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Abstract

Guichardet [Gui72] showed that every unitary representation of
the free group Fn (2 ≤ n < ∞) has non-zero 1-cohomology. We
construct a continuum of pairwise inequivalent, irreducible, unitary
representations of Fn, with vanishing reduced 1-cohomology and such
that the C∗-algebra generated by each representation is the unitized
algebra of the compact operators.

1 Introduction

If G is a countable discrete group and π a unitary representation of G, we

denote by H1(G, π) the first cohomology of G with coefficients in π, i.e.

the quotient of the space Z1(G, π) of 1-cocycles by the space B1(G, π) of 1-

coboundaries. Endowed with the topology of pointwise convergence, Z1(G, π)

becomes a Fréchet space, and the reduced 1-cohomology H1(G, π) is defined

as the quotient of Z1(G, π) by the closure of the space of 1-coboundaries.

Reduced 1-cohomology was first considered by Guichardet [Gui72] and its

relevance to questions of rigidity and geometric group theory was emphasized

more recently in papers of Shalom (see [Sha00], [Sha04]).

This paper focuses on the free group on n generators G = Fn (2 ≤
n ≤ ∞): its 1-cohomology has the following interesting property established
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by Guichardet (Example 1 in [Gui72]): H1(F2, π) 6= 0 for every unitary

representation π of F2. Using the dictionary between 1-cohomology and affine

isometric actions on Hilbert spaces (see e.g. [BHV08], p.73), the geometric

equivalent of this observation is: every unitary representation of F2 is the

linear part of some affine isometric action without globally fixed point.

We illustrate the difference between reduced and ordinary 1-cohomology

by establishing:

Theorem 1.1 Fix n ∈ N ∪ {∞} (n ≥ 2). There exists a continuum of

pairwise inequivalent, unitary, irreducible representations σ of Fn such that

1) H1(Fn, σ) = 0.

2) The C∗-algebra generated by σ(Fn) is K̃, the unitized C∗-algebra of the

algebra K of compact operators on an infinite-dimensional separable

Hilbert space.

There are other instances of the fact that, for a given group, the vanishing

of the 1-cohomology is not equivalent to the vanishing of its reduced coun-

terpart: for example, let λG be the left regular representation of a countably

infinite amenable group G: then H1(G, λG) 6= 0, by Théorème 1 in [Gui72],

while H1(G, λG) = 0 by [MV07]. Let us mention however a remarkable result

by Shalom [Sha00]: for a compactly generated locally compact group, the van-

ishing of reduced 1-cohomology for all unitary representations, is equivalent

to the vanishing of 1-cohomology for all unitary representations (the lat-

ter being equivalent to Kazhdan’s property (T), by the Delorme-Guichardet

theorem, see Chapter 2 in [BHV08]).

2 Proof of Theorem 1.1

Let us denote by Im T the range of the linear operator T .

Lemma 2.1 Fix an integer n ≥ 2. Let U1, ..., Un be unitary operators on a

Hilbert space such that:

1) 1 is not an eigenvalue of Ui, for 1 ≤ i ≤ n;

2) for 2 ≤ j ≤ n:

Im(Uj − 1) ∩ (

j−1∑
i=1

Im(Ui − 1)) = {0}.
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Then the assignment π(xi) = U∗
i defines a unitary representation π of the

free group Fn on n generators x1, ..., xn, such that H1(Fn, π) = 0.

Proof of the lemma: We start the same way as Guichardet in Example

1 in [Gui72], in his proof of H1(F2, σ) 6= 0 for every unitary representation σ

of F2. For a unitary representation π of Fn on a Hilbert space V , the map

Z1(Fn, π) → V n : b 7→ (b(x1), ..., b(xn))

is a topological isomorphism (surjectivity follows from the freeness of the

group: a 1-cocycle can be defined arbitrarily on generators). In that isomor-

phism, B1(Fn, π) corresponds to the image of the map

ψ : V → V n : v 7→ ((π(x1)− 1)v, ..., (π(xn)− 1)v)

So H1(Fn, π) = 0 if and only if ψ has dense image, if and only if ψ∗ : V n → V

is injective. But

ψ∗(v1, ..., vn) =
n∑

i=1

(π(xi)
∗ − 1)vi.

With Ui = π(xi)
∗, we see that our assumptions on U1, ..., Un exactly mean

that ψ∗ is injective. ¤
We now come to a problem in operator theory, namely construct fam-

ilies of unitary operators satisfying the conditions in Lemma 2.1. We will

elaborate on Dixmier’s elegant construction [Dix49] (see also Theorem 3.6 in

[FW71]) to answer that question.

Proof of Theorem 1.1: On V = L2[0, 2π] with the trigonometric or-

thonormal system (ek)k∈Z, let us construct unitary operators Un (n ≥ 1) such

that Un − 1 is trace-class, 1 is not an eigenvalue of Un and Im(Un − 1) ∩
(
∑n−1

m=1 Im(Um − 1)) = {0} for n ≥ 2. Moreover U1, U2 will be shown to

act together irreducibly on V . Taking into account the fact that every irre-

ducible C∗-algebra intersecting K non-trivially, must contain it (see [Dix77],

Corollary 4.1.10), we get the second statement in the Theorem. For n < ∞,

the first statement (vanishing of H1) will follow straight from Lemma 2.1.

For n = ∞, we observe that if a group Γ is the increasing union of subgroups

Γn with H1(Γn, σ|Γn) = 0, then clearly H1(Γ, σ) = 0.

To construct a continuum of such families of unitary operators, fix a real-

valued rapidly decreasing sequence a = (ak)k∈Z, such that 0 6= ak 6= am for

k 6= m ∈ Z, and define a diagonal, trace-class operator A(a) on V by

A(a)ek = akek (k ∈ Z).
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Note that A(a) is injective with all eigenvalues of multiplicity 1, by our choice

of a. Now let (xn)n>0 be a strictly increasing sequence in [0, 2π[, with x1 = 0

and x2

π
irrational. Define a function ξn on [0, 2π[ by

ξn(x) =

{ −1 if 0 ≤ x < xn

1 if xn ≤ x < 2π

Let Mn be the operator of multiplication by ξn: this is a self-adjoint unitary

operator on V ; note that M1 = 1. Set A
(a)
n = MnA(a)M∗

n; the following holds:

Claim: For n ≥ 2:

ImA(a)
n ∩ (

n−1∑
i=1

Im A
(a)
i ) = {0}.

To prove the claim, observe that , because a is rapidly decreasing, Im A(a)

is contained in the space of restrictions of real-analytic functions to [0, 2π[.

Then
∑n−1

i=1 Im A
(a)
i is contained in the space of functions on [0, 2π[ whose

restrictions to all intervals [x1, x2[, [x2, x3[, ..., [xn−1, 2π[ are real analytic. On

the other hand non-zero functions in Im A
(a)
n are not analytic in the neigh-

borhood of xn ∈]xn−1, 2π[, proving the claim.

Let then U
(a)
n be the Cayley transform of A

(a)
n :

U (a)
n = (1− iA(a)

n )(1 + iA(a)
n )−1.

Then U
(a)
n is unitary, 1 is not an eigenvalue of U

(a)
n , and U

(a)
n is diagonal in

the basis (Mnek)k∈Z, with all eigenvalues of multiplicity 1. Moreover

U (a)
n − 1 = −2iA(a)

n (1 + iA(a)
n )−1

so that U
(a)
n −1 is trace-class, and Im(U

(a)
n −1)∩ (

∑n−1
m=1 Im(U

(a)
m −1)) = {0}

by the claim.

To prove that U
(a)
1 , U

(a)
2 together act irreducibly on V , let S be an oper-

ator on V which commutes both with U
(a)
1 and U

(a)
2 . Since U

(a)
1 , U

(a)
2 have

all eigenvalues of multiplicity 1, the operator S must be diagonal both in the

bases (ek)k∈Z and (M2ek)k∈Z. From the Fourier series expansion of M2ek:

M2ek = (1− x2

π
)ek +

∑

m6=k

i

π(m− k)
[1− ei(k−m)x2 ]em
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and the fact that all Fourier coefficients of M2ek are non-zero (because x2

π
is

irrational), it follows that S must be scalar. Irreducibility then follows from

Schur’s lemma.

Finally, to get a continuum of pairwise inequivalent representations, we

notice that, since U
(a)
1 − 1 is trace-class, the complex number

Tr(U
(a)
1 − 1) = −2i T r A(a)(1 + iA(a))−1 = −2i

∑

k∈Z
ak(1 + iak)

−1

is an invariant of unitary equivalence of the associated representation. So

varying a in the space of real-valued rapidly decreasing sequences satisfying

0 6= ak 6= am for k 6= m ∈ Z, we get the desired continuum. ¤
Theorem 1.1 motivates:

Question 1 Is there a countable group G such that H1(G, π) 6= 0 for every

unitary representation π of G?

Note that such a group, if it exists, must be non-amenable: indeed, by

Corollary 5.2 in [MV07], a countable amenable group G has H1(G, λG) = 0,

where λG is the left regular representation.

3 A remark

The irreducible representations σ constructed in Theorem 2.1 satisfy σ(g)−
1 ∈ K for every g ∈ Fn. We observe that this fact alone is responsible for

the non-vanishing of H1.

Proposition 3.1 Let G be a discrete group. Assume that there exists a

unitary irreducible representation π of G with the property that 1− π(g) is a

compact operator for every g ∈ G. Then B1(G, π) is not closed in Z1(G, π);

in particular H1(G, π) 6= 0.

Proof: Observe that by irreducibility the C∗-algebra generated by π(G)

is K̃, and consider the short exact sequence

0 → K → K̃ q→ C→ 0.

For f ∈ `1(G), we have q(π(f)) =
∑

g∈G f(g)q(π(g)) =
∑

g∈G f(g) for every

f ∈ `1(G), so that

|
∑
g∈G

f(g)| ≤ ‖π(f)‖.
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By Theorem 3.4.4 in [Dix77], this means exactly that π weakly contains

the trivial representation of G. We conclude by applying another result

by Guichardet ([Gui72], Théorème 1): for a unitary representation without

non-zero fixed vectors, the space of 1-coboundaries is not closed in the space

of 1-cocycles if and only if the representation weakly contains the trivial

representation. ¤
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