Free groups and reduced 1-cohomology of unitary representations

Florian Martin*, Alain Valette

December 8, 2008

To Alain Connes, with admiration

Abstract

Guichardet [Gui72] showed that every unitary representation of the free group F_n ($2 \leq n < \infty$) has non-zero 1-cohomology. We construct a continuum of pairwise inequivalent, irreducible, unitary representations of F_n, with vanishing reduced 1-cohomology and such that the C^*-algebra generated by each representation is the unitized algebra of the compact operators.

1 Introduction

If G is a countable discrete group and π a unitary representation of G, we denote by $H^1(G, \pi)$ the first cohomology of G with coefficients in π, i.e. the quotient of the space $Z^1(G, \pi)$ of 1-cocycles by the space $B^1(G, \pi)$ of 1-coboundaries. Endowed with the topology of pointwise convergence, $Z^1(G, \pi)$ becomes a Fréchet space, and the reduced 1-cohomology $\overline{H^1}(G, \pi)$ is defined as the quotient of $Z^1(G, \pi)$ by the closure of the space of 1-coboundaries.

Reduced 1-cohomology was first considered by Guichardet [Gui72] and its relevance to questions of rigidity and geometric group theory was emphasized more recently in papers of Shalom (see [Sha00], [Sha04]).

This paper focuses on the free group on n generators $G = F_n$ ($2 \leq n \leq \infty$): its 1-cohomology has the following interesting property established

*Supported by the Swiss National Fund, request No 20-65060.01
by Guichardet (Example 1 in [Gui72]): $H^1(\mathbb{F}_2, \pi) \neq 0$ for every unitary representation π of \mathbb{F}_2. Using the dictionary between 1-cohomology and affine isometric actions on Hilbert spaces (see e.g. [BHV08], p.73), the geometric equivalent of this observation is: every unitary representation of \mathbb{F}_2 is the linear part of some affine isometric action without globally fixed point.

We illustrate the difference between reduced and ordinary 1-cohomology by establishing:

Theorem 1.1 Fix $n \in \mathbb{N} \cup \{\infty\}$ ($n \geq 2$). There exists a continuum of pairwise inequivalent, unitary, irreducible representations σ of \mathbb{F}_n such that

1) $\overline{H}^1(\mathbb{F}_n, \sigma) = 0$.

2) The C^*-algebra generated by $\sigma(\mathbb{F}_n)$ is \tilde{K}, the unitized C^*-algebra of the algebra K of compact operators on an infinite-dimensional separable Hilbert space.

There are other instances of the fact that, for a given group, the vanishing of the 1-cohomology is not equivalent to the vanishing of its reduced counterpart: for example, let λ_G be the left regular representation of a countably infinite amenable group G: then $H^1(G, \lambda_G) \neq 0$, by Théorème 1 in [Gui72], while $\overline{H}^1(G, \lambda_G) = 0$ by [MV07]. Let us mention however a remarkable result by Shalom [Sha00]: for a compactly generated locally compact group, the vanishing of reduced 1-cohomology for all unitary representations, is equivalent to the vanishing of 1-cohomology for all unitary representations (the latter being equivalent to Kazhdan’s property (T), by the Delorme-Guichardet theorem, see Chapter 2 in [BHV08]).

2 Proof of Theorem 1.1

Let us denote by $\text{Im } T$ the range of the linear operator T.

Lemma 2.1 Fix an integer $n \geq 2$. Let U_1, \ldots, U_n be unitary operators on a Hilbert space such that:

1) 1 is not an eigenvalue of U_i, for $1 \leq i \leq n$;

2) for $2 \leq j \leq n$:

$$\text{Im}(U_j - 1) \cap \left(\sum_{i=1}^{j-1} \text{Im}(U_i - 1)\right) = \{0\}.$$
Then the assignment \(\pi(x_i) = U_i^* \) defines a unitary representation \(\pi \) of the free group \(\mathbb{F}_n \) on \(n \) generators \(x_1, \ldots, x_n \), such that \(\overline{H^1(\mathbb{F}_n, \pi)} = 0 \).

Proof of the lemma: We start the same way as Guichardet in Example 1 in [Gui72], in his proof of \(H^1(\mathbb{F}_2, \sigma) \neq 0 \) for every unitary representation \(\sigma \) of \(\mathbb{F}_2 \). For a unitary representation \(\pi \) of \(\mathbb{F}_n \) on a Hilbert space \(V \), the map

\[
Z^1(\mathbb{F}_n, \pi) \rightarrow V^n : b \mapsto (b(x_1), \ldots, b(x_n))
\]

is a topological isomorphism (surjectivity follows from the freeness of the group: a 1-cocycle can be defined arbitrarily on generators). In that isomorphism, \(B^1(\mathbb{F}_n, \pi) \) corresponds to the image of the map

\[
\psi : V \rightarrow V^n : v \mapsto ((\pi(x_1) - 1)v, \ldots, (\pi(x_n) - 1)v)
\]

So \(\overline{H^1(\mathbb{F}_n, \pi)} = 0 \) if and only if \(\psi \) has dense image, if and only if \(\psi^* : V^n \rightarrow V \) is injective. But

\[
\psi^*(v_1, \ldots, v_n) = \sum_{i=1}^n (\pi(x_i)^* - 1)v_i.
\]

With \(U_i = \pi(x_i)^* \), we see that our assumptions on \(U_1, \ldots, U_n \) exactly mean that \(\psi^* \) is injective. \(\square \)

We now come to a problem in operator theory, namely construct families of unitary operators satisfying the conditions in Lemma 2.1. We will elaborate on Dixmier’s elegant construction [Dix49] (see also Theorem 3.6 in [FW71]) to answer that question.

Proof of Theorem 1.1: On \(V = L^2[0, 2\pi] \) with the trigonometric orthonormal system \((e_k)_{k \in \mathbb{Z}}\), let us construct unitary operators \(U_n (n \geq 1) \) such that \(U_n - 1 \) is trace-class, 1 is not an eigenvalue of \(U_n \) and \(\text{Im}(U_n - 1) \cap (\sum_{m=1}^{n-1} \text{Im}(U_m - 1)) = \{0\} \) for \(n \geq 2 \). Moreover \(U_1, U_2 \) will be shown to act together irreducibly on \(V \). Taking into account the fact that every irreducible \(C^* \)-algebra intersecting \(\mathcal{K} \) non-trivially, must contain it (see [Dix77], Corollary 4.1.10), we get the second statement in the Theorem. For \(n < \infty \), the first statement (vanishing of \(\overline{H^1} \)) will follow straight from Lemma 2.1.

For \(n = \infty \), we observe that if a group \(\Gamma \) is the increasing union of subgroups \(\Gamma_n \) with \(\overline{H^1(\Gamma_n, \sigma|_{\Gamma_n})} = 0 \), then clearly \(\overline{H^1(\Gamma, \sigma)} = 0 \).

To construct a continuum of such families of unitary operators, fix a real-valued rapidly decreasing sequence \(a = (a_k)_{k \in \mathbb{Z}} \), such that \(0 \neq a_k \neq a_m \) for \(k \neq m \in \mathbb{Z} \), and define a diagonal, trace-class operator \(A^{(a)} \) on \(V \) by

\[
A^{(a)}e_k = a_ke_k \quad (k \in \mathbb{Z}).
\]
Note that $A^{(a)}$ is injective with all eigenvalues of multiplicity 1, by our choice of a. Now let $(x_n)_{n>0}$ be a strictly increasing sequence in $[0,2\pi]$, with $x_1 = 0$ and $\frac{x_n}{\pi}$ irrational. Define a function ξ_n on $[0,2\pi]$ by

$$\xi_n(x) = \begin{cases} -1 & \text{if } 0 \leq x < x_n \\ 1 & \text{if } x_n \leq x < 2\pi \end{cases}$$

Let M_n be the operator of multiplication by ξ_n: this is a self-adjoint unitary operator on V; note that $M_1 = 1$. Set $A^{(a)}_n = M_n A^{(a)} M_n^*$; the following holds:

Claim: For $n \geq 2$:

$$\text{Im} \ A^{(a)}_n \cap \left(\sum_{i=1}^{n-1} \text{Im} \ A^{(a)}_i \right) = \{0\}.$$

To prove the claim, observe that, because a is rapidly decreasing, $\text{Im} \ A^{(a)}_n$ is contained in the space of restrictions of real-analytic functions to $[0,2\pi]$. Then $\sum_{i=1}^{n-1} \text{Im} \ A^{(a)}_i$ is contained in the space of functions on $[0,2\pi]$ whose restrictions to all intervals $[x_1,x_2]$, $[x_2,x_3]$, ..., $[x_{n-1},2\pi]$ are real analytic. On the other hand non-zero functions in $\text{Im} \ A^{(a)}_n$ are not analytic in the neighborhood of $x_n \in]x_{n-1},2\pi[$, proving the claim.

Let then $U^{(a)}_n$ be the Cayley transform of $A^{(a)}_n$:

$$U^{(a)}_n = (1 - iA^{(a)}_n)(1 + iA^{(a)}_n)^{-1}.$$

Then $U^{(a)}_n$ is unitary, 1 is not an eigenvalue of $U^{(a)}_n$, and $U^{(a)}_n$ is diagonal in the basis $(M_n e_k)_{k \in \mathbb{Z}}$, with all eigenvalues of multiplicity 1. Moreover

$$U^{(a)}_n - 1 = -2iA^{(a)}_n(1 + iA^{(a)}_n)^{-1}$$

so that $U^{(a)}_n - 1$ is trace-class, and $\text{Im}(U^{(a)}_n - 1) \cap \left(\sum_{m=1}^{n-1} \text{Im}(U^{(a)}_m - 1) \right) = \{0\}$ by the claim.

To prove that $U^{(a)}_1$, $U^{(a)}_2$ together act irreducibly on V, let S be an operator on V which commutes both with $U^{(a)}_1$ and $U^{(a)}_2$. Since $U^{(a)}_1$, $U^{(a)}_2$ have all eigenvalues of multiplicity 1, the operator S must be diagonal both in the bases $(e_k)_{k \in \mathbb{Z}}$ and $(M_2 e_k)_{k \in \mathbb{Z}}$. From the Fourier series expansion of $M_2 e_k$:

$$M_2 e_k = \frac{1 - x_2^2}{\pi} e_k + \sum_{m \neq k} \frac{i}{\pi (m-k)} [1 - e^{i(k-m)x_2}] e_m$$
and the fact that all Fourier coefficients of M_2e_k are non-zero (because $\frac{2\pi}{\pi}$ is irrational), it follows that S must be scalar. Irreducibility then follows from Schur’s lemma.

Finally, to get a continuum of pairwise inequivalent representations, we notice that, since $U_1^{(a)} - 1$ is trace-class, the complex number

$$Tr(U_1^{(a)} - 1) = -2i Tr A^{(a)}(1 + iA^{(a)})^{-1} = -2i \sum_{k \in \mathbb{Z}} a_k(1 + ia_k)^{-1}$$

is an invariant of unitary equivalence of the associated representation. So varying a in the space of real-valued rapidly decreasing sequences satisfying $0 \neq a_k \neq a_m$ for $k \neq m \in \mathbb{Z}$, we get the desired continuum. □

Theorem 1.1 motivates:

Question 1 Is there a countable group G such that $\overline{H}^1(G, \pi) \neq 0$ for every unitary representation π of G?

Note that such a group, if it exists, must be non-amenable: indeed, by Corollary 5.2 in [MV07], a countable amenable group G has $\overline{H}^1(G, \lambda_G) = 0$, where λ_G is the left regular representation.

3 A remark

The irreducible representations σ constructed in Theorem 2.1 satisfy $\sigma(g) - 1 \in \mathcal{K}$ for every $g \in \mathbb{F}_n$. We observe that this fact alone is responsible for the non-vanishing of H^1.

Proposition 3.1 Let G be a discrete group. Assume that there exists a unitary irreducible representation π of G with the property that $1 - \pi(g)$ is a compact operator for every $g \in G$. Then $B^1(G, \pi)$ is not closed in $Z^1(G, \pi)$; in particular $H^1(G, \pi) \neq 0$.

Proof: Observe that by irreducibility the C^*-algebra generated by $\pi(G)$ is $\tilde{\mathcal{K}}$, and consider the short exact sequence

$$0 \to \mathcal{K} \to \tilde{\mathcal{K}} \xrightarrow{\varphi} \mathbb{C} \to 0.$$

For $f \in \ell^1(G)$, we have $q(\pi(f)) = \sum_{g \in G} f(g)q(\pi(g)) = \sum_{g \in G} f(g)$ for every $f \in \ell^1(G)$, so that

$$|\sum_{g \in G} f(g)| \leq \|\pi(f)\|.$$
By Theorem 3.4.4 in [Dix77], this means exactly that \(\pi \) weakly contains the trivial representation of \(G \). We conclude by applying another result by Guichardet ([Gui72], Théorème 1): for a unitary representation without non-zero fixed vectors, the space of 1-coboundaries is not closed in the space of 1-cocycles if and only if the representation weakly contains the trivial representation.

□

References

Authors’ addresses:

Philip Morris International
Quai Jeanrenaud 56
CH-2000 Neuchâtel
SWITZERLAND
florian.martin@pmintl.com

Institut de Mathématiques
Rue Emile Argand 11-BP158
CH-2009 Neuchâtel
SWITZERLAND
alain.valette@unine.ch