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Abstract

We introduce the notion of space with measured walls, generalizing
the concept of space with walls due to Haglund and Paulin [HP98]. We
observe that if a locally compact group GG acts properly on a space with
measured walls, than G has the Haagerup property. We conjecture
that the converse holds, and we prove this conjecture for the following
classes of groups: discrete groups with the Haagerup property, closed
subgroups of SO(n, 1), groups acting properly on real trees, SLy(K)
where K is a global field, and amenable groups.

1 Introduction

Let GG be a locally compact, second countable group. We say that G has
property (T) if every continuous, affine, isometric action on a Hilbert space
has a fixed point (see [dIHV89]); and that G has the Haagerup propertyif G
admits a continuous, affine, isometric action on some Hilbert space, which is
proper (see [CCJT01]).

The notion of space with walls was introduced by Haglund and Paulin
[HP98] to provide a unified framework between trees, planar tessellations by

2n-gons, cubical C'AT(0)-complexes, etc. ..

Definition 1 Let X be a set and W be a set of partitions of X into 2 classes;
call these partitions walls. The pair (X, W) is a space with walls if, for
every pair x,y of distinct points in X, the number w(z,y) of walls separating

x from y, is finite.



It was observed by Haglund, Paulin and the third author that the auto-
morphism group of a space with walls has a natural affine, isometric action
on a Hilbert space, to the effect that: if a locally compact group G admits a
proper action on a space with walls, then it has the Haagerup property; if a
locally compact group G with property (T) acts on a space with walls, then
all orbits are bounded (see [CCJ*01], Cor. 7.4.2).

Since spaces with walls are discrete spaces, we cannot hope for a converse

of these implications. So let us consider the following generalization.

Definition 2 Let X be a sel, W a sel of walls on X, B a o-algebra of
sets in W, and 1 a measure on B. The J-tuple (X, W, B, 1) is a space with
measured walls if, for every pair x,y of distinct points in X, the set w(z,y)
of walls separating x from y belongs to B, and w(z,y) =: p(w(x,y)) is finite.

If, in Definition 2, the measure p is counting measure, we recover Defini-
tion 1.
If (X, W,B,u) is a space with measured walls, it is easy to see that the
function
X x X =R (z,y) = w(z,y)

is a pseudo-distance (or €cart) on X: we call it the wall metric. 1t makes
sense of bounded subsets in X, or of proper actions of a group on X. As we
explain in §2, the automorphism group of a space with measured walls has a

natural affine, isometric action on a Hilbert space, hence:

Proposition 1 Let G be a locally compact group.

(1) If G admits a proper action on a space with measured walls, then G

has the Haagerup property.

(2) If G has property (T), then every action of G on a space with measured

walls, has bounded orbits.

Concerning the Haagerup property, our main result is the following partial
converse of Proposition 1(1). We conjecture that this converse should hold

in general.

Theorem 1 The following groups with the Haagerup property admit a proper

action on a space with measured walls:



(1) discrete groups with the Haagerup property;

(2) closed subgroups of SO(n, 1), the group of isometries of real hyperbolic

space of dimension n > 1;
(3) groups acting properly isometrically on real trees;

(4) the groups SLo(K), PGLy(K), SLa(Ar) and PGLy(Ax), where K is
a global field and Ag s its ring of adéles;

(5) amenable groups.

This result is proved in sections §§2-5. Theorem 1(1) is basically a
rephrasing of Proposition 7.5.1 in [CCJ*01], and depends crucially on re-
sults of Robertson and Steger [RS98], as we explain in §2. Theorem 1(2)
was actually our motivating example: it is a re-interpretation of a result of
Robertson [Rob98], for which we offer a slightly different proof in §3.

Concerning property (T), our main results are as follows.

Theorem 2 Let I' be a countable group. The group I has property (T) if
and only if every action of I' on a space with measured walls, has bounded

orbits.

This will be proven in §2. If H,I' are countable groups, we recall that
the wreath product H T is the semi-direct product of @ H, the direct sum
of copies of H indexed by I', with I" acting by shifting indices. Using spaces

with measured walls, we prove in §5 !:

Theorem 3 Let H,I' be non-trivial countable groups. The following are

equivalent:
(i) H1T has property (T);
(it) H has property (T) and T' is finite.
In §6, we give an application of spaces with measured walls, in the form of
a modest contribution to the relation between ordered groups and property

(T). The final section, §7, collects some open questions suggested by our

study.

!That result has been obtained independently by M. Neuhauser [Neu], with another
proof.



2 An exercise in unification

Let X be a set. Recall the following concepts:

e A function ¥ : X x X — R* is a conditionally negative definite
kernel if U(z,z) = 0 and ¥(x,y) = V(y,z) for every z,y € X, and
for every n € N, zy,...,2, € X, Ar,..., A, € Rwith 377 A, =0, one

has: o

=1 j=1

e A function ¥ : X x X — RT is a measure definite kernel in the

sense of Robertson and Steger [RS98] if there exists a measure space

(Q,B, 1) and a family of sets S, € B (x € X) such that
U(z,y) = u(S:AS,)
for every z,y € X.

Every measure definite kernel is conditionally negative definite ([RS98], Prop.
1.1); if ¥ is a conditionally negative kernel and X is countable, then VU is a
measure definite kernel ([RS98], Prop.1.2).

The next observation gives the relation between measure definite kernels

and spaces with measured walls.

Proposition 2 (1) Let (X, W,B,u) be a space with measured walls. The
Junction X x X — R*: (z,y) — w(z,y) is a measure definite kernel.

(2) Let W be a measure definite kernel on a countable set X. Then X
carries a structure of space with measured walls (X, W, B, i) such that
w(z,y) = Y(x,y) for every x,y € X. Moreover, if X is a principal
homogeneous space over a group I', and ¥ is I'-invariant, then I' acts

by automorphisms on (X, W, B, ).

Proof: (1) Define a half-space in X as a class of the partition of X defined
by some wall in W. Let ) denote the set of half-spaces. Let p: @ — W be
the map which, to a half-space, associates the wall it belongs to. This map p
is a “double cover” in the sense that all fibers of p have cardinality 2. Define

a o-algebra A on ) by
A={ACQ:p(A) € B},
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and a measure v on A by

v(A) = —/ card(p~(w) N A) du(w).
2 Jp(a)

By construction p,v = . For z € X, let S, be the set of half-spaces through

z. For distinct z,y € X, we have p™'(w(z,y)) = S, AS,, so that

w(z,y) = pr(w(z,y)) = v(SzAS,),

showing that the kernel w on X is measure definite.

(2) Let ¥ be a measure definite kernel on the countable set X. Let
Q = {0,1}*\{(0,0,0,...),(1,1,1,...)} be the set of non-empty, non-full
subsets of X. For z € X, let S, be the set of subsets of X through z. By
Proposition 1.2 in [RS98], since X is countable, there exists a Borel measure
v on § such that v(S,AS,) = U(z,y) for every z,y € X.

Define then a wall of X as a partition { B, B°}, where B € ). The set W
of walls identifies with the quotient of £ by the fixed point free involution
B — B¢ Denote by B the direct image of the Borel o-algebra on Q, and by
p the direct image of v on W. Then (X, W, B, 1) is a space with measured
walls, such that U(z,y) = w(z,y) for every z,y € X. To prove the second
statement, observe that I' clearly acts on W and B; moreover the measure
is I-invariant, by the proof of Theorem 2.1 in [RS9§]. O

Proof of Proposition 1, Theorem 1(1), and Theorem 2:

Let G be a second countable, locally compact group. We recall that
a function v : G — R7T is conditionally negative definite if the function
G x G — RY:(g,h) = ¥(g7'h) is a conditionally negative definite kernel.
Moreover:

e the group G has property (T) if and only if every continuous, condi-
tionally negative definite function on G is bounded (see [dIHV89]);

o the group (G has the Haagerup property if and only if there exists a
continuous, proper, conditionally negative definite function on G (see

[cCI*ol)).

The combination of these characterizations, Proposition 2, and the Robertson-

Steger results mentioned above, proves Proposition 1, Theorem 1(1) and
Theorem 2. O



Remarks: Proposition 1 encompasses a number of known results on

spaces with walls.

1) A tree is a space with walls (every edge divides the set of vertices into
two subsets, hence can be seen as a wall), and every action of a group
with property (T) on a tree has bounded orbits, hence fixes either some
vertex or some edge (Watatani [Wat81]).

2) Any CAT(0) cubical complex carries a structure of space with walls
(by a result of Sageev [Sag95], every bisecting hyperplane divides the
complex into two components), and every action of a group with prop-
erty (T) on a CAT(0) cubical complex has bounded orbits, hence has
a fixed point (Niblo-Reeves [NR9T7]).

This example is actually general: as was proven implicitly by Sageev
[Sag95] and explicitly by Chatterji-Niblo [CN] and independently Nica
[Nic], to any space with walls (X, W) is associated in a natural way a
C' AT(0) cubical complex Cub(X, W), in such a way that any group
acting (resp. acting properly) on (X, W) also acts (resp. acts properly)
on Cub( X, W).

3 Real hyperbolic spaces

In this short section, we explain how a result of Robertson [Rob98] fits into
our framework.

Let X = H"(R) be real n-dimensional hyperbolic space, and let G =
Isom X be its isometry group (so that (7 is locally isomorphic to SO(n,1)).

A hyperplane in X is a totally geodesic hypersurface. Every hyperplane
defines in two ways a wall, i.e. a closed half-space and its complementary
open half-space. The group G acts transitively on walls; since the stabilizer
H of a given wall is unimodular, the space W of walls carries a G-invariant
measure ;. For every z,y € X, the set w(x,y) of walls separating x from y
is relatively compact in M = G//H, so that w(z,y) < oo (see [Rob98] for
details).

Denote by d(x,y) the hyperbolic distance between z and y in X. The
following Crofton formula was proved by Robertson [Rob98]. We give a proof
that is somewhat different - and, to our taste, simpler - as suggested by E.

Ghys.



Proposition 3 There exists a constant A > 0 (only depending of normal-

izations of G-invariant measures) such that, for every x,y € X:
w(z,y) = Ad(z,y).

Proof: Note first that the function w is clearly measurable on X x
X. Since X is 2-point homogeneous, i.e. G acts transitively on pairs on
equidistant points, w(z,y) only depends on d(z,y), i.e. there is a measurable
function ¢ : RT — R™* such that

w(;z;, y) = qb(d(:l?, y))

for every z,y € X. Fixry,ry > 0 and choose three collinear points z,y,z € X
such that d(z,y) = r1, d(y,z) = r2 and d(z,z) = r1 + ra. Since the set of

walls whose hyperplane goes through y, has measure zero, we have
w(z,y) +w(y, z) = w(z, z).
This means that ¢ satisfies the functional equation

B(r1) + d(r2) = d(r1 +r2),

i.e. ¢ is additive. Since ¢ is measurable (and non-zero), there exists A > 0
such that ¢(r) = Ar for every r > 0. This concludes the proof. g

Proof of Theorem 1(2): Since any closed subgroup of GG acts properly

on X, the result is clear from the previous Proposition. O

4 Real trees

We recall that an arc in a metric space X, is a subset homeomorphic to any
compact interval of R, while a segment in X is a subset isometric to some

interval of R.

Definition 3 A real tree is a metric space (X, d) such that any two distinct
points x,y € X belong lo a unique arc [x,y|, which moreover is a closed

segment.



In this section, X will always denote a real tree. We first describe how a
real tree carries a canonical structure of space with measured walls.
Fix z € X. Among all open segments |z, y[ (with y € X)), define a relation
~ by setting:
Jo, gl 2] = Tz, gl 2[4 0.

This is clearly an equivalence relation. A class of this relation is a germ of
segments at x.

We will denote by T'X the set of pairs (z,0) where z € X and o is a germ
of segments at x. Let Il : TX — X : (z,0) — z be the canonical projection.
For z,y distinct points in X, we set:

Iy ={(z,0) € TX :z € [z,y], |z,y[€ o}.

We call such sets local sections (since II|7,, is a bijection from I, to [z,y]).
The length of 1., is d(z,y). Denote by B the o-algebra on T'X generated by
all local sections.

Lemma 1 There exists a measure p on B such that p(l.,) = d(z,y) for
every ,y € X.

Proof: The proof is quite similar to the proof of existence of “Lebesgue
measure” on X, defined on the o-algebra generated by segments in X (see
Proposition 3 in [Val90]). We consider the ring R of subsets of T'X generated
by local sections: this is the set of disjoint unions of local sections. For B € R,
let us choose a finite decomposition of B into local sections, and define p(B)
as the sum of the lengths of these local sections. This definition does not
depend on the chosen decomposition. If (B,),> is a sequence of pairwise

disjoint elements in R, with J, 5, B, € R, properties of Lebesgue measure

(| B.) = Y u(B,).

n>1 n>1

on R do imply:

By the theorem on extension of measures (see §13.A in [Hal50]), we may

extend p uniquely to a o-additive measure on the o-algebra B. O

To every (z,0) € T X, we associate a wall in X, defined as follows:
W('l?,cr) = {y e X ]'r7y[€ J}’

W(/ - X - W(I,a)'

z,0)



Proposition 4 Let (X,d) be a real tree. The set TX endowed with the
measure (1 defines on X a structure of space with measured walls such that
w(z,y) = 2d(z,y) for every z,y € X.

Proof: Let z,y be two distinct points in X. For (z,0) € w(z,y), we
have either x € W(.,) and y € W(’ZJ), or the converse. Let us consider the
first case. From the structure of triangles in X, we must have z € [y, z[, and
actually the set of (z,0)’s such that = € W, ,) and y € W('ZJ) coincides with
local section I;. So w(z,y) = pu(ly) + p(lzy) = 2d(z, y). O

Proof of Theorem 1(3): Obvious in view of the previous Proposition.
O

5 Products of spaces with measured walls

Definition 4 Let (X1, Wy, By, p1), (X2, Wa, By, p2) be spaces with measured
walls. Let p; : X1 x Xy — X; (1 = 1,2) be the projection on the i-th factor. Set
W = pi'(Wh) O py ' (Ws), let B be the a-algebra on W ~ W TIW, by B, 1113,
and let p be the unique measure on W such that ps, = p; (1 = 1,2). Then
(X, W, B, ) is a space with walls, called the product of the two original

ones.

It is possible to define the product of a countable family of spaces with
measured walls, but only for pointed spaces, i.e. a base-point has been chosen
in each factor.

Definition 5 Let (X, Wy, By, pin, 20)n>1 be a sequence of pointed spaces
with measured walls. Set

X ={(zn)n>1 € HX” : an(:z:n,:z:g) < oo}
n=1 n=1

Denote by p, : X — X, the projection onto the n-th factor. Set
n=1 n=1

let B be the o-algebra on W generated by [, _, B,, and let o be the unique
measure on W such that p g, = p, for everyn. Then (X, W, B, i) is a space
with measured walls, called the product of the (X,, Wy, By, pin, 22)’s.
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Note that, in that situation, for = (2,)n>1,¥ = (Yn)n>1 two points in

X, one has:
w(:u,y) = an(l’n,yn),
n=1

since the series on the right hand side converges.

Proof of Theorem 1(4): Since SLy(K) (resp. PGLy(K))is a lattice in
SLy(Ar) (resp. PGLy(Ag)), it is enough to consider the latter group. Since
the natural homomorphism SLy(Ax ) — PG Ly(Ag ) has compact kernel, we
actually reduce to PG Ly(Ag).

Let us denote by P the set of places of K, and by Py the subset of finite
places. For v € P, we denote by K, the completion of K at v.

Assume v € Py; we denote by O, the valuation ring of K, and by 7, a
uniformizer of O, (i.e. m, generates the unique maximal ideal in O,). Let X,
be the tree of PG Ly(K,), with vertex set PG Ly(K,)/ PG Ly(O,) (see [SerT7]).
As base-point in X, we choose the vertex z2 with stabilizer PGLy(0,). Let
v, be counting measure on the edges of X,; we view X, as a space with

measured walls, with the measure

Uy

o =

|70 o
on edges.

Assume now v ¢ Py; there are two cases. If v is real, i.e. K, = R, we
let PGLy(R) act on real hyperbolic plane X, = H*(R) = PGLy(R)/PO(2);
as base-point, we choose the point 2 with stabilizer PO(2). If v is com-
plex, i.e. K, = C, we let PGLy(C) act on real hyperbolic 3-space X, =
H*(R) = PGLy(C)/PU(2); as base-point, we choose the point z¥ with sta-
bilizer PU(2). In both cases we view X, as a space with measured walls, as
in §3.

Since PG Ly(Ak ) is the restricted product of the PG Ly (K,)’s with respect
to the PGLy(0,)’s, we see that PG Ly(Ak) acts on the direct product X
of the (X,, W,, By, )’s, for v € P. It remains to see that the action of
PGLy(Ar) on X is proper. For this, it is enough to prove that, with z° =
(22),ep, the function g — w(gz®, z°) is proper on PGLy(Ak), i.e. we must
show that, for R > 0 the set

Wr ={g € PGLy(Ax) : w(ga®,2®) < R}
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is compact. But, for an element g = (g,)vep in PG L2(Ax ), we have:

w(oo_ d(gvv,g) 0 0
gx 755) = Z + Z wv(gvxmxu)

[l vEP—P;

d,
-yl S e

’UGP Pf

by Proposition 3.
If v is an infinite place (there are finitely many such places), the condition
dy(gvd, 27) < 5 B defines a compact subset C, in PG Ly(K,). To treat finite

places, we first observe that the set

S={veP:|n)' <R}

is finite. For v ¢ S, the condition d,(g,2%,2%) < R|m,|, is equivalent to

v

gv € PGLy(O,). For v € S, the same condition defines a compact subset C,
in PGLy(K,). So Wg is contained in the compact subset

I c.x [[ pcrao.)

veSU(P-Py) veP;—S

of PGLy(Ag). This concludes the proof. O

Remarks:

1) The previous result generalizes Example 6.1.2 in [CCJ*T01], by showing
that the function

g = Z |7T“U’“+ > dy(gad,2d)

veP; vl veEP—P;
is measure-definite on PG Ly(Ax).

2) Let D be a quaternion algebra over K. Denote by D* its multiplicative
group, and by Z(ID*) the centre of D*. Set G = D* /Z(D*), viewed as
an algebraic group over K. Then the groups G(K) and G(Ak) admit
a proper action on a space with measured walls: the proof is similar to
the previous one, by noticing that, for every place v of K, the group
G(K,) is isomorphic to PGLy(K,) if D splits at v, while G(K,) is
compact otherwise (see [Vig80]).
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We now turn to other applications of products of spaces with measured

walls.

Example 1 Let G be a locally compact group, with left Haar measure m.
Fiz a compact subset A of G containing the identity, and a positive number
A > 0. We will define a space with measured walls Xa = (G,W,B,pn),
where W = {{gA™',(gA™")} 1 g€ G}. Sel Ky ={g€ G:gA™ = A7},
a compact subgroup in G. Then W identifies with G/ K 4, so we denote by B
the o-algebra of Borel subsets in G/K 4, and by m the G-invariant measure
on G/K 4 coming from m. For B € B, we selt u(B) = Am(B). In this way we
construct X 4 , which is pointed by the identily of G. Note thal, for z,y € G,
one has: w(z,y) = Am(zAAyA), i.e. the Haar measure of the symmetric
difference between xA and yA, up to a factor \.

Note that, if G is discrete (so that m is counting measure), the space X1
is a space with walls in the sense of Haglund-Paulin.

The space with measured walls X4 is very innocuous, since the associ-
ated conditionally negative definite kernel is bounded. However, we shall see
that, suitably varying A and A, and taking products, we can get something
more interesting. Actually, this is completely similar to the proof in [BCV95]
that amenable groups have the Haagerup property: by packing up suitably

chosen coboundaries, one obtains a proper cocycle.

Proof of Theorem 1(5): Let G be a o-compact amenable group. Let
(K,)n>1 be an increasing, exhaustive sequence of compact subsets in G.
Amenability allows us to find a Fglner sequence, i.e. a sequence (A,),>1

of compact subsets such that

m(gA,AAL) <9
m(A,)
for every g € K,, and n > 1. Set A\, = ﬁ, and form the product X of

the spaces X4, \,. Observe then that G acts on X by the diagonal action:
indeed, set first o = (1,1,1,...) € X and notice that, for g € G:

nga xO

n- mgAAA)
Z An)

which converges since, for n large enough: ¢ € K, so the tail of the sequence

n=1

is dominated by the convergent sequence Y= n27"; now, for = = (2, )n>1

12



in X, and g € (G, we have, by the triangle inequality and G-invariance of m:
w(gx, v0) < w(gw, gro) + w(gro, v0) = w(w,z0) + w(gro, xo) < 00.

It remains to show that (G acts properly on X, i.e. that the function ¢ —
w(gzo, xo) is proper on G. So fix R > 0, we need to show that {g € G :
w(gzo, x9) < R} is compact in G. Choose n > R: we get % < % <1,
which yields m(gA, N A,) > m(A,). The conclusion follows from the fact

that the function g = m(gA,NA,) on G is continuous with compact support.
O

Proof of Theorem 3: Assume first that I' is finite. Then, by standard
results on property (T) (see [dIHV89]), we have that H has property (T) if
and only if @ H has property (T), if and only if H 1T has property (T).
This proves (i7) = (i), and also (1) = (¢2) in case I' is finite. To conclude
the proof of (i) = (ii), we assume that I' is infinite and show that H T
admits an action with unbounded orbits on a space with measured walls: by
Proposition 1, H ) T" does not have property (T).

Consider a family, indexed by I, of copies of the space with walls Xy,
associated with H. Form the product X of this family. The group @r H
acts componentwise on X, while I" acts by shifting indices; these two actions
combine into an action of H { I'; and it remains to prove that this action
has unbounded orbits. Fix a non-trivial element 4 € H. For a finite subset
A C T, define an element g4 € @ H by

R ifyeA
(94)y = {1 ify ¢ A

Then w(gazo,z0) = D c4wy(h, 1) = 2|A|, showing that the function g —
w(gzo, o) is not bounded on H T O

Note that the space X appearing in the previous proof is a space with
walls in the sense of Haglund-Paulin. So we get, as an immediate conse-

quence:

Corollary 1 Let H be a non-trivial countable group with property (T). For

a countable group I', the following are equivalent:

(i) H11 has property (T);

13



(it) every action of H1T" on a space with walls has bounded orbits;
(iit) T is finite.

O
As pointed out to us by M. Neuhauser, another immediate consequence

of the proof of Theorem 3 is the following:

Corollary 2 Let H,I' be non-trivial countable groups. If the pair (HII', @ H)
has the relative property (T), then T' is finite.

6 Ordered groups

Definition 6 Lel G be a locally compact group. We say that G is ordered
if G is endowed with a left-invariant, total ordering < such that P = {g €
G :g > 1} is a Borel subset in (.

If GG is discrete, we recover the standard concept of an ordered group.
If G is an ordered, locally compact group, and ¢ < h in G, the segment
lg,h[ is [g,h[= {z € G : g < x < h}. Note that [¢g,h[= gP N hP°, so that

segments are Borel subsets.

Lemma 2 Let GG be a discrete, non-trivial, ordered group. Assume thal seg-

ments in G are finite. Then G is isomorphic to Z as an ordered group.

Proof: Let g € GG be such that ¢ > 1. Then [1,g[ is a chain 1 < ¢g; <
go < ... < ¢gn. Let us show that GG is generated by ¢;. For this, we prove by
induction on k that, if A > 1 and [1, A has k elements, then & = g¥. This is
clear if £ = 1, by comparing h and g;. Assume then & > 1, and observe that,
since gy < h:

k—1= g1, h]| = |[L.g7 "R].

So by induction hypothesis: g7'h = ¢¥~', which concludes the proof. O

The following is a small contribution to the question: can an ordered

group have property (T)?
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Proposition 5 Let GG be a non-trivial, ordered, locally compact group. As-
sume that every segment in G has finite Haar measure. Then G does not

have property (T).

Proof: Denote by m the Haar measure on G. We define a space with
measured walls (G, W, B, m). Set W = {{gP,gP°}: g € G}. Since the map
G =W :gw— {gP,gP°} is a bijection, we may endow W with the Borel
o-algebra B of (5, and with the measure m. Note that, for ¢ < h in (G, one
has w(g, h) = m([g, h[). Set ¥(g) = w(g,1) for g € G.

Assume by contradiction that (¢ has property (T). By the previous lemma,
we may assume (G non-discrete. Since v is a conditionally negative definite
function on (G, and G has property (T), there exists M > 0 such that ¢(g) <
M for every g € GG. For ¢ > 1 and n € N— {0}, we have

P(g") = m([1, ") = m([1,9[U]g,¢*[U... U[g"", ")

= > mlg ™ [Lgl) = nib(g) < M.

Since this holds for every n, we deduce ¢(g) = 0 for g € P. Since ¢(g) =
¥(g~"), we see that ¢» vanishes identically. This means that, for every g € G:

m(gPAP) = 0.

By the ergodicity of the action of GG by left multiplications on itself, we deduce
that either m(P) = 0 or m(P°) = 0. On the other hand P°U {1} = P~".
Since (¢ is unimodular and non-discrete, we get m(P°) = m(P), so in both

cases we get m((G) = 0, which is clearly a contradiction. O

Unfortunately, the only examples we know of groups satisfying the as-
sumptions of Proposition 5, are Z and R. However, Proposition 5 has a

somewhat unexpected consequence.

Corollary 3 A locally compact group containing a non-trivial compact sub-

group, cannot be ordered.

Proof: Let K be a non-trivial compact group: on the one hand, K
has property (T); on the other hand, any Borel subset of K has finite Haar

measure. By Proposition 5, K" cannot be ordered.



The corollary now follows by observing that the property of being ordered,
is inherited by closed subgroups. a

Remark: It is obvious that a group containing a non-trivial element with
finite order, cannot be ordered. However, there exists torsion-free compact
groups: think of the additive group Z, of the ring of p-adic integers (p a
prime). Note that Z, can be ordered as a discrete group, since it is isomorphic
to an additive subgroup of R (reason: as a Q-vector space, the p-adic field
@, is isomorphic to R). The previous corollary shows that the positive cone

cannot be a Borel subset in Z,,.

Notice that the proof of Proposition 5 appeals to two ingredients only:
e the function g — m([1,¢[) is bounded on P;
e m is finitely additive and G-invariant.

So the same proof also gives:

Corollary 4 Let GG be an amenable, ordered, locally compact group. For
every invariant mean v defined on the Borel subsets of G, and every g > 1
in G, one has: v[l,g[= 0.

O

Remark: A countable group G can be ordered if and only if G can be
embedded as a subgroup of the group Homeo™ (R) of orientation-preserving
homeomorphisms of the real line (see [Wit94]). It is known (see [Ghy01])

that any connected, locally compact subgroup of Homeo™ (R) surjects either

—_— N

onto R or onto SLy(R), so it does not have property (T).

7 Open questions

1. Is it true that every locally compact group with the Haagerup property,
admils a proper aclion on a space with measured walls? In view of
Theorem 1, we conjecture that the answer is yes. The test case here
seems to be SU(n,1): as observed already in [Rob98], the proof of
Theorem 1 for SO(n, 1) breaks down right from the start for SU(n, 1),
for the reason that hyperplanes do not separate in complex hyperbolic
space H*(C). It is an open problem to adapt the proof for SO(n, 1)
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to SU(n, 1), by finding a family of real hypersurfaces which disconnect
H*(C).

2. Are there discrete groups with the Haagerup property which cannot act
properly on a space with walls? This question was already discussed by
Chatterji and Niblo [CN], who proved the following: let I' be a group
containing an amenable subgroup with super-polynomial growth; if I’
acts properly on a space with walls, then there are arbitrarily large
families of walls in the space which cross pairwise (two walls cross if
the four involved half-spaces pairwise meet); equivalently, I' cannot act

properly on a finite-dimensional C'AT'(0) cubical complex.

3. Is there an intrinsic characterization of measure definite kernels coming
from a space with walls? From a space with measured walls? 1t is

2. this was

known that every measure-definite kernel is hypermetric
proved in [Kel70], Theorem 3.1. The following short, elegant proof of
this fact is due to G. Robertson (private communication): let ¥ be
a measure-definite kernel on X; let (Q, B, 1) be a measure space such
that U(z,y) = p(X:AY,). Denote by x. the characteristic function of

¥,; then
¥aoy) = [ hole) = (o)l due)
So for zy,...,z, € X, t1,....t, € Z with " t; =1, we have:

n

Zztit]'\p(mi,:tj) = /sztitj|Xx¢(w)_Xm](w)|d:u(w)‘

=1 j7=1 i=1 j7=1

It is enough to show that the integrand is non-negative. Fix w € 1,
and define 6 : X — {0,1} : # — y(w); then the integrand factors out
as o

YN titslo(x) — 8(x5)| = 2P Py

i=1 j=1
where P, = Zi:é(zi):k t; for k € {0,1}. Observe now that Py, P; are
integers summing up to 1, so that 2P P, < 0.

Examples of hypermetric kernels which are not measure-definite can be

found in [DGL95].

2A kernel W on a set X is hypermetric if for every finite set {z1,...,z,} in X and
integers #1,...,%, such that ) ., ¢; =1, one has ) ., 2?21 tit; U (2, 2;) <0.
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Quite related to this question is the following: give an intrinsic charac-

terization of those conditionally negative definite functions on a group

(¢ which come from an action of G on a space with walls (resp. space

with measured walls). For groups acting on trees, such an abstract
characterization was obtained by Chiswell [Chi76].
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