Adolphe Chauvin F 95302 Cergy-Pontoise Cedex, France E-mail: tessera@clipper.ens.fr Alain Valette Institut de Mathématiques - Université de Neuchâtel Rue Emile Argand 11, CH-2007 Neuchâtel - Switzerland $E\text{-}mail: \verb|alain.valette@unine.ch||$