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Abstract—We presentseveralobservationson a novel method
for the evaluation of the internal losspropertiesin semiconductor
lasers. The method we use involves Fourier analysis of the
Fabry–Perot mode spectrum when operating the device below
lasing thr eshold. The observation of various structural features
in the Fourier transform domain allows us to extract important
information on the laser cavity. As one example, the amount of
cavity propagation loss/gain,or net gain, can be derived fr om the
decayrate of harmonics of the Fourier spectrum. A comparison
betweenexperimentaland calculatedgain versuswavelengthdata
for lasers fabricated in the AlGaAs, AlGaInP, and AlGaInN
material systemswill be given. As a secondexample,this method
also allows the identification of the density and strength of
intracavity scattering centers. This is an important capability
for the fabrication of blue diode lasers in the gallium-nitride
material system.

Index Terms—Emission spectrum, Fourier analysis,gain spec-
trum, laser cavity, semiconductor lasers.

I. INTRODUCTION

T HE characterizationof lasercavitiesin termsof internal
lossor gain is a researchtopic of ongoingrelevanceand

importance,especiallywith regardto the developmentof new
lasermaterialsand designsin the short-wavelengthrangeof
the spectrum.An elegantmethodto determinethe net gain
is basedon a measurementof the Fabry–Perot(FP) fringe
contrast in the spectrum[1]–[3]. The contrastis definedas

). This method,commonly
referredto astheHakki–Paolimethod,is very effectivefor low

cavitieswhen is significantlylessthanone.However,this
methodstartsto beinaccuratefor higher -factorcavitieswith

approaching1, in which casethe spectrumevolvesinto a
seriesof Dirac-deltafunctions.

In this paper,we showa newmethodto measuretheoptical
gain of semiconductorlaser cavities. The detailed analysis
of Fourier transformedsubthresholdspectra[4], [5] allows
us to determinethe cavity propagationloss/gain which is
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synonymouswith the net gain. The Fourier transformation

of the FP fringe pattern results in a spectrum containing
the fundamentalFP frequency,related to the cavity length,
plus harmonicsthereof [6]. As will be shown below, the
wavelength-averagedcavity propagationloss/gainis relatedto
the ratio betweenthe Fouriercoefficientsof adjacentharmon-
ics [7], [8]. Therefore,by knowing the internal cavity losses
andusingthepropagationloss/gain,or themirror reflectanceas
fitting parametersto matchtheoreticallytransformedspectrato
experimentaldata,we can,for instance,obtaina measurement
of the gain spectrumor of the transparencycurrentlevel. For
a certainclassof deviceslike high- -cavity lasers,theFourier
transformmethodis superiorto the FP contrastmeasurement
method[1], [2] in therespectthatit continuesto beusefulas
approachesunity and in fact is limited only by the resolution
of the spectrometerused. In addition, if the spectrometer
resolutionis sufficiently high, it potentiallyallows the correct
determinationof the FP fringe contrasteven if both TE/TM
mode families are presentin the spectrum.In such a case,
the beatingbetweenthe two modesetswould allow the use
of the Hakki–Paolimethodonly by performingtwo separate
measurementsof the TE/TM mode spectra.Furthermore,by
investigatingthe part of the transformedspectrumwhich cor-
respondsto opticalpathlengthsshorterthanthecavity length,
it is possibleto obtainimportantinformationaboutthequality
of theopticalwaveguide.This is critical in thenitridesbecause
their large lattice mismatchto availablesubstratescausesthe
material to crack or to form hexagonalpits and nanopipes,
leadingto severescatteringlosswithin thelasercavity [9]. The
useof Fouriertransformsof the spectrumrevealsinformation
about the spatial distribution of scatteringcentersalong the
laser cavity in a much more timely way than transmission
electronmicroscopy[10], [11]. An additional featureof our
techniqueis that it works equally well on optically pumped
samples[12]–[15] andon electricallypumpedones[16], [17].

In this paper, we will first provide physical models for
the techniquewhich we haveused.We will then developthe
theoreticaltools which arenecessaryfor the understandingof
Fourier transformsof semiconductorlaser emissionspectra.
We will therebygain a deepunderstandingabout the nature
of the variousfeaturesin a transformedspectrumandprepare
ourselvesfor interpretationsand limits of this method.In the
third part, we show the experimentalsetupwhich was used
to carry out the experiments.The fourth sectionof this paper
describesexperimentalresultswe obtainedfrom infrared,red,
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Fig. 1. Intensity versus frequency spectra and their Fourier transforms for light emitters with three representative cavity configurations.

and blue light emitters of different kinds. In the conclusions,
we will give an outlook on future experiments and how they
might influence ongoing semiconductor laser research.

II. PHYSICAL MODEL

The physical model for our method is based on the Fourier
transform relationship between the frequency response of a
system and the time-domain impulse response, or Green’s
function, of that system. When a laser cavity is excited below
threshold, the spectrally broad emission observed is equivalent,
in the time domain, to stimulating the cavity with a delta-
function impulse. This is equivalent to stating that the Fourier
transform of a broad Gaussian-like frequency response is
a narrow Gaussian-like temporal response. In Fig. 1(a), we
show the Fourier transform pair corresponding to an LED-like
emission with no cavity resonance.

If this same LED-like broad emitter is placed into a low-
-resonant cavity as in Fig. 1(b), we will observe a weak

modulation superimposed on the broad LED emission in the
frequency domain, which will correspond, in the transform
(time) domain to a series of delta functions with rapidly
decreasing amplitudes. The separation between these peaks
in the time domain corresponds to the round-trip time of the
resonant cavity, and the decay of these peaks is related to the
averaged round-trip loss in the cavity.

As we decrease the loss in the cavity, or increase the-
factor of the cavity as in Fig. 1(c), we see stronger interference
with sharper peaks in the frequency domain. Equivalently,
in the transform domain, we see a more slowly decaying
series of delta functions corresponding to the lower round-
trip loss in the laser cavity. As a result, we would expect that
by performing a Fourier transform analysis on subthreshold
laser emission at varying currents, we can extract information
regarding the losses in the laser cavity.

It should be mentioned that throughout this paper, we will
show spectra which, in the time domain, extend to both
negative and positive infinity. This is an apparent violation
of causality, in that the response to an impulse cannot appear

in time before the appearance of the impulse itself. It is the
result of nonrigorous treatment of the complex nature of the
true impulse response function. Causality would dictate that
the frequency-domain information, which we measure in a
spectrum as purely real, must, in fact, consist of a real and
imaginary part which are a Hilbert transform pair [18]. For
the purpose of the analysis that we undertake here, however,
no new information is provided by the Hilbert transformation.
The reason why we see in the time-domain harmonic peaks
for both positive and negative times is that we have omitted
the phase information in the original intensity versus frequency
spectrum. However, since we know that the transform of a real
function, which fulfills causality in the time domain, consists
of a real and imaginary function which are Hilbert transforms
of each other, it seems to be quite possible to construct the
missing phase information from the measured intensity versus
frequency spectrum. Therefore, in this paper, we will forego
Hilbert transformation at the expense of symmetric noncausal
impulse responses.

The true power of the transform analysis, and the time-
domain picture, is appreciated when we consider a cavity
containing a perturbation, such as a crack or some other
scattering center. In this case, the frequency-domain emission
spectrum will exhibit amplitude modulations which, if suffi-
ciently simple, will appear as beat frequencies superimposed
on the spectrum. In the transform domain, these will be evident
as temporal features at times other than integral multiples of
the cavity round-trip time. The position of these peaks relative
to the cavity round-trip peaks will contain information on the
position of the perturbation within the cavity. This is shown
schematically in Fig. 2.

Thus, it is seen that the ability to excite a resonant cavity
with a broad band LED-like spectrum is in many ways
equivalent to being able to excite that cavity with an extremely
short (and in practice nontrivial to generate) probe pulse.
Performing a Fourier transform on the modulated spectrum
is therefore equivalent to watching the evolution of response
pulses to this effective probe pulse. This reveals the internal
structure of the resonant cavity.
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Fig. 2. Effect of an intracavity reflection on the Fourier transformed spec-
trum. The additional peak pairs due to the intracavity reflection are marked
by arrows.

III. T HEORY

We will now develop a rigorous analysis of the relationship
between the frequency-domain and time-domain responses. In
so doing, it is important to choose the appropriate pair of
Fourier transform variables. Although we usually measure,
in an experiment, the intensity as a function of wavelength,
it is much more convenient to perform the mathematical
analysis based on intensity versus wavenumber data, I(),
where . This will ultimately provide us with a more
direct relationship between spectral frequency and time. When
doing Fourier transforms on these data, we obtain intensity
versus optical path length, information. The conjugate
variables are, therefore, wavenumberand optical path length

. These variables can be related to another pair of physically
meaningful transform variables, optical frequency ,
and transit time , with being the speed of light. We
choose to develop this mathematical formalism based on the
former pair.

For generality, we will derive an analytical expression for
the Fourier transform of an active or passive FP resonator
spectrum. If the considered FP resonator has a lengthand
consists of a piece of material with parallel facets, refractive
index , and absorption index, which both do not depend on
the wavelength or wavenumber, then the transmitted electrical
field amplitude experiences multiple reflections between the
facet mirrors. It can be calculated as a geometrical series as
given by

(1)

where is the wavenumber,
is the power reflectance of the facets,

and ) is the phase change of
the light due to the facet reflection. Obviously, the expansion
into a converging geometrical series fails if ;
for active resonators, this means that the expansion works
only below lasing threshold. For the following calculations,
we assume that there is no dispersion in the refractive and

the absorption index within the wavelength range of interest.
Furthermore, we consider only incidence angles of , a
relatively narrow wavenumber range (

), and small absorption index values ( ). As a result
of these assumptions, we can replace in (1) the variable term

) by the constant term ). From
(1), we can thus calculate the transmitted intensity according
to (2), shown at the bottom of the page.

Especially for high values of the finesse, defined by
, this function can be recognized as an

Airy function. With the above assumption , it follows
that , and then (2) simplifies to

(3)
As shown in the book of Hecht and Zajac [19], a single
transmission maximum of the Airy function has a shape which
is approximately a Lorentzian lineshape. It can be shown more
generally that the Airy function is in fact identically equal to
the summation of an infinite series of Lorentzian functions
with a constant separation [20]. As this is a critical identity for
the analysis that follows, we present a rigorous mathematical
derivation here.

Starting from (2), we can do some rearrangements; (3) then
becomes

(4)

where , and, in addition,

and

(5)

These constants can be written somewhat simplified as

and

(6)

By using complex functional theory arguments, which will be
outlined below, one can show that the function shown in (3)
is identical to a new one consisting of an infinite series of
Lorentz peaks, as represented by

(7)

where the parameter is determined through the relation
, which is identical to

(2)
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. The mathematical way to prove that (4)
and (7) are the same is to consider their respective complex
functional natures as follows.

A complex function is said to be analytic or holomorphic if
its derivative exists at each point of the region; in addition, it
is said to be entire if the derivative exists in the entire complex
plane. Meromorphic functions are holomorphic except for the
presence of poles. Under the above definitions, in (4) and

in (7) are meromorphic functions in the complex plane.
When defining parameter in the above way, the functions

and have the same poles, and at these poles,
they have identical singularity parts. As a result of this, the
difference function no longer has any
poles; ) is therefore an entire function. In addition, both

and have the same periodicity , and both
approach zero regularly when the imaginary part goes toward
infinity, meaning that they both are bound. Therefore, their
difference is a bound function as well. The theorem
of Liouville states that the only entire function which
is bound in the entire complex plane is the constant function

constant. Since the function vanishes when its
imaginary part approaches infinity, this constant must be zero.
Therefore, and must be, in fact, identical.

The most important consequence of this is that the series of
Lorentz functions is much easier to Fourier-transform
than the Airy function . Since we have outlined the
mathematics to perform the Fourier transform of in [17],
we will omit this part here and give only the final result

(8)

In contrast to the tedious derivation of (8), the Fourier trans-
form of is very straightforward if one realizes that
is a convolution of an infinite series of functions and a
Lorentz function. The desired transform is then given by the
product of the series of functions and the transform of the
Lorentz peak, which is a symmetric exponential decay function

(9)

Here, the conjugate variable is defined via .
This function consists of an infinite series of functions,
which are arranged symmetrically to the origin. Since we are
interested only in the amplitude of this complex function, we
can omit the phase factor, which is due to the translation
along the axis. We get therefore a constant ratio between
the amplitudes of adjacent harmonics, and this ratio is given
by the following relation:

(10)

Although the complex functions in (9) and (10) consist—in
general—of amplitude and phase, we will plot the amplitude

only for the following considerations. According to (9), the
transformed spectrum consists of a series of peaks which
decay exponentially. The position of these peaks is given by

. For , we get first-order peaks which
correspond to the full cavity length, and for , higher
order harmonics are obtained. We will use units ofm for the
optical path length . If there is an intracavity reflection which
divides the main cavity into two subcavities, ,
then the Fourier transformed emission spectrum will reveal
peaks at positions and , which add up to the position of
the full cavity length peak at . As already outlined
in the paragraph about the physical model, this allows the
identification of cracks or other types of defects in the laser
cavity.

Since, in (10), the facet reflectance and the cavity length are
usually known, the only free parameter is the absorption coef-
ficient , which is related to the cavity propagation loss/gain.
One can, therefore, determine a wavelength-averaged cav-
ity propagation loss/gain value when performing a Fourier
transform on a subthreshold emission spectrum.

For a semiconductor laser, it is further desirable to extract
information about the wavelength dependence of gain from the
emission spectrum. For the more complicated case in which
the refractive index is still dispersion-free, but the absorption
index is no longer a constant , we have to start
from (7) again and do some modifications. We convinced
ourselves that (7) describes the Airy function as well as (3).
Furthermore, we notice that the former constant parameter
in (7) is now also a function of wavenumber . Except
for this, is defined in exactly the same way as before via

. Obviously, occurs
both inside the infinite sum, namely as a width parameter
of the individual Lorentz peaks, and in front of it, as an
envelope or weighting function for the series of Lorentzian
peaks. If we assume that a subthreshold laser spectrum can
be approximated by a series of equal-width Lorentz peaks
multiplied by a wavenumber-dependent weighting function

, then (7) becomes

(11)

where the weighting function is defined via

(12)

Because of the approximation introduced in (11), we can
now proceed with the Fourier transform, which yields

(13)
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Fig. 3. Absorption loss in an active resonator forR = 0%; 10%;

20%; 30%, and60% mirror reflectance (solid dots), and mirror reflectance
of HAR. The arrows show how to figure the mirror reflectance given the
absorption coefficient and vice versa.

where is the Fourier-transformed weighting function.
From (13), we are able to obtain the wavelength-averaged
propagation loss/gain, which is related to the exponential
decay rate of the higher order harmonics. In addition, we can
extract the shape of the gain curve by inverse-transforming the
transformed weighting function and then solving (12)
numerically for and , respectively. Usually, the
measured laser spectrum is not normalized, meaning that the
weighting function is multiplied by a constant prefactor.
This ambiguity can be removed by measuring the peak gain
value and adjusting the prefactor until the gain curve maximum
meets this value. The peak gain value itself is being determined
by Fourier-transforming a narrow spectral window in which
the gain can be assumed constant.

The steps to produce such a gain spectrum using the Fourier
transform technique are thus as follows. First, the emission
spectrum is measured in the desired wavelength range. Then
two Fourier transforms are done; one of the full spectral
width and one of a narrow window (1 nm) in the central
part of the spectrum which contains the gain maximum. From
the full range transform, we take the (complex) data around
and including the first harmonic peak. These data undergo
an inverse Fourier transform in order to yield the weighting
function . Starting from the weighting function, one
solves (12) numerically and calculates . The boundary
condition to meet the maximum gain value, as determined
by the narrow window transform, can always be fulfilled
by choosing an arbitrary prefactor in front of the weighting
function.

According to what we derived in (1), we present in Fig. 3 a
nomograph which reveals the relationship between mirror loss,
absorption loss, and the harmonic amplitude ratio (HAR). The
nomograph in Fig. 3 can thus be used, with measured HAR,
to deduce the absorption coefficient, given the mirror power
reflectance or vice versa. The advantage of this method is
that it can be used for both low and high finesse resonators.
This is mainly because of the Fourier transform process
containing information on the overall shape of the FP fringe
pattern instead of only considering their contrast (lowlimit)

Fig. 4. Gain curves obtained from a simulated laser emission spectrum using
the Hakki–Paoli method and the Fourier transform method. The initial gain
curve which was used to calculate the emission spectrum is also shown
(labeled “correct gain curve”).

or their peak width/separation ratio (high limit). Assuming
an experimental spectral resolution of Å, and the
mode separation of a typical blue light emitter ( Å),
we are able to determine classically a resonator finesse of

. Since the relevant information of
the spectrum is in fact the shape of the transmission peaks
rather than their width and separation, it is likely that using the
same experimental setup as described in the next section and
the Fourier transform-based measurement technique should
enable us to evaluate even higher finesse FP resonators very
accurately.

In Fig. 4, we show the results of using a simulated gain
curve to generate a simulated emission spectrum using (3), and
from this simulated emission spectrum extracting the inferred
gain spectrum using both the Hakki–Paoli technique and the
Fourier transform technique of this work. This provides a
means to the results given by the two techniques. It is evident
from this figure that the Hakki–Paoli method determines the
gain very accurately if the constant offset of the spectrum is
exactly known. Using the FT method gives a slight overes-
timation of the gain in the central part of the spectrum and
an underestimation at the edge of the wavenumber range.
These errors are mainly due to the assumption of having
only one full-width at half-maximum (FWHM) for all cavity
resonances. However, the features in the overall shape of the
gain curve are well represented.

Concerning experimental limitations on both the
Hakki–Paoli and Fourier transform methods, we would
like to point out that Hakki–Paoli works very nicely as
long as the spectrometer resolves the modes sufficiently
well. However, there are principal limitations if the fringe
visibility becomes close to one. Even small baseline shifts
can introduce large errors in the calculation of the gain curve
once this point is reached. In addition, as soon as the fringe
visibility is essentially one, Hakki–Paoli does not work any
more, even if a better spectrometer is used. For the Fourier
transform method, since it measures the width and the shape
of the fringes rather than their visibility, a better spectrometer
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always helps to make the determinationof the gain curve
more accurate.Also, a baselineshift does not hurt at all
becausethe dc componentof the spectrumcollapsesinto the
zeroeth-orderharmonicpeak.

IV. EXPERIMENTAL SETUP

We have collected experimentaldata with this technique
usingboth electrically injectedandoptically pumpeddevices.
The electrically injected deviceswere probe-testedat room
temperature.Broad-areadeviceswere testedin bar form and
under pulsed conditions (800-ns pulse length, 0.08% duty
cycle),whereastheinfraredsingle-modelaserswerebondedas
individual deviceson copperheatsinksandoperatedunderCW
conditions.In bothcases,theemittedlight wascollectedwith a
microscopeobjective(magnification , numericalaperture
0.95) and focusedonto a quartzfiber which fed onto the 50-

m-wideslit of a high-resolutiongratingspectrometer(SPEX,
1.26 m focal length, 0.25 Å spectralresolution,
lines/mm). Light detection was accomplishedby a 1024-
elementarrayphotodetector.Usingthis configuration,spectral
measurementsof a 10-nmwavelengthrangewith a theoretical
resolutionof 0.1 Å could be performed.Due to the pulsed
operationof theredlaserdiodesandthebluelasersandLED’s,
it wasnecessaryto collect the light of thesedevicesfor up to
30 s. Although this collection techniqueis very convenient
andsufficiently accuratefor mostapplications,the noiselevel
of this systemis higher thanwhat is in principle achievable.

Theexperimentalsetupfor theoptically pumpedGaN-based
deviceswas very similar to our earlier experiments[12]. It
relied on the pulsedemissionof a 337-nm N laser, which
wasfocusedto a 100- m-wideand4-mm-longstripe.In order
to measureoutput intensityversuspumpintensity curves,we
attenuatedthe pump beamwith an appropriatenumberof 1-
mm-thick glass slides which acted as neutral density filters
for the laser emissionwavelength.The emissionof the
blue laser was then collectedby a microscopeobjective, in
the samemanneras describedabove.

V. MEASUREMENT RESULTS

A. RedBroad-Area Lasers

In order to show how well this simple analysis applies
to experimental data, we present here spectral measure-
mentsof GaInP–AlGaInP-basedred broad-areadiode lasers
[21], [22] which will be comparedwith calculations.The
laser material was a conventionalred laser structure with
500-nm-thick Al In P cladding layers, a 240-nm-thick
(Al Ga In P waveguide core with an 8-nm-thick
GaInP quantumwell in the center. It was grown on a
misoriented GaAs substrate by metalorganic chemical vapor
deposition (MOCVD). The emission wavelength of these
devices was 670 nm, corresponding to a Ga mole fraction
of 0.4 in the alloy composition GaIn P of the quantum
well. After deposition of 50-m-wide Ti–Au stripes to form
broad-area p-contacts, and Au–Ge n-contact metallurgy,
450- m-long laser bars were cleaved from the material.

Fig. 5. High-resolutionlaserspectrumof a redlaserat 0:933 �Ith. Theinset
showsFourier transformof this spectrum.

In this paper,we measuredspectraof a red broad-arealaser
at four different injection currents(120, 130, 140, and 150
mA) correspondingto 0.8,0.867,0.933,and . A typical
emissionspectrumis shownin Fig. 5; it showsan FP mode
spacing of 1.1 Å, correspondingto 450- m cavity length.
This spectrumwas obtainedat an injection current of 140
mA (0.933 ). The numericalFourier transformof this
spectrumis shown as an inset of Fig. 5. There is a main
peak at m, correspondingto the cavity length,
and several smaller peaks at integer multiples of . The
presenceandthe slow decayrateof thesepeaksindicatethat
the -factor of the cavity is alreadyhigh, and the shapeof
the individual FP modesis closer to a seriesof Dirac-delta
functionsthanto a sine-function.Moreover,whenchoosinga
logarithmic scalefor the axis, thereappearsto be a unique
ratio betweenthe height of adjacentpeaksin the transform,
i.e., the peaks of the harmonicslie on a straight line. In
order to extract the peakgain value of the device,we chose
a small wavelengthwindow of only 0.5-nm width for the
actualtransform;this narrowspectralrangetransformsinto a
substantialbroadeningof the harmonicpeaksin the transform
domain. In Fig. 6, we comparethe gain curve for 140 mA
obtainedby a Hakki–Paoli analysiswith the gain spectrum
asdeterminedwith our method.The two methodsagreevery
well on the long-wavelengthshoulderof the spectrum.Some
deviationsare visible on the short-wavelengthside,probably
becauseof the neglecteddispersioneffects in the FT method.

In orderto extractthepeakgainvaluesat differentinjection
currents,we measuredthe HAR for eachcurrentlevel and
in a narrow wavenumberwindow and determinedthe cavity
propagationloss/gainby usingtheformula

. The facet reflectivity is known from the literature
[23]. For this particular device, the threshold current was
roughly at 150 mA. As mentioned in the theory section, the
analysis does not allow the extraction of the propagation loss
at threshold. For the investigated injection currents (120, 130,
140, and 150 mA), we determined loss/gain values of4.05,
1.43, 7.48, and 11.79 cm, respectively. These values are
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Fig. 6. Comparison between gain curves obtained with the Hakki–Paoli and
the Fourier transform methods for a 450-�m-long red broad-area laser.

Fig. 7. Cavity propagation loss/gain versus injection current for a
450-�m-long red broad-area laser. The fitted line assumes a logarithmic
gain/current behavior.

represented by dots in Fig. 7. The dashed line is a fit of the
curve through these points, where

cm is known from an independent cavity length
study [24]. The values we obtain when performing this fit are

mA and cm . The injection current
is called the transparency current level. At this current, which
was determined to be at 107 mA, there is no gain in the laser
cavity; it is thus characterized by .

B. IR Laser Devices

The IR lasers tested with our technique were buried het-
erostructure lasers with a single-mode waveguide defined by
impurity-induced layer disordering [25]. The lasers have a
cavity length of 260 m and typical threshold currents of
around 12 mA; the emission wavelength is 840 nm. These
devices show, at least at certain pump levels below threshold,
TE/TM- polarized longitudinal mode families of comparable
intensity. Although we were able to distinguish between their
slightly different refractive indices, it was not possible to re-
solve the resulting twin peaks in the transform unambiguously.
Since the refractive index difference is only on the order of

Fig. 8. Emission spectrum of an IR laser operated at 9 mA injection current.
The TE/TM mode families are distinguishable.

2.5%, a resolution of at least 0.1̊A is required in order to
see clearly the twin peaks in the transform. For the first-order
twin peak, this is, because of the width of the individual peaks,
almost impossible. At higher pump levels, where higher order
harmonics become stronger, the TM peaks are suppressed by
almost an order of magnitude, which makes it again very
difficult to resolve TE versus TM structure. At lower pump
levels, however, the higher order harmonics decay too fast and
therefore disappear in the noisy background. Given both the
narrow wavelength window and the small difference in mode
spacing, we were not able to distinguish the two peak families
in the Fourier transform. However, we could measure the peak
gain value with the Fourier transform method, although the
two mode families being present at the same time prevented
us from correctly determining the fringe visibility required for
the Hakki–Paoli method.

We show in Fig. 8 the spectrum and in Fig. 9 three gain
spectra for representative current levels of such a device. The
blue shift of the gain peak at increasing injection current levels
in Fig. 9 is characteristic for band-filling effects. In Fig. 10, we
present the propagation loss/gain values obtained from HAR
measurements on transformed emission spectra. We measured
the propagation loss/gain in current steps of 0.5 mA from 8
up to 11.5 mA. Again, from an independent measurement of
the absorption loss, we set cm [26]. The fit through
these points, similar to Fig. 7, results in mA, and

cm .

C. Blue LED’s

In this class of devices, we analyzed the emission spectrum
of an AlGaInN double-heterostructure which is grown on
a 100- m-thick sapphire substrate. The 5-m-thick epitaxial
layers have an average refractive index of 2.51; the refractive
index of sapphire is 1.77. Due to the reflections at the GaN
surface, the GaN–sapphire interface, and the sapphire surface,
three different FP cavities were formed. However, only two
of them show up as closely spaced peaks in the Fourier-
transformed emission spectrum of this device. The third peak
is too close to the origin to be resolved, mainly because of the
large mode spacing ( nm) of the AlGaInN cavity.
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Fig. 9. Gain curves for three different current levels of a 260-�m-long IR
laser. The curves are measured using the Fourier transform technique.

Fig. 10. Cavity propogation loss/gain versus injection current for a
260-�m-long IR single-mode buried heterostructure laser. The fitted line
assumes a logarithmic gain/current behavior.

A typical emission spectrum and its Fourier transform are
shown in Fig. 11. By extracting a HAR of 0.1, and assuming
an average mirror reflectance of 10%, an averaged cavity
propagation loss of approximately 1 cmcan be found. This
assumes that the cavity loss in this case is entirely due to
distributed cavity loss. It is also possible, however, that in this
case, scattering losses at the surfaces are also high, resulting
in discrete lossy planes at, for example, the GaN–sapphire
interface. This example shows the danger of assuming that the
presence of pronounced FP modes indicates that a device is
close to threshold. In the example, the device has just reached
the transparency condition ( ) and might still be far from
threshold.

D. Pits and Cracks in Blue Optically Pumped Lasers

For these experiments, we used undoped MOCVD-grown
samples with a 4-m-thick GaN buffer, a 500-nm AlGaN
lower clad, a 240-nm GaN waveguide with five InGaN QW’s,
and a 50-nm-thick upper clad on top. We investigated both
samples where cracks were visible and samples in which we
did not expect cracks. The 510-m-long laser cavities were

Fig. 11. Emission spectrum of a blue GaN LED. The inset shows the Fourier
transform of the spectrum. The twin peaks are due to multiple reflections at
the GaN–sapphire interface.

formed by two polished facets and a high reflectivity (HR)
Al-mirror on one side ( %). A 5- m-wide and 300-
nm-deep groove was dry etched into a sample that we did
not expect to be cracked. The etched groove was oriented
at a shallow angle to the emitting facets and divided the
main cavity into two shorter subcavities of variable length.
At position A, there was no etched groove. At a different
position B, the two subcavities were 200 and 310m long,
respectively. At a position C, they finally measured 240 and
270 m.

Fourier transforms of the laser spectra of the devices at
positions A, B, and C allowed us to compare the effect
of the etched groove and the crystal imperfections on the
laser spectrum [27]. Obviously, the etched groove and those
reflecting features which give sufficient backscattering into the
waveguide mode serve as additional parasitic mirrors within
the laser cavity. Each additional reflection forms its own two
FP subcavities; one with the back and one with the front facet.
If there is more than one intra-cavity reflection, then there are
even more possibilities for the formation of subcavities. Let
us assume here for simplicity that each feature produces only
one pair of subcavities. We therefore expect for each of these
subcavities its own FP mode spacing, corresponding to one
peak pair in the Fourier transform of the emission spectrum.

We measured the emission spectra of the above sample
at a position beyond the etched groove (position A), and at
two further positions within the grooved region (positions
B and C). Fig. 12 shows the Fourier transformed emission
spectrum of the unperturbed laser cavity at position A and,
as an inset, the emission spectrum itself. There are clearly
visible FP oscillations in the spectrum which give rise to
very pronounced cavity length peaks at around 510m in
the transform. The origin of this peak family instead of a
single peak is a result of filamenting in the laser cavity.
Since the films were grown without rotation of the sapphire
substrate, there is a substantial thickness gradient across the
wafer leading to different emission wavelengths for the various
lasing filaments.
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Fig. 12. Fourier-transformed emission spectrum of an optically pumped blue
laser measured beyond the grooved region. The spectrum, which is shown as
an inset, was measured with a high-resolution spectrometer.

Fig. 13. Fourier-transformed spectrum from the grooved area. The peak pair
corresponding to the etched groove is marked by arrows.

A measurement of the emission spectra at positions B and
C resulted typically in Fourier transforms as shown in Fig. 13.
Both of them revealed peak pairs whose inverse spacings were
clearly related to the distance to the grooved facet for each
particular position. This establishes that the etched groove adds
additional peaks to the transform of the existing laser spectrum,
at positions determined by the position of the etched groove
within the cavity.

There are many other features in the transform spectrum
with optical path lengths below 510m. This structure must
be due to additional perturbations within the laser cavity. We
have seen data for which the inverse mode separations of
pairs of these additional peaks add up to the mode spacing
of the full cavity length peak, as described above. This
implies the presence of discrete scattering centers at specific
locations within the cavity. The TEM investigation of this
sample revealed hexagonally shaped 300-nm-deep and 250-
nm-wide pits that extended from the surface into the active
layer. By doing an AFM surface scan, we found an average
pit-to-pit distance of 2 m. This figure, taken by itself, is

Fig. 14. Fourier-transformed emission spectrum of a 300-�m-long electri-
cally pumped blue laser diode. The regular structures occurring at optical
path lengths below the cavity length are due to the optical coupling between
laser waveguide and substrate waveguide. The inset shows the spectrum with
the gain modulations which are responsible for the intracavity peaks.

higher than the density of scatterers given by the number of
reflection peaks. However, it is likely that the laser filaments
are established along lines which minimize scattering loss and
therefore minimize the number of pit intersections. In addition,
it is possible that some number of pits do not backscatter into
the waveguide mode.

As a comparison, we show in Fig. 14 the Fourier-
transformed emission spectrum of an electrically pumped
blue laser device below threshold. The regularly spaced peaks
occurring between the harmonic peaks are due to the coupling
between laser waveguide and substrate waveguide. This
effect causes a gain variation, which modulates the emission
spectrum with a period of five to six FP mode spacings [28].
Taking into account the greatly improved material quality
and the fact that only very little noise is visible between the
harmonic peaks, it becomes obvious that the fine structure in
Figs. 12 and 13 is not due to noise but rather due to scattering
centers within the laser cavity.

VI. CONCLUSIONS

We have shown a new powerful method for the quanti-
tative and qualitative analysis of laser resonators in terms
of propagation loss/gain. The method is based on Fourier
analysis of subthreshold laser spectra and measurement of the
relative amplitude of adjacent higher order harmonics in these
Fourier transforms. As a result of this, we have measured gain
spectra of red/infrared semiconductor lasers using the Fourier
transform method and compared them with Hakki–Paoli gain
spectra. We also obtained information about the origin of
scattering loss, especially with respect to devices in the gallium
nitride material system. The main loss mechanism in the laser
cavity of our AlGaInN-based laser material appeared to be
pits in the surface which penetrate to the active region. Since
the laser oscillates in narrow filaments, even relatively small
pits can cause a strong backreflection resulting in the insertion
of fine structure into the Fourier transformed spectrum. Since
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our methodrequiresonly simple processing,it offers an im-
portantdiagnostictechniquefor theevaluationof thestructural
integrity of the optical waveguide.
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