Spectra of graphs and the spectral criterion for property (T)

Alain Valette

Institut de Mathématiques
Université de Neuchâtel
Unimail
11 Rue Emile Argand
CH-2000 Neuchâtel, Switzerland

alain.valette@unine.ch

Abstract

For a finite connected graph X, we consider the graph RX obtained from X by associating a new vertex to every edge of X and joining by edges the extremities of each edge of X to the corresponding new vertex. We express the spectrum of the Laplace operator on RX as a function of the corresponding spectrum on X. As a corollary, we show that X is a complete graph if and only if $\lambda_1(RX) > \frac{1}{2}$. We give a re-interpretation of the correspondence $X \mapsto RX$ in terms of the right-angled Coxeter group defined by X.

Keywords: graph spectrum, Coxeter group, property (T), spectral criterion
Mathematics Subject Classification: 05C50
DOI:10.5614/ejgta.2017.5.1.11

1. Introduction

Let $X = (V, E)$ be a finite, connected graph. Denote by \sim the adjacency relation on V; that is, $x \sim y$ if and only if $\{x, y\} \in E$. Endow the space $\mathbb{R}V$ of real-valued functions on V with the scalar product $\langle f | g \rangle = \sum_{x \in V} f(x)g(x) \deg(x)$, where $\deg(x)$ is the number of neighbors of x.
The combinatorial Laplace operator of X is the operator Δ_X on $\mathbb{R}V$, defined by

$$(\Delta_X f)(x) = f(x) - \frac{1}{\deg(x)} \sum_{y \sim x} f(y)$$

($f \in \mathbb{R}V, \ x \in V$). It is classical that Δ_X is self-adjoint with respect to $\langle \cdot, \cdot \rangle$ (that is, $\langle \Delta_X f | g \rangle = \langle f | \Delta_X g \rangle$ for every $f, g \in \mathbb{R}V$), and has spectrum contained in $[0, 2]$; the associated quadratic form is given by:

$$\langle \Delta_X f | f \rangle = \frac{1}{2} \sum_{x,y: x \sim y} (f(x) - f(y))^2$$

($f \in \mathbb{R}V$); see [4] for all this. Then 0 is a multiplicity 1 eigenvalue of Δ_X, and we denote by $\lambda_1(X)$ the smallest non-zero eigenvalue of X.

We denote by RX the graph with vertex set $V \sqcup E$ (the disjoint union of V and E) and adjacency relation given by:

- if $x, y \in V : x \sim y \Leftrightarrow \{x, y\} \in E$;
- if $x \in V, e \in E : x \sim e \Leftrightarrow x \in e$;
- if $e, e' \in E$, then e, e' are not adjacent in RX.

Graphically, this means that every edge $e = \{x, y\}$ in X gets replaced in RX by a triangle $\{x, y, e\}$ (with $\deg e = 2$). This operation on graphs was considered by Cvetkovic [5], who computed, in case X is regular, the spectrum of the adjacency operator of RX as a function of the corresponding spectrum for X (see Theorem 3 in [5]).

The purpose of this note is twofold. First, we explain the relevance of the transformation $X \mapsto RX$ in terms of Cayley graphs for the right-angled Coxeter group associated with X. Second, we compute the spectrum $Sp \Delta_{RX}$ of Δ_{RX} in terms of the spectrum $Sp \Delta_X$ of Δ_X, without regularity assumption on X. Observe that, for $f \in \mathbb{R}(V \sqcup E)$:

$$(\Delta_{RX} f)(y) = \begin{cases} f(y) - \frac{1}{2 \deg(y)} \left[\sum_{x \in V, x \sim y} f(x) + \sum_{e \in E, y \in E} f(e) \right] & \text{if } y \in V \\ f(y) - \frac{1}{2} \sum_{x \in y} f(x) & \text{if } y \in E \end{cases}$$

(1)

The following result will be proved in Section 3:

Proposition 1.1. Let X be a finite connected graph with n vertices and m edges. A real number $\lambda \in [0, 2]$ is an eigenvalue of Δ_{RX} if and only some of the following cases occurs:

- $\lambda = 1$ (this case occurs only if $m > n$);
- $\lambda = \frac{3}{2}$;

1The graph RX should NOT be confused with the total graph TX, whose set of vertices is also $V \sqcup E$ but the 3rd condition above gets replaced by: there is an edge between $e, e' \in E$ if and only if e and e' are incident in X. So RX is a spanning subgraph of TX.

www.ejgta.org
• 2λ is an eigenvalue of Δ_X.

Taking into account the fact that, for the complete graph K_n on n vertices, we have $Sp(\Delta_{K_n}) = \{0, \frac{n}{n-1}\}$, and that $\lambda_1 > 1$ characterizes complete graphs (see Lemma 1.7 in [4]), we get as an immediate corollary:

Corollary 1.1. Let X be a finite connected graph. The following are equivalent:

i) $\lambda_1(RX) > \frac{1}{2}$;

ii) X is a complete graph.

However, it is possible to give a direct, group-theoretic proof of the implication $(i) \Rightarrow (ii)$ in Corollary 1.1: this will be done in Section 2.

2. Cayley graphs and property (T)

Recall that a finitely generated group Γ has property (T) if every affine isometric action of Γ on a Hilbert space, has a fixed point. We refer to [2] for examples, characterizations and applications of property (T).

Let Γ be a finitely generated group and let S be a finite generating subset such that $S = S^{-1}$ and $1 \notin S$. Let $G(\Gamma, S)$ be the Cayley graph of Γ with respect to S; that is, the vertex set is Γ, and two vertices $x, y \in \Gamma$ are adjacent if $x^{-1}y \in S$. Let X_S be the graph induced by $G(\Gamma, S)$ on S; that is, the vertex set of X_S is S, and two elements $s, t \in S$ are adjacent if $s^{-1}t \in S$. The spectral criterion for property (T) (see [1], [6], [7]; see also [2], Theorem 5.5.2) is the statement that, if X_S is connected and $\lambda_1(X_S) > \frac{1}{2}$, then Γ has property (T).

Proof of $(i) \Rightarrow (ii)$ in Corollary 1.1: Let $X = (V, E)$ be a finite connected graph and let W_X be the right-angled Coxeter group associated with X; this is the group defined by the presentation:

$$W_X = \langle s \in V | s^2 = 1 \ (s \in V); \ st = ts \ (\{s, t\} \in E) \rangle.$$

We will need two standard facts about Coxeter groups:

(a) An infinite Coxeter group does not have property (T) (see [3]);

(b) If $\{s, t\} \notin E$, then st has infinite order in W_X.

We define a new generating set of W_X by:

$$S =: X \cup \{st = ts : \{s, t\} \in E\}.$$

Observe that, if $st = ts$, then for any two distinct $x, y \in \{s, t, st\}$, the quotient $x^{-1}y$ is still in $\{s, t, st\}$. In other words, the graph X_S induced by $G(W_X, S)$ on S, is isomorphic to RX.

So, if we assume $\lambda_1(RX) > \frac{1}{2}$, then W_X has property (T) by the spectral criterion. By fact (a) above, W_X is a finite group, which of course implies that st has finite order for every $s, t \in V$. By fact (b), we must have $s \sim t$ for every $s, t \in V$; that is, X is a complete graph. \qed
3. The Laplace operator on RX

Recall that the Laplace operator on X, as a matrix indexed by $V \times V$, is:

$$(\Delta_X)_{xy} = \begin{cases}
1 & \text{if } x = y \\
-\frac{1}{\deg(x)} & \text{if } x \sim y \\
0 & \text{if } x \neq y, x \sim y
\end{cases}$$

Set $|V| = n$ and $|E| = m$. Turning to RX with vertex set $E \sqcup V$, recall that $\deg_{RX}(e) = 2$ for $e \in E$ and $\deg_{RX}(x) = 2 \deg(x)$ for $x \in V$. So, from (1), the Laplace operator Δ_{RX} on RX is a $(m + n) \times (m + n)$ matrix:

$$\Delta_{RX} = \begin{pmatrix} 1_m & B \\
A & 1_n - \frac{1}{2}M_X \end{pmatrix}$$

where $(M_Xf)(x) = \frac{1}{\deg(x)} \sum_{y \sim x} f(y)$ is the Markov operator on X (with $f \in \mathbb{R}^V$) and, for $x \in V, e \in E$:

$$A_{xe} = \begin{cases}
-\frac{1}{2\deg(x)} & \text{if } x \in e \\
0 & \text{if } x \not\in e
\end{cases}$$

$$B_{ex} = \begin{cases}
-\frac{1}{2} & \text{if } x \in e \\
0 & \text{if } x \not\in e
\end{cases}$$

Observe that

$$(AB)_{xy} = \begin{cases}
0 & \text{if } x \neq y, x \sim y \\
\frac{1}{4\deg(x)} & \text{if } x \sim y \\
\frac{1}{4} & \text{if } x = y
\end{cases}$$

So that

$$AB = \frac{1}{4}(1_n + M_X) = \frac{1}{4}(2 \cdot 1_n - \Delta_X). \quad (2)$$

The characteristic polynomial of Δ_{RX} is

$$P_{RX}(\lambda) = \det(\Delta_{RX} - \lambda \cdot 1_{m+n}) = \det\left(\begin{pmatrix} 1_m & B \\
A & \frac{1}{2} - \lambda \end{pmatrix} - \lambda \cdot \frac{1}{2}M_X \right)$$

For $\lambda \neq 1$, multiply on the left by the unimodular matrix $\begin{pmatrix} 1_m & 0 \\
-(1 - \lambda)^{-1}A & 1_n \end{pmatrix}$ to get

$$P_{RX}(\lambda) = \det\left(\begin{pmatrix} 1_m & B \\
0 & \frac{1}{2} - \lambda \end{pmatrix} - \lambda \cdot \frac{1}{2}M_X \right)$$

$$= (1 - \lambda)^m \det\left[(\frac{1}{2} - \lambda)1_n + \frac{\Delta_X}{2} - (1 - \lambda)^{-1}AB \right]$$

$$= (1 - \lambda)^{m-n} \det\left[(1 - \lambda)(\frac{1}{2} - \lambda)1_n + \frac{(1 - \lambda)\Delta_X}{2} - AB \right]$$
By Equation (2):

\[P_{RX}(\lambda) = (1 - \lambda)^{m-n} \det[(1 - \lambda)(\frac{1}{2} - \lambda) 1_n + \frac{(1 - \lambda)\Delta X}{2} - \frac{1}{4}(2 \cdot 1_n - \Delta X)] \]

\[= (1 - \lambda)^{m-n} \det[(\lambda - \frac{3}{2})(\lambda - \frac{\Delta X}{2})] \]

\[= 2^{-n}(1 - \lambda)^{m-n}(\lambda - \frac{3}{2})^n \det(2\lambda - \Delta X) \]

So

\[P_{RX}(\lambda) = 2^{-n}(1 - \lambda)^{m-n}(\frac{3}{2} - \lambda)^nP_X(2\lambda) \] (3)

Proposition 1.1 immediately follows from equation (3).

Acknowledgement

The author expresses his debt to Pierre-Emmanuel Caprace for sharing his ideas of introducing right-angled Coxeter groups and making the link with the spectral criterion for property (T). The paper was written as the author was in a residence at MSRI (Berkeley, CA) as a Simons research professor during the Fall 2016 semester; he acknowledges support from grant DMS-1440140 of the National Science Foundation.

References

