G-perfect lattices in dimension 8 over the Gauss and Eisenstein integers

François Sigrist

1 Introduction

This paper is an attempt to classify G-perfect quadratic forms up to dimension 8 , using the relative version of Voronoï's algorithm [B-M-S]. The first case is $G=$ cyclic group of order $4\{ \pm 1, \pm i\}$ (forms over the Gaussian integers), the second $G=$ cyclic group of order $6\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$ (forms over the Eisenstein integers).

In dimension 4 and 6 , the forms are well-known.
The determination of all faces of E_{8} is practically out of reach in the Gauss case (the binomial coefficient $\binom{60}{14}$ is 53194089192720). However, as orbits of faces under the respective automorphism groups turn out to contain a fair amount of faces (warm thanks to Gabriele Nebe, who conducted the computations), the 970 faces produced after a few weeks of computations indicate that there are at least 20016 faces of E_{8}, and that the list is presumably complete.

On the other hand, the computation of the Eisenstein faces of E_{8} is almost complete, but a computer crash stopped me short of the end. Presently, 56513 faces of E_{8} have been listed, and the prediction (G. Nebe) from these data is 60300 . It is therefore very unlikely that an orbit of neighbours of E_{8} could escape.

The surprising, if not amazing, result, is that there are very few G-perfect forms in dimension 8 . Over the Gaussian integers, E_{8} and D_{8} appear, as expected, but there seems to be no other G-perfect form. For the Eisenstein integers, one has $5 G$-perfect forms, among them E_{8}, and 4 of them are perfect.

This contrasts with the 10000 known perfect lattices in dimension 8 (cf Jacques Martinet's homepage). From their list, on can see that ca $2 / 3$ of them have a Bravais group of order 2 , so one knows that the majority does not show any symmetry. But Gauss or Eisenstein structures appear only on the very few well-known lattices.

The seven lattices displayed below (GA, GB, EA, EB, EC, ED, EE) are strongly eutactic. They are perfect, except EE ; their duals are strongly eutactic in cases $\mathrm{GA}, \mathrm{GB} \simeq \mathrm{EA}$ (rootlattices), ED , EE (isodual).

The notations used below are customary:
For a lattice $L, \operatorname{det}(L)$ is the determinant of a Gram matrix of L, L^{*} is the dual lattice, norm (L) is the minimal norm, and $\mathrm{s}(L)$ the half kissing number.
$\operatorname{carac}(L)=\left[\operatorname{det}(L),[\mathrm{s}(L), \operatorname{norm}(L)],\left[\mathrm{s}\left(L^{*}\right), \operatorname{norm}\left(L^{*}\right)\right],\left[\right.\right.$ elementary divisors of the quotient $\left.\left.L^{*} / L\right]\right]$.
If, by Voronoi's algorithm, the quadratic form A^{\prime} is the neighbouring form of a form A through the face F, then $A^{\prime}=A+\rho F . \rho$ is the parameter of the face F.

A separate text, written as a PARI-readable document, is available.

2 Gauss

$\mathrm{GA}=D_{8}$ and $\mathrm{GB}=E_{8}$ are the only Gauss-perfect forms. Both are perfect and strongly eutactic.

2.1 GA

Matrix is $\left(\begin{array}{cccccccc}2 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 2 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 2 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 2 & -1 & 1 \\ 1 & 0 & 1 & 0 & 1 & -1 & 2 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 2\end{array}\right)$
$\operatorname{carac}(\mathrm{GA})=[4,[56,2],[8,2],[2,2]] ;$
GA has 256 faces, on one single orbit.

Orbit GABA contains 256 faces, each with $\mathrm{s}=42$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & -1 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 1 & -1 \\ -1 & -1 & -1 & -1 & 0 & 0 & -1 & 0 \\ 1 & -1 & 1 & -1 & 0 & 0 & 0 & -1 \\ -1 & 1 & -1 & 1 & -1 & 0 & 0 & 0 \\ -1 & -1 & -1 & -1 & 0 & -1 & 0 & 0\end{array}\right)$. Neighbour is GB. Parameter is 1.

2.2 GB

Matrix is $\left(\begin{array}{cccccccc}2 & 0 & 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 2 & 0 & 1 & -1 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 2 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 & 2 & 0 \\ -1 & 0 & -1 & 0 & 1 & 0 & 0 & 2\end{array}\right)$

$$
\operatorname{carac}(\mathrm{GB})=[1,[120,2],[120,2],[1]] ;
$$

There are seven orbits of faces of GB, predicting a total number of $1920+5760+5760+3840+240+192+2304=$ 20016 faces.

Orbit GBAA contains 1920 faces, each with $\mathrm{s}=42$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0\end{array}\right)$. Neighbour is GA. Parameter is 1
Found by computer: 75 faces.

Orbit GBBA contains 5760 faces,each with $s=34$.

Matrix is $\left(\begin{array}{cccccccc}2 & 0 & 1 & -1 & 1 & -1 & 1 & 0 \\ 0 & 2 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & -1 & 1 & 1 \\ -1 & 1 & 0 & 0 & 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ -1 & 1 & -1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}\right)$
Neighbour is GB itself. Parameter is 1.

Found by computer: 84 faces.

Orbit GBBB contains 5760 faces,each with $\mathrm{s}=40$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 2 & 0 & 0 & 1 & -1 & -1 \\ 1 & 1 & 0 & 2 & -1 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 & -1 & 0 & 0\end{array}\right)$. Neighbour is GB itself. Parameter is 1.
Found by computer: 250 faces.
Orbit GBBC contains 3840 faces,each with $\mathrm{s}=42$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 & -1 & 1 & 0 & -1 \\ 0 & 1 & 0 & 2 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0\end{array}\right)$. Neighbour is GB itself. Parameter is 1 .
Found by computer: 257 faces.
Orbit GBBD contains 240 faces, each with $\mathrm{s}=66$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0\end{array}\right)$. Neighbour is GB itself. Parameter is 1 .
Found by computer: 163 faces.

Orbit GBBE contains 192 faces, each with $\mathrm{s}=60$.

Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & 1 & -1 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & -1 & 0 & -1 \\ 0 & -1 & 0 & 0 & 1 & 1 & -1 & 1 \\ 1 & 0 & 0 & 0 & -1 & 1 & -1 & -1 \\ -1 & -1 & 1 & -1 & 2 & 0 & 0 & 1 \\ 1 & -1 & 1 & 1 & 0 & 2 & -1 & 0 \\ -1 & 0 & -1 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 & 0 & 0 & 0\end{array}\right)$
Neighbour is GB itself. Parameter is 1.

Found by computer: 98 faces.
Orbit GBBF contains 2304 faces, each with $\mathrm{s}=30$.
Matrix is $\left(\begin{array}{cccccccc}2 & 0 & 2 & 2 & 1 & 0 & 1 & 1 \\ 0 & 2 & -2 & 2 & 0 & 1 & -1 & 1 \\ 2 & -2 & 2 & 0 & 1 & -1 & 1 & 0 \\ 2 & 2 & 0 & 2 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 & 0 & 1 \\ 1 & -1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0\end{array}\right)$. Neighbour is GB itself. Parameter is 1.
Found by computer: 43 faces.

3 Eisenstein

There are 5 Eisenstein-perfect forms EA, EB, EC, ED and EE. EA=E8. All are and strongly eutactic, and perfect, with the exception of EE, which has default of perfection 2, is strongly eutactic and isodual.

$3.1 \quad \mathrm{EA}=E_{8}$

Matrix is $\left(\begin{array}{cccccccc}2 & -1 & 1 & 0 & 1 & 0 & 1 & 0 \\ -1 & 2 & -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 & -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 & 2 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 & -1 & 2 & -1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 2 & -1 \\ 0 & 1 & 0 & 1 & 0 & 1 & -1 & 2\end{array}\right)$.
$\operatorname{carac}(\mathrm{EA})=[1,[120,2],[120,2],[1]] ;$
EA should have $5184+5184+2880+540+432+25920+8640+8640+2880=60300$ faces, on nine different orbits.

Found by computer: 56513 faces.

Orbit EAAA contains 5184 faces, each with $\mathrm{s}=45$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & -1 & 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & -1 & 1 & -1 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 & 1 & -2 & 2 \\ 0 & -1 & 0 & 0 & -2 & 1 & 0 & -2 \\ -1 & 1 & 1 & -2 & 4 & -2 & 0 & 3 \\ 0 & -1 & 1 & 1 & -2 & 4 & -3 & 0 \\ 0 & 1 & -2 & 0 & 0 & -3 & 2 & -1 \\ -1 & 0 & 2 & -2 & 3 & 0 & -1 & 2\end{array}\right)$
Neighbour is EA itself. Parameter is 1.

Found by computer: 4871 faces.
Orbit EAAB contains 5184 faces, each with $\mathrm{s}=45$.

Matrix is $\left(\begin{array}{cccccccc}2 & -1 & 1 & 0 & 0 & 2 & 1 & -1 \\ -1 & 2 & -1 & 1 & -2 & 0 & 0 & 1 \\ 1 & -1 & 2 & -1 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 2 & -2 & 1 & 0 & 0 \\ 0 & -2 & 1 & -2 & 2 & -1 & 0 & -1 \\ 2 & 0 & 1 & 1 & -1 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 & -1 & 0 & 0 & 0\end{array}\right)$
. Neighbour is EA itself. Parameter is 1.

Found by computer: 4776 faces.
Orbit EAAC contains 2880 faces, each with $\mathrm{s}=54$.

Matrix is

$$
\left(\begin{array}{cccccccc}
2 & -1 & 0 & -1 & 2 & -1 & 3 & -1 \\
-1 & 2 & 1 & 0 & -1 & 2 & -2 & 3 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
-1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\
2 & -1 & 0 & -1 & 2 & -1 & 3 & -1 \\
-1 & 2 & 1 & 0 & -1 & 2 & -2 & 3 \\
3 & -2 & 0 & -1 & 3 & -2 & 4 & -2 \\
-1 & 3 & 1 & 0 & -1 & 3 & -2 & 4
\end{array}\right)
$$

Neighbour is EA itself. Parameter is 1.

Found by computer: 2862 faces.
Orbit EAAD contains 540 faces,each with $\mathrm{s}=66$.

Matrix is

$$
\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & -1 & 0 & 2 \\
0 & 0 & 0 & 0 & -1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 & 2 & -1 \\
0 & 0 & 0 & 0 & 2 & 0 & -1 & 2
\end{array}\right) \text {. Neighbour is EA itself. Parameter is } 1 .
$$

Found by computer: 540 faces.
Orbit EAAE contains 432 faces, each with $s=60$.
Matrix is $\left(\begin{array}{cccccccc}2 & -1 & 1 & 0 & 1 & 0 & 2 & 0 \\ -1 & 2 & -1 & 1 & -1 & 1 & -2 & 2 \\ 1 & -1 & 2 & -1 & 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 2 & -2 & 1 & -1 & 1 \\ 1 & -1 & 1 & -2 & 2 & -1 & 2 & -1 \\ 0 & 1 & 1 & 1 & -1 & 2 & -1 & 2 \\ 2 & -2 & 1 & -1 & 2 & -1 & 2 & -1 \\ 0 & 2 & 0 & 1 & -1 & 2 & -1 & 2\end{array}\right)$
Neighbour is EA itself. Parameter is 1.

Found by computer: 432 faces.
Orbit EABA contains 25920 faces,each with $\mathrm{s}=45$.

Matrix is

$$
\left(\begin{array}{cccccccc}
0 & 0 & 1 & 0 & -1 & 1 & -1 & 1 \\
0 & 0 & -1 & 1 & 0 & -1 & 0 & -1 \\
1 & -1 & 2 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & -1 & 2 & 0 & 0 & -1 & 1 \\
-1 & 0 & 0 & 0 & 2 & -1 & 0 & 1 \\
1 & -1 & 0 & 0 & -1 & 2 & -1 & 0 \\
-1 & 0 & 1 & -1 & 0 & -1 & 0 & 0 \\
1 & -1 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Neighbour is EB. Parameter is $1 / 2$.

Found by computer: 23864 faces.
Orbit EABB contains 8640 faces, each with $\mathrm{s}=51$.
Matrix is $\left(\begin{array}{cccccccc}2 & -1 & 0 & 0 & 2 & -2 & 1 & 0 \\ -1 & 2 & 0 & 0 & 0 & 2 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 2 & 0 & -1 & 1 & 2 & -1 & 1 & 0 \\ -2 & 2 & 0 & -1 & -1 & 2 & -1 & 1 \\ 1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$. Neighbour is EB. Parameter is $1 / 2$.
Found by computer: 8622 faces.
Orbit EACA contains 8640 faces, each with $\mathrm{s}=45$.
Matrix is $\left(\begin{array}{cccccccc}4 & -2 & 1 & 0 & 1 & 1 & 4 & -3 \\ -2 & 4 & -1 & 1 & -2 & 1 & -1 & 4 \\ 1 & -1 & 2 & -1 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 & -1 & 1 & -1 & 1 \\ 1 & -2 & 1 & -1 & 0 & 0 & 2 & -3 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 2 \\ 4 & -1 & 1 & -1 & 2 & 1 & 4 & -2 \\ -3 & 4 & 0 & 1 & -3 & 2 & -2 & 4\end{array}\right)$
Neighbour is EC. Parameter is $1 / 3$.

Found by computer: 7899 faces.
Orbit EADA contains 2880 faces, each with $\mathrm{s}=45$.
Matrix is $\left(\begin{array}{cccccccc}4 & -2 & 1 & 0 & 1 & 0 & 0 & -1 \\ -2 & 4 & -1 & 1 & -1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 & -1 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 & 1 & -1 & 0 & 0\end{array}\right)$. Neighbour is ED. Parameter is $1 / 2$.
Found by computer: 2647 faces.

$3.2 \quad$ EB

Matrix is $\left(\begin{array}{cccccccc}4 & -2 & 2 & 0 & 2 & 1 & 1 & 1 \\ -2 & 4 & -2 & 2 & -3 & 2 & -2 & 1 \\ 2 & -2 & 4 & -2 & 3 & -1 & 2 & 0 \\ 0 & 2 & -2 & 4 & -2 & 3 & -2 & 2 \\ 2 & -3 & 3 & -2 & 6 & -3 & 2 & 1 \\ 1 & 2 & -1 & 3 & -3 & 6 & -3 & 2 \\ 1 & -2 & 2 & -2 & 2 & -3 & 4 & -2 \\ 1 & 1 & 0 & 2 & 1 & 2 & -2 & 4\end{array}\right)$.
$\operatorname{carac}(\mathrm{EB})=[729,[54,4],[3,18],[27,9,3]] ;$
EB has 70 faces,on eight different orbits.
Orbit EBAA contains 18 faces,each with $\mathrm{s}=45$.

Matrix is

$$
\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & -2 & 1 & 1 & -3 \\
0 & 0 & 0 & 0 & 1 & -2 & 2 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
-2 & 1 & -1 & 0 & -2 & 1 & -2 & -1 \\
1 & -2 & 1 & -1 & 1 & -2 & 3 & -2 \\
1 & 2 & 0 & 2 & -2 & 3 & 0 & 0 \\
-3 & 1 & -2 & 0 & -1 & -2 & 0 & 0
\end{array}\right)
$$

Neighbour is EA. Parameter is 1.

Orbit EBAB contains 6 faces,each with $\mathrm{s}=51$.

Matrix is

$$
\left(\begin{array}{cccccccc}
0 & 0 & 0 & -2 & 0 & -1 & 1 & -1 \\
0 & 0 & 2 & 0 & 1 & 0 & 0 & 1 \\
0 & 2 & 0 & 0 & -1 & 1 & 0 & 0 \\
-2 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & -2 & 1 & 0 & -1 \\
-1 & 0 & 1 & -1 & 1 & -2 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & -1 & 0 & 0 & 0
\end{array}\right)
$$

Neighbour is A1. Parameter is 1.

Orbit EBBA contains 18 faces, each with $\mathrm{s}=45$.

$$
\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & -1 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 & -2 & 1 & -1 & -1 \\
0 & -1 & 1 & -1 & 1 & -2 & 2 & -1 \\
1 & 0 & 0 & 1 & -1 & 2 & 0 & 0 \\
-1 & 1 & -1 & 0 & -1 & -1 & 0 & 0
\end{array}\right)
$$

Neighbour is EB itself. Parameter is 1.

Orbit EBBB contains 9 faces,each with $\mathrm{s}=45$.

Matrix is

$$
\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 1 & -2 & 1 & -1 & 0 \\
0 & -1 & 0 & -1 & 1 & -2 & 1 & -1 \\
0 & 1 & 0 & 1 & -1 & 1 & 0 & 0 \\
-1 & 0 & -1 & 0 & 0 & -1 & 0 & 0
\end{array}\right)
$$

Neighbour is EB itself. Parameter is 1.

Orbit EBBC contains 6 faces,each with $\mathrm{s}=45$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ -1 & 1 & -1 & 0 & -1 & 0 & 0 & 0\end{array}\right)$. Neighbour is EB itself. Parameter is 1 .
Orbit EBCA contains 9 faces, each with $\mathrm{s}=45$.

Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & -2 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 3 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 & -3 & 1 & 0 & -2 \\ 0 & 0 & 0 & 0 & 2 & -3 & 2 & 0 \\ -2 & 3 & -3 & 2 & -6 & 3 & -2 & -1 \\ -1 & -2 & 1 & -3 & 3 & -6 & 3 & -2 \\ 1 & 0 & 0 & 2 & -2 & 3 & 0 & 0 \\ -1 & 1 & -2 & 0 & -1 & -2 & 0 & 0\end{array}\right)$
Neighbour is EC. Parameter is $1 / 3$.

Orbit EBDA contains 3 faces, each with $\mathrm{s}=45$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 & -1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 & 1 & -1 & 1 & 0 \\ -1 & 1 & -1 & 1 & -2 & 1 & -1 & 0 \\ 0 & -1 & 0 & -1 & 1 & -2 & 1 & -1 \\ 0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0\end{array}\right)$
Neighbour is ED. Parameter is 1.

Orbit EBEA contains 1 face, with $\mathrm{s}=45$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & -2 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 & -2 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -1 & 0 & 0 \\ -2 & 1 & -1 & 2 & -2 & 1 & -2 & 1 \\ 1 & -2 & -1 & -1 & 1 & -2 & 1 & -2 \\ -1 & 2 & 0 & 0 & -2 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 & 1 & -2 & 0 & 0\end{array}\right)$
Neighbour is EE. Parameter is $1 / 3$.

3.3 EC

Matrix is $\left(\begin{array}{cccccccc}6 & -3 & 3 & 0 & 2 & 1 & 2 & 1 \\ -3 & 6 & -3 & 3 & -3 & 2 & -3 & 2 \\ 3 & -3 & 6 & -3 & 3 & -1 & 3 & -1 \\ 0 & 3 & -3 & 6 & -2 & 3 & -2 & 3 \\ 2 & -3 & 3 & -2 & 6 & -3 & 2 & 1 \\ 1 & 2 & -1 & 3 & -3 & 6 & -3 & 2 \\ 2 & -3 & 3 & -2 & 2 & -3 & 6 & -3 \\ 1 & 2 & -1 & 3 & 1 & 2 & -3 & 6\end{array}\right)$
$\operatorname{carac}(\mathrm{EC})=[20736,[48,6],[9,16],[36,12,6,2,2,2]]$;
ES3 has 16 faces,on three different orbits.
Orbit ECAA contains 6 faces,each with $\mathrm{s}=45$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & -2 & 0 & -2 \\ 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 & 0 & 0 & 1 & -1 \\ -1 & 1 & -2 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 2 & 1 & 0 & 0 & 0 \\ -1 & 1 & -2 & 0 & -1 & 1 & 0 & 0\end{array}\right)$. Neighbour is EA. Parameter is 1.
Orbit ECBA contains 9 faces, each with $\mathrm{s}=45$.

Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & -1 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 & -2 & 0 & 1 & 0 \\ -1 & 0 & 0 & -2 & 0 & 0 & -1 & -2 \\ 1 & -1 & 2 & 0 & 0 & 0 & 3 & -1 \\ 2 & 0 & 0 & 1 & -1 & 3 & 0 & 0 \\ -2 & 2 & -1 & 0 & -2 & -1 & 0 & 0\end{array}\right)$
Neighbour is EB. Parameter is $1 / 2$.

Orbit ECDA contains 1 face, with $\mathrm{s}=45$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & -3 & 3 & -1 & 1 & -1 & 1 \\ 0 & 0 & 0 & -3 & 0 & -1 & 0 & -1 \\ -3 & 0 & 0 & 0 & 0 & -1 & 0 & -1 \\ 3 & -3 & 0 & 0 & 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \\ 1 & -1 & -1 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 1 & -1 & -1 & 0 & 1 & -1 & 0 & 0\end{array}\right)$
Neighbour is ED. Parameter is $1 / 2$.

3.4 $\mathrm{ED}=L_{8}^{4}$ (Barnes' lattice)

Matrix is $\left(\begin{array}{cccccccc}4 & -2 & 2 & -1 & 2 & -1 & 3 & 0 \\ -2 & 4 & -1 & 2 & -1 & 2 & -3 & 3 \\ 2 & -1 & 4 & -2 & 2 & -1 & 3 & 0 \\ -1 & 2 & -2 & 4 & -1 & 2 & -3 & 3 \\ 2 & -1 & 2 & -1 & 4 & -2 & 3 & 0 \\ -1 & 2 & -1 & 2 & -2 & 4 & -3 & 3 \\ 3 & -3 & 3 & -3 & 3 & -3 & 6 & -3 \\ 0 & 3 & 0 & 3 & 0 & 3 & -3 & 6\end{array}\right)$
$\operatorname{carac}(\mathrm{ED})=[729,[54,4],[12,6],[9,3,3,3,3]]$;
ED has 216 faces, on three different orbits.

Orbit EDAA contains 72 faces,each with $\mathrm{s}=45$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & -1 & -2 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -2 & 1 & -1 \\ 0 & 1 & 0 & 0 & -2 & 1 & -1 & 0 \\ -1 & 0 & 0 & 0 & 1 & -2 & 1 & -1 \\ -2 & 1 & -2 & 1 & 0 & 0 & -1 & 0 \\ 1 & -2 & 1 & -2 & 0 & 0 & 1 & -1 \\ -1 & 1 & -1 & 1 & -1 & 1 & -2 & 1 \\ 0 & -1 & 0 & -1 & 0 & -1 & 1 & -2\end{array}\right)$
Neighbour is EA. Parameter is 1.

Orbit EDBA contains 108 faces, each with $\mathrm{s}=45$.
Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ -1 & 1 & -1 & 1 & 0 & 0 & -1 & 1 \\ 0 & -1 & 0 & -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0\end{array}\right)$
Neighbour is EB. Parameter is 1.

Orbit EDCA contains 36 faces, each with $\mathrm{s}=45$.

Matrix is $\left(\begin{array}{cccccccc}0 & 0 & -2 & 1 & -2 & 1 & -1 & 0 \\ 0 & 0 & 1 & -2 & 1 & -2 & 1 & -1 \\ -2 & 1 & 0 & 0 & -2 & 1 & -1 & 0 \\ 1 & -2 & 0 & 0 & 1 & -2 & 1 & -1 \\ -2 & 1 & -2 & 1 & 0 & 0 & -1 & 0 \\ 1 & -2 & 1 & -2 & 0 & 0 & 1 & -1 \\ -1 & 1 & -1 & 1 & -1 & 1 & -2 & 1 \\ 0 & -1 & 0 & -1 & 0 & -1 & 1 & -2\end{array}\right)$
Neighbour is EC. Parameter is $1 / 3$.

3.5 EE

Matrix is $\left(\begin{array}{cccccccc}6 & -3 & 3 & 0 & 2 & 2 & 1 & 1 \\ -3 & 6 & -3 & 3 & -4 & 2 & -2 & 1 \\ 3 & -3 & 6 & -3 & 4 & -2 & 3 & 0 \\ 0 & 3 & -3 & 6 & -2 & 4 & -3 & 3 \\ 2 & -4 & 4 & -2 & 8 & -4 & 2 & 2 \\ 2 & 2 & -2 & 4 & -4 & 8 & -4 & 2 \\ 1 & -2 & 3 & -3 & 2 & -4 & 6 & -3 \\ 1 & 1 & 0 & 3 & 2 & 2 & -3 & 6\end{array}\right)$
$\operatorname{carac}(\mathrm{EE})=[20736,[48,6],[48,6],[12,12,6,6,2,2]] ;$
EE is 12-modular, isodual, and has perfection rank 34 (default 2).

EE has 16 faces,on one single orbit, each with $\mathrm{s}=45$.

Matrix is $\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & -1 & -1 & 1 & -2 \\ 0 & 0 & 0 & 0 & 2 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & -2 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & -2 & 3 & 0 \\ -1 & 2 & -2 & 1 & -4 & 2 & -1 & -1 \\ -1 & -1 & 1 & -2 & 2 & -4 & 2 & -1 \\ 1 & 1 & 0 & 3 & -1 & 2 & 0 & 0 \\ -2 & 1 & -3 & 0 & -1 & -1 & 0 & 0\end{array}\right)$. Neighbour is EE. Parameter is $1 / 2$.

References

[B-M-S] Anne-Marie Bergé, Jacques Martinet, François Sigrist: Une généralisation de l'algorithme de Voronoï pour les formes quadratiques. Astérisque 209 (1992), 137-158.

4 Address of author

François Sigrist

Institut de mathématiques
Université de Neuchâtel
Rue Emile Argand 11
CH-2007 Neuchâtel
Switzerland
francois.sigrist@unine.ch

