
Involutive isometries, eigenvalue bounds and a spectral property

of Clifford tori ∗

Bruno Colbois and Alessandro Savo †

August 4, 2011

Abstract

In this paper we consider a compact Riemannian manifold or submanifold M , with an involutive
isometry which has no fixed point, and we derive some spectral properties of this geometric situation.
The aim is to give an upper bound for the gap λ2(D)−λ1(D) of the first two eigenvalues of a Laplace
type operator D acting on sections of a vector bundle over M .

In the first part, using the classical barycenter method, we derive sharp upper bounds for the
gap of antipodal symmetric submanifold of Euclidean space. Moreover, if equality holds, we prove
that the submanifold is minimal in a sphere. In particular, we give a spectral characterization of

the Clifford torus Sp

„r
p

n

«
× Sn−p

„r
n− p

n

«
as the unique maximizer for the gap of the Hodge

Laplacian on p-forms, among all antipodal symmetric hypersurfaces of the sphere Sn+1.
In the second part we give upper bounds in the general case. The main point is that these bounds

do not depend on the particular operator D we consider, but only on the natural intrinsic or extrinsic
distance on M and on the displacement of the action of the isometry group considered.

1 Introduction

In this paper (Mn, g) denotes a closed, connected, orientable manifold with Riemannian
metric g.

Assume that M admits an isometric involution γ such that the distance of any point to
its image under γ is uniformly bounded below by a positive constant β. The main scope
of this paper is to show that this simple situation has a rather strong influence on the
spectrum of M , not only for the classical Laplacian or Schrödinger operators, but also
for a large class of operators acting on sections of a vector bundle over M (the so-called
Laplace-type operators) as long as they are γ-invariant. Namely, we prove that there
exists a uniform upper bound for the gap between the first and the second eigenvalue of
the operator, depending only on the displacement β and a rather weak metric invariant,
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called the packing constant of M (this invariant is itself independent on the operator and,
a priori, on the curvature of (M, g)).

We illustrate this phenomenon by proving a result under the more general assumption
that M admits a free, isometric action by a finite group (see Theorem 12); but perhaps the
most interesting case is when the manifold is isometrically immersed in the unit sphere
and is invariant under the antipodal action of the group Z2: in that case, in fact, we
obtain sharp upper bounds only in terms of the dimension n of M , with equality cases
which imply interesting rigidity results (see Theorems 1, 2, and 3).

Without the assumption of antipodal symmetry (or the existence of a group action with
displacement bounded below) it is possible to construct families of examples with large
gap: see the discussion in Remark 6.

In the rest of the introduction we state the main results of the paper.

Let π : E → M be a vector bundle over (Mn, g), and ∇E a connection on E which is
compatible with a given bundle metric (see [B] for details). An operator D acting on
sections of the bundle is said to be of Laplace-type if it can be written

D = (∇E)?∇E + T,

where T is a self-adjoint endomorphism of the fiber. Then, D is self-adjoint and elliptic.
We list its eigenvalues as λ1(D) ≤ λ2(D) ≤ · · · ≤ λk(D) ≤ . . .

If a group G acts by isometries on (Mn, g), we suppose that there is an associated equivari-
ant action on the sections of E. This means that, for γ ∈ G, we have γ ·∇E

Xψ = ∇E
γ∗X(γ ·ψ)

for all sections ψ of E and all tangent vectors X. We say that D is G−invariant if it
commutes with any isometry of the group G. It is clear that this happens if and only
if the endomorphism T commutes with any isometry of G, and in that case G preserves
each eigenspace of D.

Important examples of Laplace-type operators are given by the Laplacian acting on dif-
ferential forms and by the square of the Dirac operator, both of which are G−invariant;
and by a Schrödinger operator acting on functions: D = ∆ + q, which is G−invariant if
and only if the potential q is.

1.1 Sharp bounds for the antipodal action

Here we consider the special case in which Mn admits an isometric immersion into the
unit sphere of dimension N and γ : SN → SN is the antipodal map. If Mn is invariant
under γ, it inherits an isometric action by the group G = Z2 generated by γ.

Theorem 1. Let φ : Mn → SN be an isometric immersion, invariant under the antipodal
map γ. Let D be any Laplace-type operator acting on sections of a vector bundle on M ,
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which is also invariant under γ. Then:

λ2(D)− λ1(D) ≤ n.

If equality holds, then M is minimal in SN and any eigensection associated to λ1(D) is
parallel.

For the proof we refer to Section 2, in which we consider, more generally, a centrally
symmetric submanifold of Rm equipped with a radial conformal metric; we then obtain
a bound in terms of the minimum distance of M from its center of symmetry.

It is perhaps surprising that the above bound holds for all Laplace-type operators, with
no curvature assumptions. Note that equality implies minimality (which is a property
depending only on the immersion) and also implies the existence of a parallel section,
which of course depends on the bundle E we consider.

For example, if D = ∆ + q is a Schrödinger operator acting on functions, equality implies
that the immersion is minimal and that q is constant. When Mn is an antipodal symmetric
minimal hypersurface of Sn+1 and D is the stability operator, the inequality of Theorem 1
was obtained by O. Perdomo in [Pe], who used it to characterize Clifford tori as minimizers
for the stability index of non equatorial minimal hypersurfaces with antipodal symmetry.

We then focus on the operator D = ∆p, the Laplacian acting on differential forms of
arbitrary degree p. In that case we characterize the equality, and we show that the
absolute maximum for the gap, when p 6= n/2, is reached at exactly one hypersurface:
the unique (minimal) Clifford torus with bp(M) = 1, where bp(M) is the p−th Betti
number of M . Here is the precise statement.

Theorem 2. Let Mn be an immersed hypersurface of the sphere Sn+1, invariant under
the antipodal map. Let ∆p be the Laplacian acting on p-forms. Then one has:

λ2(∆p)− λ1(∆p) ≤ n

for all p = 1, . . . , n− 1. Moreover:

a) If p = n/2 equality never holds.

b) If p 6= n/2 equality holds if and only if Mn is isometric with the Clifford torus:

CLn,p = Sp
(√

p

n

)
× Sn−p

(√
n− p
n

)
,

minimally embedded in Sn+1.

To our knowledge, this is the first characterization of the Clifford tori CLn,p by the spec-
trum of the Hodge Laplacian.
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Remark. We can characterize equality because we will prove in Theorem 9 that the
only minimal hypersurface of Sn+1 supporting a parallel p-form in a degree p 6= 0, n is
the Clifford torus CLn,p. Consequently, if D is any Laplace-type operator acting on the
bundle of p-forms and equality holds in Theorem 1, then M must be isometric to the
Clifford torus CLn,p.

A little additional argument gives the following sharp upper bound for the first positive
eigenvalue of the Laplacian acting on p-forms, which we denote by λ̄1(∆p).

Theorem 3. Let Mn be an immersed hypersurface of Sn+1, invariant under the antipodal
map, and λ̄1(∆p) the first positive eigenvalue of ∆p. We consider the following two cases:

1) p 6= n/2 and bp(M) = 1,

2) p = n/2, p is odd and bp(M) = 2.

Then, under any of the above assumptions, one has:

λ̄1(∆p) ≤ n

with equality if and only if M is the Clifford torus CLn,p.

Note that, in part 2), we assume that n = 4m+ 2 for some nonnegative integer m.

In dimension 2 the first positive eigenvalue of ∆1 is equal to λ̄1(M), the first positive
eigenvalue of the Laplacian on functions. Taking p = 1, from the second part of the
previous theorem we then obtain:

Corollary 4. Let M2 be an immersed surface of S3, invariant under the antipodal map.
Assume that it has genus 1. Then

λ̄1(M) ≤ 2

with equality if and only if M is the minimal Clifford torus CL2,1 = S1

(
1√
2

)
×S1

(
1√
2

)
.

So, the Clifford torus CL2,1 is the unique maximizer for the first eigenvalue of the Laplacian
on functions among all immersed, antipodal symmetric surfaces of S3 with genus 1.

Recall the following well-known conjecture, due to Yau:

− Any embedded minimal hypersurface of Sn+1 satisfies λ̄1(Mn) = n.

On the other hand, a conjecture of Lawson states that:

− The Clifford torus is the only embedded minimal surface of genus 1 in S3.

Corollary 4 shows also that, in dimension 2 and in the antipodal symmetric case, the Yau
conjecture implies the Lawson conjecture. We remark that this fact has been proven in
full generality by Montiel and Ros in [MR].
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1.2 Estimates for a general finite group action

The estimate of Theorem 1 is a special case of a much more general situation. Namely,
assume that the finite group G of order p acts freely by isometries on a compact orientable
Riemannian manifold (Mn, g). Then, we get a uniform upper bound for λp(D) − λ1(D)
which holds for all G−invariant Laplace-type operators; that is, we control a number of
eigenvalues corresponding to the order p of G.

The bound depends only on the metric structure d of M (through a constant C∞(M,d)
called the packing constant of M) and on the displacement of the action of the group:

β(G, d) = inf
x∈M
{d(x, γ · x) : γ ∈ G, γ 6= 1}.

We then prove in Theorem 12 that:

λp(D)− λ1(D) ≤ 16C∞(M,d)

β(G, d)2
(1)

For the definition of the constant C∞(M,d), and for its estimates, see Theorem 12.

If Mn is isometrically immersed in a larger manifold M̄N the same proof shows that, in the
definitions of C∞(M,d) and β(G, d), one can replace the Riemannian intrinsic distance d
by the extrinsic distance dext. Now, the packing constant of a submanifold of RN , for the
extrinsic distance, is uniformly bounded above by 162N , and we see that the estimate (1)
reduces to the following.

Theorem 5. Let φ : Mn → RN be an isometric immersion, invariant under the action
of a group G of order p of isometries of RN . Let D be any Laplace-type operator acting
on sections of a vector bundle on M , which is also invariant under G. Then:

λp(D)− λ1(D) ≤ 162N+1

β(G, dext)2

where dext is the extrinsic Euclidean distance on Mn.

When Mn is a submanifold of SN invariant under the antipodal action by the group Z2,
the displacement constant is simply β(G, dext) = 2 and the upper bound of Theorem 5
depends only on N : this explains the estimate of Theorem 1 although the constant that
we get with this general approach is, quite naturally, not sharp.

Remark. Let us give an intuitive explanation of the bound (1) at least for the order
p = 2. In [CS] it is shown that, for a general manifold with packing constant uniformly
bounded above, the existence of a large gap λk+1(D) − λ1(D), for some k, implies that
any unit L2−norm eigensection ψ1 associated to λ1(D) must concentrate its pointwise
norm in a small neighborhood of a suitable set of (at most) k points of M . In particular,
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if λ2(D)−λ1(D) is large, the measure |ψ1|2dvolg is close to a Dirac measure concentrated
at one point. If there is an isometric action by the group G = Z2, with displacement
bounded away from 0, this is impossible, simply because the norm of ψ1 is Z2−invariant.
Then, we must have a uniform upper bound of λ2(D)− λ1(D).

Remark 6. In this remark we point out that, if one drops our assumption on the existence
of an isometric action with displacement bounded below, then the gap may assume large
values, in different contexts. Let us give a short and non-exhaustive list of examples,
without detailed explanations: the interested reader can consult the given references.

For the Laplacian acting on functions, and for a given compact manifold M of dimension
n ≥ 3, it is possible to construct volume 1 metrics on M with arbitrarily large gap ([CD]),
or even with a prescribed finite part of the spectrum ([Lo]). If n ≥ 4, It is also possible
to produce large gap for the Laplacian on p-forms, 2 ≤ p ≤ n− 2, ([GP]). Large gap also
exists for the rough Laplacian on C-line bundles, see [BCC].

There exist examples of submanifolds of Euclidean space having volume 1 and large gap
for functions, even in codimension 1 ([CDE2], Theorem 1.4). Related to the situation
of Theorem 1, we can also construct a family of submanifolds of the sphere SN with
volume uniformly bounded from below by a positive constant and arbitrarily large gap
for functions (resp. for p-forms): it is enough to use the Nash-Kuiper theorem to embed
the previous examples in a arbitrarily small ball of Euclidean space, and then argue up
to quasi-isometry.

Finally, isometric actions were also considered in [AF] or [CDE1].

2 Sharp estimates in the conformal Euclidean case

Our Theorem 1 is a consequence of the following more general result. Consider an iso-
metric immersion:

φ : (Mn, g)→ (RN , h2geucl),

where h is a radial, positive, non-decreasing smooth function on RN and geucl is the
canonical metric of RN . We assume that φ(M) is invariant under the antipodal map γ,
and that the origin O /∈ φ(M). Then γ induces an involutive isometry on (M, g).

Theorem 7. In the above notation, let D be any Laplace-type operator acting on sections
of a vector bundle on M , which is invariant under γ. Then:

λ2(D)− λ1(D) ≤ n

d2h(d)2
,

where d is the minimum Euclidean distance of φ(M) to the origin.
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a) Assume that N = n+ 1 and that equality holds. Then M is isometric to the sphere of
radius dh(d), and any eigensection associated to λ1(D) is parallel.

b) Assume that N ≥ n + 2 and that equality holds. Then φ factors through a mini-
mal immersion into the sphere SN−1(dh(d)), and any eigensection associated to λ1(D) is
parallel.

Clearly, if (Mn, g) admits an isometric immersion into RN with the canonical metric, then
we take h = 1 and obtain:

λ2(D)− λ1(D) ≤ n

d2
.

If φ : Mn → SN is an isometric immersion, invariant under the antipodal map, we
compose φ with the canonical immersion SN → RN+1, and apply Theorem 7 to this new
immersion. We immediately obtain Theorem 1.

Now view the hyperbolic space as HN = (B, h2geucl) where B is the unit ball in RN and
h = 4/(1 − |x|2)2. If φ : (Mn, g) → HN is an isometric immersion satisfying the given
assumptions then it is easily seen that

λ2(D)− λ1(D) ≤ n

sinh2 d̃
,

where d̃ is the minimum hyperbolic distance of φ(M) to the center of symmetry O.

For the proof of Theorem 7 we need some preliminary notions. These are standard, but
for completeness we decided to prove them explicitly.

2.1 Basic facts about immersions in RN or SN

Consider a smooth immersion φ : Mn → RN . For simplicity of notation, we identify M
with its image φ(M) and endow M with the metric, simply denoted by 〈·, ·〉, induced by
the Euclidean metric of RN .
Let ν = −x be the opposite of the position vector, so that ν = −

∑N
j=1 xj∂/∂xj. We

consider the family of functions given by the restriction to M of

f = 〈V̄ , ν〉

where V̄ is a parallel vector field on RN . These functions are simply the restriction to
M of linear functions on RN . Let V be the vector field on M given by the orthogonal
projection of V̄ on M ; then, we have the splitting

V̄ = V + V ⊥,
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where V ∈ TM and V ⊥ ∈ T⊥M . In what follows, ∇̄ is the Levi-Civita connection in
RN and ∇ the induced connection on M . For any tangent vector X to RN one has
∇̄Xν = −X. As V̄ is ∇̄-parallel, one gets immediately:

∇f = ∇〈V̄ , ν〉 = −V. (2)

The family of unit length parallel vector fields on RN can be identified with SN−1; in fact,
writing V̄ =

∑N
j=1 aj∂/∂xj, we can identify V̄ with (a1, . . . , aN) ∈ SN−1. Let dµ be the

canonical measure of SN−1. Then:∫
SN−1

a2
jdµ =

Vol(SN−1)

N
and

∫
SN−1

ajakdµ = 0 if j 6= k.

Therefore, if we replace the measure dµ by

dµ̄ =
N

Vol(SN−1)
dµ, (3)

we see that, at any point p ∈ RN and for all tangent vectors X, Y at p one has:∫
SN−1

〈V̄ , X〉〈V̄ , Y 〉dµ̄(V̄ ) = 〈X, Y 〉. (4)

Let us now consider an isometric immersion φ : Mn → SN−1, where SN−1 is endowed
with the canonical metric. If ∇̂ is the Levi-Civita connection in SN−1 then, for all vector
fields X, Y tangent to M :

∇̂XY = ∇XY + L(X, Y ), (5)

where L(X, Y ) ∈ TSN−1 is a vector normal to M . L is the second fundamental form of
the immersion and the mean curvature vector H is defined as nH = trL.

Now note that the vector field ν is normal to SN−1; as ∇̄Xν = −X, we see that the
second fundamental form of the canonical immersion SN−1 → RN is simply the identity.
Therefore, for all tangent vector fields X, Y to SN−1 one has: ∇̄XY = ∇̂XY + 〈X, Y 〉ν,
and from (5) we see that, for all tangent vector fields X, Y ∈ TM :

∇̄XY = ∇XY + 〈X, Y 〉ν + L(X, Y ), (6)

where L is the (vector-valued) second fundamental form of the immersion φ : Mn → SN−1.

Lemma 8. Let φ : Mn → SN−1 be an isometric immersion and V̄ a parallel vector field
on RN . Let V be the tangential component of V̄ . If X, Y are vectors tangent to M one
has:

〈∇XV , Y 〉 = 〈V̄ , ν〉〈X, Y 〉+ 〈V̄ , L(X, Y )〉,
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where L is the second fundamental form of φ.
Moreover, if f = 〈V̄ , ν〉 then:

∆f = nf + n〈V̄ , H〉,
where H is the mean curvature vector of φ.

Proof. We first write
〈∇XV , Y 〉 = X · 〈V, Y 〉 − 〈V,∇XY 〉

= X · 〈V̄ , Y 〉 − 〈V̄ ,∇XY 〉

since Y and ∇XY are both tangent to M . As V̄ is ∇̄-parallel, we obtain:

X · 〈V̄ , Y 〉 = 〈V̄ , ∇̄XY 〉,

and the first formula in the lemma now follows from (6). If f = 〈V̄ , ν〉 then ∇f = −V by
(2) and so

∆f = −tr∇2f = tr∇V = n〈V̄ , ν〉+ n〈V̄ , H〉,
as asserted.

2.2 Proof of Theorem 7

The assumption here is that φ : (Mn, g) → (RN , h2geucl) is an isometric immersion,
invariant under the antipodal map γ(x) = −x. The conformal factor h is assumed to be
radial and non-decreasing. As h is radial, γ induces an isometry of (Mn, g). Let D be a
Laplace-type operator acting on the sections of a vector bundle on (Mn, g), also invariant
under γ. We have to show:

λ2(D)− λ1(D) ≤ n

d2h(d)2
(7)

where d is the minimum Euclidean distance of M to the origin, center of symmetry of M .

In this proof, for simplicity of notation, we denote by ∇g the Levi-Civita connection
(on the tangent bundle TM) in the given metric g = 〈·, ·〉g, and by ∇ the Levi-Civita
connection in the metric 〈·, ·〉 induced from the Euclidean metric on RN . In all formulas
below, integration is taken with respect to the Riemannian measure dvolg.
Let ψ be a smooth section of the bundle and Q the quadratic form associated to D:

Q(ψ) =

∫
M

|∇Eψ|2 + 〈Tψ, ψ〉, (8)

If f is a Lipschitz function on M , an easy integration by parts (see Lemma 8 in [CS])
gives:
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Q(fψ) =

∫
M

f 2〈Dψ,ψ〉+ |∇gf |2g|ψ|2. (9)

The theorem is significant only when the first eigenspace of D is simple, and is trivially
true otherwise. So we can assume that V (λ1) has dimension 1. As D commutes with γ ,
we see that γ preserves V (λ1) and acts as an isometry on it.

Fix an eigensection ψ associated to λ1(D). Then ψ is either even or odd with respect to
γ; in both cases, |ψ|2 is an even function. Fix a parallel vector field V̄ on RN and consider
the function f = 〈V̄ , ν〉. As f is odd:∫

M

〈fψ, ψ〉 =

∫
M

f |ψ|2 = 0,

because f |ψ|2 is odd. So the section fψ is orthogonal to ψ for all V̄ , and we can use it as
a test-section for λ2(D). By the min-max principle:

λ2(D)

∫
M

f 2|ψ|2 ≤ Q(fψ),

where Q is the quadratic form defined in (8). Since

|∇gf |2g =
1

h2
|∇f |2 =

1

h2
|V |2

we have, by (9):

(λ2(D)− λ1(D))

∫
M

〈V̄ , ν〉2|ψ|2 ≤
∫
M

1

h2
|V |2|ψ|2,

for all V̄ . We now integrate the above inequality with respect to V̄ on the unit sphere of
RN . At any point x ∈M and for the measure dµ̄ defined in (3) one has, by (4):∫

SN−1

〈V̄ , ν〉2dµ̄(V̄ ) = |ν|2 = ρ(x)2,

where ρ(x) is Euclidean distance to the origin. Moreover
∫
SN−1|V |2dµ̄(V̄ ) = n. Therefore,

by the Fubini theorem:

(λ2(D)− λ1(D))

∫
M

ρ2|ψ|2 ≤ n

∫
M

1

h2
|ψ|2,

and as ρ ≥ d and h ≥ h(d) we get inequality (7).

We now take care of the equality case.

10



Observe that, if equality holds, we must have in particular that∫
M

(ρ2 − d2)|ψ|2 = 0.

Since ψ is a solution of an elliptic equation, the function |ψ|2 cannot vanish on any open
set, and this forces ρ = d on M . Then φ(M) is contained in the sphere SN−1(d), that is,
φ factors through an isometric immersion M → SN−1(d); as h is radial, the metric g is
homothetic to the metric induced from the canonical metric of the sphere.

In what follows we then assume (without loss of generality) that d = 1 and h(r) = 1.

We first prove b). By assumption:

λ2(D)− λ1(D) = n.

The equality assumption also implies that the section fψ, where f = 〈V̄ , ν〉, is an eigen-
section associated to λ2(D) for all V̄ . For any Laplace-type operator D, and any smooth
function f , a straightforward calculation shows that

D(fψ) = ∆f · ψ + fDψ − 2∇E
∇fψ.

As D(fψ) = λ2fψ and Dψ = λ1ψ we then obtain

∆f · ψ − 2∇E
∇fψ = nfψ.

By Lemma 8, ∆f = nf + n〈V̄ , H〉 and ∇f = −V . So:

n〈V̄ , H〉ψ = 2∇E
V ψ. (10)

This equation holds everywhere on M , for all choices of V̄ . Fix a point x ∈ M and any
tangent vector ξ(x) ∈ TxM . Choose V̄ so that V̄ (x) = ξ(x). Then 〈V̄ (x), H(x)〉 = 0
because H is normal to M , and therefore

∇E
ξ(x)ψ = 0.

As ξ(x) was arbitrary, ψ must be parallel at x. As x was also arbitrary, ψ is parallel on
M (in particular, it never vanishes). Then, by (10):

〈V̄ , H〉 = 0

for all V̄ . But this clearly implies that H = 0 on M , hence M is minimal as asserted.

We finally prove a). Assume that N = n+ 1 and that equality holds. Then we have seen
that φ factors through an immersion Mn → Sn. Since Mn has empty boundary we must
have Mn = Sn and φ is just the identity, hence it is totally geodesic. It remains to show
that the eigensection ψ is parallel: but this is a special case of the previous argument.
This ends the proof of Theorem 7.
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2.3 A rigidity theorem

We observe the following rigidity result, which is perhaps of independent interest.

Theorem 9. Let Mn be a (not necessarily compact) hypersurface of the unit sphere Sn+1,
and assume that M supports a non-trivial parallel p-form for some p = 1, . . . , n−1. Then
at each point x ∈M there are only two principal curvatures, precisely

k(x) with multiplicity p

− 1

k(x)
with multiplicity n− p

for some k(x) 6= 0.

Proof. Let N be unit normal vector and let L(X, Y ) be the scalar second fundamental
form of the immersion, defined by:

∇̂XY = ∇XY + L(X, Y )N,

for all vectors tangent to M . The shape operator S is the endomorphism of TM defined
by 〈S(X), Y 〉 = L(X, Y ). Let R(X, Y ) = [∇Y ,∇X ] +∇[X,Y ] be the endomorphism of TM
given by the Riemann tensor of M . The Gauss formula says that:

R(X, Y )Z = 〈X,Z〉Y − 〈Y, Z〉X + L(X,Z)S(Y )− L(Y, Z)S(X),

from which we get, if θ is a 1-form:

R(X, Y )θ = θ(X)Y ? − θ(Y )X? + θ(S(X))S(Y )? − θ(S(Y ))S(X)?,

where ? denotes the dual 1-form of the given tangent vector.
Now R(X, Y ) acts on Λp(TM) as a derivation. We extend the above formula by derivation
and obtain, for any p-form ω:

R(X, Y )ω = Y ? ∧ iXω −X? ∧ iY ω + S(Y )? ∧ iS(X)ω − S(X)? ∧ iS(Y )ω. (11)

We now fix the point x ∈ M and let (E1, . . . , En) be an orthonormal basis of principal
directions of M at x. This means that S(Ej) = ηjEj for all j, where ηj is the associated
principal curvature. Assume that ω is a parallel p-form. Then we have, for all i, j:

R(Ei, Ej)ω = 0. (12)

On the other hand, by (11):

R(Ei, Ej)ω = (1 + ηiηj)Φij, (13)
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where Φij is the p-form:
Φij = E?

j ∧ iEi
ω − E?

i ∧ iEj
ω.

By (12) and (13) we see that:
(1 + ηiηj)Φij = 0 (14)

for all i, j = 1, . . . , n.

We want to show that, if i ≤ p and j ≥ p+ 1, then Φij is a non-zero p-form at x.

In fact, as ω is parallel, and non-trivial, it is non-zero at x. By re-ordering, if necessary,
we can assume that ω(E1, . . . , Ep) 6= 0. If i ≤ p and j ≥ p+ 1, one has:{

E?
j ∧ iEi

ω(E1, . . . , Êi, . . . , Ep, Ej) = ±ω(E1, . . . , Ep)

E?
i ∧ iEj

ω(E1, . . . , Êi, . . . , Ep, Ej) = 0

so that:
Φij(E1, . . . , Êi, . . . , Ep, Ej) = ±ω(E1, . . . , Ep) 6= 0,

as asserted.
We can now prove the final assertion. For all i ≤ p and j ≥ p+ 1 the form Φij is non-zero
and then, by (14):

1 + ηiηj = 0;

setting η1 = k(x) we see that ηj = − 1
k(x)

for all j ≥ p + 1; this in turn implies that

ηi = k(x) for all i ≤ p.

Corollary 10. Let M be a compact, minimal hypersurface of the unit sphere Sn+1 sup-
porting a parallel p-form for some p = 1, . . . , n− 1. Then M is the Clifford torus CLn,p.

Proof. At each point the minimality gives:

pk(x)− n− p
k(x)

= 0,

and then k(x) = ±
√

n−p
p

for all x. If |S|2 denotes the squared norm of the second

fundamental form, we then have |S|2 = n at all points. By a well-known result of Chern,
do Carmo and Kobayashi [CCK] we get that M is a Clifford torus. But the only Clifford
torus supporting a parallel (hence harmonic) p-form is CLn,p and the assertion follows.
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2.4 Proof of Theorem 2

The inequality follows immediately from Theorem 1, so we only need to prove the equality
case. Assume p = n/2. If equality holds, then M is minimal in Sn+1 and has a non-trivial
parallel (hence harmonic) p-form. In particular, λ1(∆p) = 0 and λ2(∆p) = n. By Corollary
10, M = CLn,p. But it is immediate to see that, for p = n/2, CLn,p has p-th Betti number
equal to 2, hence λ2(∆p) = 0, which is a contradiction. Then equality never holds.

If p 6= n/2 and equality holds, then again M must be isometric to CLn,p. Conversely, if
M = CLn,p, a direct calculation using the Künneth formula shows that the first positive
eigenvalue satisfies λ̄1(∆p) = n (see Section 4); as M has p−th Betti number equal to 1,
we have λ1(∆p) = 0 and so λ2(∆p) − λ1(∆p) = λ̄1(∆p) = n and the gap is indeed equal
to n. Hence equality is attained if and only if M = CLn,p.

2.5 Proof of Theorem 3

The case p 6= n/2 is a particular case of Theorem 2. In fact, if bp(M) = 1, then

λ̄1(∆p) = λ2(∆p)− λ1(∆p) ≤ n,

with equality if and only if M is the Clifford torus CLn,p.

Now assume p = n/2, p is odd and bp(M) = 2. The space Hp(M) of harmonic p−forms
is then γ−invariant and two-dimensional. As γ2 = I, a standard averaging argument
shows that there exists a non-trivial harmonic p−form ξ which is either even or odd with
respect to γ: note that then |ξ|2 will be an even function on M . The Hodge ? operator
acts isometrically on Hp(M) and, since p is odd, it satisfies ?2 = −I; so, ?ξ is pointwise
orthogonal to ξ and (ξ, ?ξ) is an orthonormal basis of Hp(M).

For any parallel vector field V̄ on Rn+2, we consider the function 〈V̄ , ν〉 and the test
p−form

φV̄ = 〈V̄ , ν〉ξ.
By our assumptions, 〈V̄ , ν〉|ξ|2 is an odd function on M , hence φV̄ is L2−orthogonal to ξ.
On the other hand, φV̄ is pointwise (hence L2) orthogonal to ?ξ. So, φV̄ is orthogonal to
Hp(M) for all V̄ . We apply the min-max principle to φV̄ and, proceeding as in the proof
of Theorem 1, we obtain

λ̄1(∆p)

∫
M

〈V̄ , ν〉2|ξ|2 ≤
∫
M

|V |2|ξ|2,

for all V̄ . After integrating with respect to V̄ , we arrive at

λ̄1(∆p) ≤ n,

14



and, if equality holds, then M is minimal and the form ξ must be parallel. By Corollary
10, equality implies that M must be the Clifford torus CLn,p. On the other hand, the
calculation in the Appendix proves that CLn,p does satisfy λ̄1(∆p) = n. The proof is now
complete.

3 Estimates in the general case

Let M = (M, g) be a Riemannian manifold with a free isometric action by the finite
group G. We choose a distance function d on M , assumed invariant under the action of
G. The natural choice for d is the usual intrinsic distance dint coming from the Riemannian
structure. However, when M is a submanifold isometrically immersed in a larger manifold
M̄ , we will consider also the extrinsic distance dext on M inherited from the Riemannian
distance on M̄ . Let us be a bit more precise about that. If φ : M → M̄ is an isometric
immersion, define, for x, y ∈M :

dext(x, y) = dint(φ(x), φ(y)).

If φ is an embedding then dext is indeed a distance. In general, dext will only be a pseudo-
distance, that is, dext is symmetric and satisfies the triangle inequality (it might happen
in fact that dext(x, y) = 0 for x 6= y). However dext is dominated by the intrinsic distance
on M :

dext(x, y) ≤ dint(x, y)

for all x, y ∈ M . This fact and the triangle inequality imply that, for any x ∈ M , the
function y → dext(x, y) is locally Lipschitz and |∇dext(x, ·)| ≤ 1.

In both cases, then, the (pseudo)-distance chosen is locally Lipschitz, and has Lipschitz
constant bounded by 1. This is what we need in the proof of our result.

With the chosen (intrinsic or extrinsic) distance d, we consider the triple (M,G, d) and
let

β(G, d) = inf
x∈M
{d(x, γ · x) : γ ∈ G, γ 6= 1},

The invariant β will be called the smallest displacement of the group action.

Our results will be stated in terms of two metric invariants depending only on d.

Definition 11. For r > 0, define Cr(M,d) to be the minimal number of balls of radius r
in (M,d) needed to cover a ball of radius 2r. Then Cr(M,d) is finite for all r. We will
set:

C∞(M,d) = sup
r>0

Cr(M,d), (15)
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assuming that it is finite, and call it the packing constant of the pair (M,d). We can also
define a local packing constant, as follows:

C1(M,d) = sup
0<r≤1

Cr(M,d), (16)

With these notations, we have

Theorem 12. Assume that (M, g) admits a free isometric action by the finite group G
and that the distance d is G-invariant. Let D be any G-invariant Laplace-type operator
on M . Then:

λp(D)− λ1(D) ≤ 16C∞(M,d)

β(G, d)2

and also

λp(D)− λ1(D) ≤ 16C1(M,d)

min{β(G, d)2, 1}
.

Observe that the upper bound depends only on the smallest displacement of the action of
G and the packing constant, both of which are purely metric invariants. Then, the upper
bound is purely metric: it does not depend on the curvatures of (M, g), or the vector
bundle E defining the operator D; in particular, it does not depend on the potential T of
D, as long as it is G−invariant.

Before proving the theorem, we give a few estimates of the packing constants.

• Assume that RicMn ≥ 0. Then C∞(M,dint) ≤ c(n), a constant depending only on n.
It turns out that we can take c(n) = 16n (basically, the packing constant of Rn: see for
example [Zu] Lemma 3.6 p. 230). Consequently Theorem 12 gives the estimate:

λp(D)− λ1(D) ≤ 16n+1

β(G, dint)2
.

• If we only assume RicMn ≥ −(n − 1)K, then we have: C1(M,dint) ≤ c(n,K), where
c(n,K) is the packing constant of the hyperbolic space n-space with curvature −K, which
can be computed in terms of the hyperbolic functions. Up to a numerical constant, c(n,K)

behaves like 22(n−1)e(n+1) 7K
4 (see [Zu]). Therefore:

λp(D)− λ1(D) ≤ 16c(n,K)

max{β(G, dint)2, 1}
.

• If Mn is a submanifold of M̄N , and one chooses the extrinsic distance, using the
triangle inequality one shows easily that C∞(M,dext) ≤ C∞(M̄, dint)

2. In particular, if
the ambient manifold is RN with its Euclidean distance, then we have C∞(M,dext) ≤ 162N

and we obtain

λp(D)− λ1(D) ≤ 162N+1

β(G, dext)2
.
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3.1 Proof of Theorem 12

We prove the theorem for the packing constant C = C∞(M,d); the proof for the other
constant C1(M,d) is basically the same, and we omit it.

We fix a unit L2-norm eigensection ψ associated to the first eigenvalue λ1(D). If f is a
Lipschitz function then, by (9), the Rayleigh quotient of the section fψ is

R(fψ) = λ1(D) +

∫
M
|∇f |2|ψ|2∫
M
f 2|ψ|2

. (17)

So, we can control the gap λp(D)− λ1(D) using test-sections of type fψ.

We proceed as follows. Consider the measure µ = |ψ|2dvolg, so that

µ(A) =

∫
A

|ψ|2.

Let β = β(G, d) be the smallest displacement of the G−action and set

α = sup
x∈M

{
µ(B(x,

β

4
))

}
.

Fix a positive number ε < α. Then, there exists x1 ∈M such that

µ(B(x1,
β

4
)) ≥ α− ε ≥ µ(B(x,

β

4
))− ε

for all x ∈ M . By the definition of the packing constant C, any ball of radius β/2 is
covered by C balls of radius β/4. By the property of x1 we then get

µ(B(x1,
β

2
)) ≤ Cµ(B(x1,

β

4
)) + Cε (18)

Define the plateau function, depending only on the distance to x1:

f1 =


1 on B(x1,

β

4
),

0 on the complement of B(x1,
β

2
),

linear on the annulus B(x1,
β

2
) \B(x1,

β

4
).

As the distance function d is Lipschitz, f1 is Lipschitz; moreover f1 is supported on
B(x1,

β
2
) and |∇f1| is bounded above by 4/β because |∇d| ≤ 1. Then, by (18):∫

M

|∇f1|2|ψ|2 ≤
16

β2
µ(B(x1,

β

2
)) ≤ 16C

β2
µ(B(x1,

β

4
)) +

16Cε

β2
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On the other hand, one has immediately
∫
M
f1

2|ψ|2 ≥ µ(B(x1,
β
4
)). From (17) we get

R(f1ψ) ≤ λ1(D) +
16C

β2
+

16Cε

β2(α− ε)

Write G = {γ1 = 1, γ2, ..., γp} and consider the sections:

φ1 = f1ψ1, φ2 = γ2 · φ1, . . . , φp = γp · φ1.

By the definition of β, they are disjointly supported because the distance is G−invariant.
As G acts by isometries on the vector bundle, they have the same Rayleigh quotient,
hence

R(φj) = R(φ1) ≤ λ1(D) +
16C

β2
+

16Cε

β2(α− ε)
for all j = 1, . . . , p. A standard min-max argument now shows that

λp(D) ≤ λ1(D) +
16C

β2
+

16Cε

β2(α− ε)
.

We let ε→ 0 and get the assertion.

4 Appendix: spectrum of Clifford tori

Proposition 13. Let M = Sp
(√

p

n

)
, N = Sn−p

(√
n− p
n

)
and let λ̄1(∆p) be the

first positive eigenvalue of the Laplacian acting on p−forms of the Riemannian product
M ×N = CLn,p. Then

λ̄1(∆p) = n.

For the proof, we first assume p 6= n/2.

Let Specj denote the spectrum of the Laplacian acting on j-forms. The Künneth formula
says that:

Specp(M ×N) = ∪pj=0

(
Specj(M) + Specp−j(N)

)
.

By Hodge duality we can assume that p ≤ n− p; since we are in the case p 6= n/2 we can
then assume p < n− p. Then

Specp(M ×N) = A ∪B ∪ C, (19)

where 
A = Spec0(M) + Specp(N)

B = Specp(M) + Spec0(N)

C = ∪p−1
j=1

(
Specj(M) + Specp−j(N)

) (20)
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Now

Spec0 (Sm(a)) =
1

a2
Spec0(Sm) =

1

a2
{0,m, . . . }.

Since M = Sp
(√

p

n

)
is p−dimensional we have

Spec0(M) = Specp(M) = {0, n, . . . }.

Similarly one gets Spec0(N) = {0, n, . . . } and then, if λj denotes the j−th eigenvalue of
the indicated set:

λ1(B) = 0, λ2(B) = n. (21)

Now, it is known that, if j 6= 0,m, then the first eigenvalue of Specj(S
m) is (see for

example [IT]):

λ1(Specj(S
m)) = min{j(m− j + 1), (j + 1)(m− j)}.

An easy argument shows that the right-hand side is bounded below by m for all j =
1, . . . ,m− 1. We then have, in that range of j:

λ1

(
Specj(S

m(a))
)
≥ m/a2. (22)

By the definition of N and (22) one has λ1(Specp(N)) ≥ n which implies that

λ1(A) ≥ n. (23)

Finally, if j < p we get λ1(Specj(M)) ≥ n; since p < n − p we also have p − j < n − p
and so λ1(Specp−j(N)) ≥ n. Therefore

λ1(C) ≥ 2n. (24)

Collecting (19), (21), (23), (24) we obtain

λ1(Specp(M ×N)) = 0, λ2(Specp(M ×N)) = n

and the first positive eigenvalue is indeed equal to n.

We now assume p = n/2. In that case we have M = N ; the first three eigenvalues of
A∪B are 0, 0, n, and the eigenvalues of C are bounded below by 2n. The assertion follows
as well.

Acknowledgments

The authors would like to thank A. Girouard for useful discussions and for interesting
comments on our manuscript.

19



References

[AF] Abreu, M.; Freitas, P. On the invariant spectrum of S1-invariant metrics on S2.
Proc. London Math. Soc. (3) 84 (2002), no. 1, 213-230.

[B] Bérard, P. From vanishing theorems to estimating theorems: the Bochner method
revisited. Bull. Amer. Math. Soc. 19 (1988), 371-406.

[BCC] Besson, G.; Colbois, B.; Courtois, G. Sur la multiplicité de la première valeur
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[GM] Gallot, S.; Meyer, D. Opérateur de courbure et laplacien des formes différentielles
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