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Measuremenof Optical Cavity Properties
In Semiconductot.asersby Fourier
Analysis of the EmissionSpectrum

Daniel Hofstetterand RobertL. Thornton, Member,|[EEE

Abstract—We presentseveral observationson a novel method
for the evaluation of the internal losspropertiesin semiconductor
lasers. The method we use involves Fourier analysis of the
Fabry—Perot mode spectrum when operating the device below
lasing threshold. The observation of various structural features
in the Fourier transform domain allows us to extract important
information on the laser cavity. As one example,the amount of
cavity propagationloss/gain,or net gain, can be derived from the
decayrate of harmonics of the Fourier spectrum. A comparison
betweenexperimental and calculatedgain versuswavelengthdata
for lasers fabricated in the AlGaAs, AlGalnP, and AlGalnN
material systemswill be given. As a secondexample,this method
also allows the identification of the density and strength of
intracavity scattering centers. This is an important capability
for the fabrication of blue diode lasers in the gallium-nitride
material system.

Index Terms—Emission spectrum, Fourier analysis,gain spec-
trum, laser cavity, semiconductor lasers.

I. INTRODUCTION

HE characterizatiorof lasercavitiesin termsof internal

lossor gainis a researcttopic of ongoingrelevanceand
importance especiallywith regardto the developmenbf new
laser materialsand designsin the short-wavelengttrange of
the spectrum.An elegantmethodto determinethe net gain
is basedon a measuremenof the Fabry—Perot(FP) fringe
contrastm in the spectrum[1]—[3]. The contrastis definedas
m = (Imax — Imin)/(Tmax + Imin). This method,commonly
referredto asthe Hakki—Paolimethod,is very effectivefor low
@ cavitieswhenm is significantlylessthanone.However this
methodstartsto beinaccuratdor higher@-factorcavitieswith
m approachingl, in which casethe spectrumevolvesinto a
seriesof Dirac-deltafunctions.

In this paper,we showa new methodto measurehe optical
gain of semiconductoraser cavities. The detailed analysis
of Fourier transformedsubthresholdspectral4], [5] allows
us to determinethe cavity propagationloss/gainwhich is
synonymouswith the net gain. The Fourier transformation

D. Hofstetterwaswith the Xerox PaloAlto ResearclCenter,PaloAlto, CA
94304 USA. He is now with the PhysicsDepartmentNeuclatel University,
CH-2000Neuctatel, Switzerland.

R. L. Thornton was with the Xerox Palo Alto ResearchCenter, Palo
Alto, CA 94304USA. He is now with Maxtek Corporation,Beaverton,OR
97075-0428JSA.

of the FP fringe pattern results in a spectrum containing
the fundamentalFP frequency,relatedto the cavity length,
plus harmonicsthereof [6]. As will be shown below, the
wavelength-averagethvity propagatiorioss/gainis relatedto
the ratio betweenthe Fourier coeficients of adjacentharmon-
ics [7], [8]- Therefore,by knowing the internal cavity losses
andusingthe propagatiodoss/gainpr themirror reflectances
fitting parameter$o matchtheoreticallytransformedpectrao
experimentatlata,we can,for instancepbtaina measurement
of the gain spectrumor of the transparencyurrentlevel. For
a certainclassof devicedike high-(2-cavity lasersthe Fourier
transformmethodis superiorto the FP contrastmeasurement
method[1], [2] in therespecthatit continuedo beusefulasm
approachesinity andin fact is limited only by the resolution
of the spectrometerused. In addition, if the spectrometer
resolutionis sufficiently high, it potentially allows the correct
determinationof the FP fringe contrastevenif both TE/TM
mode families are presentin the spectrum.In sucha case,
the beatingbetweenthe two mode setswould allow the use
of the Hakki—Paolimethodonly by performingtwo separate
measurementsf the TE/TM mode spectra.Furthermore by
investigatingthe part of the transformedspectrunmwhich cor-
respondgo optical pathlengthsshorterthanthe cavity length,
it is possibleto obtainimportantinformationaboutthe quality
of the opticalwaveguideThisis critical in the nitridesbecause
their large lattice mismatchto availablesubstratecausegshe
material to crack or to form hexagonalpits and nanopipes,
leadingto severescatteringosswithin thelasercavity [9]. The
useof Fouriertransformsof the spectrumrevealsinformation
about the spatial distribution of scatteringcentersalong the
laser cavity in a much more timely way than transmission
electronmicroscopy[10], [11]. An additional featureof our
techniqueis that it works equally well on optically pumped
sampleq12]-[15] andon electricallypumpedones[16], [17].
In this paper,we will first provide physical models for
the techniquewhich we haveused.We will thendevelopthe
theoreticaltools which are necessaryor the understandingf
Fourier transformsof semiconductollaser emissionspectra.
We will therebygain a deepunderstandingaboutthe nature
of the variousfeaturesin a transformedspectrumand prepare
ourselvedfor interpretationsand limits of this method.In the
third part, we show the experimentalsetupwhich was used
to carry out the experimentsThe fourth sectionof this paper
describesxperimentatesultswe obtainedfrom infrared,red,
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Fig. 1. Intensity versus frequency spectra and their Fourier transforms for light emitters with three representative cavity configurations.

and blue light emitters of different kinds. In the conclusionsn time before the appearance of the impulse itself. It is the
we will give an outlook on future experiments and how thesesult of nonrigorous treatment of the complex nature of the
might influence ongoing semiconductor laser research.  true impulse response function. Causality would dictate that
the frequency-domain information, which we measure in a
spectrum as purely real, must, in fact, consist of a real and
imaginary part which are a Hilbert transform pair [18]. For
The physical model for our method is based on the Fouridre purpose of the analysis that we undertake here, however,
transform relationship between the frequency response oh@new information is provided by the Hilbert transformation.
system and the time-domain impulse response, or Greeifitse reason why we see in the time-domain harmonic peaks
function, of that system. When a laser cavity is excited belofer both positive and negative times is that we have omitted
threshold, the spectrally broad emission observed is equivaldhg phase information in the original intensity versus frequency
in the time domain, to stimulating the cavity with a deltaspectrum. However, since we know that the transform of a real
function impulse. This is equivalent to stating that the Fouridunction, which fulfills causality in the time domain, consists
transform of a broad Gaussian-like frequency response ofa real and imaginary function which are Hilbert transforms
a narrow Gaussian-like temporal response. In Fig. 1(a), wé each other, it seems to be quite possible to construct the
show the Fourier transform pair corresponding to an LED-likmissing phase information from the measured intensity versus
emission with no cavity resonance. frequency spectrum. Therefore, in this paper, we will forego
If this same LED-like broad emitter is placed into a lowHlilbert transformation at the expense of symmetric noncausal
Q-resonant cavity as in Fig. 1(b), we will observe a weainpulse responses.
modulation superimposed on the broad LED emission in theThe true power of the transform analysis, and the time-
frequency domain, which will correspond, in the transforrdomain picture, is appreciated when we consider a cavity
(time) domain to a series of delta functions with rapidlgontaining a perturbation, such as a crack or some other
decreasing amplitudes. The separation between these pemiatering center. In this case, the frequency-domain emission
in the time domain corresponds to the round-trip time of thepectrum will exhibit amplitude modulations which, if suffi-
resonant cavity, and the decay of these peaks is related to ¢hently simple, will appear as beat frequencies superimposed
averaged round-trip loss in the cavity. on the spectrum. In the transform domain, these will be evident
As we decrease the loss in the cavity, or increase(@he as temporal features at times other than integral multiples of
factor of the cavity as in Fig. 1(c), we see stronger interferentige cavity round-trip time. The position of these peaks relative
with sharper peaks in the frequency domain. Equivalentlig the cavity round-trip peaks will contain information on the
in the transform domain, we see a more slowly decayimpsition of the perturbation within the cavity. This is shown
series of delta functions corresponding to the lower roundehematically in Fig. 2.
trip loss in the laser cavity. As a result, we would expect that Thus, it is seen that the ability to excite a resonant cavity
by performing a Fourier transform analysis on subthresholdth a broad band LED-like spectrum is in many ways
laser emission at varying currents, we can extract informatiequivalent to being able to excite that cavity with an extremely
regarding the losses in the laser cavity. short (and in practice nontrivial to generate) probe pulse.
It should be mentioned that throughout this paper, we wierforming a Fourier transform on the modulated spectrum
show spectra which, in the time domain, extend to boih therefore equivalent to watching the evolution of response
negative and positive infinity. This is an apparent violatiopulses to this effective probe pulse. This reveals the internal
of causality, in that the response to an impulse cannot appetucture of the resonant cavity.

Il. PHYSICAL MODEL
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log amplitude the absorption index within the wavelength range of interest.
Furthermore, we consider only incidence angles96f, a
relatively narrow wavenumber rang&f = Buax — Pmin <

cavity /), and small absorption index valuek & n). As a result
perturbation of these assumptions, we can replace in (1) the variable term
' Vo exp(—2kLm/3) by the constant termexp(—2kLmf,). From
B - N - (1), we can thus calculate the transmitted intensity according
< + + ; + + > to (2), shown at the bottom of the page.
ime

Especially for high values of the finesdé, defined by
Fig. 2. Effect of an intracavity reflection on the Fourier transformed sped? = 7v/R/(1 — R), this function can be recognized as an
trum. The additional peak pairs due to the intracavity reflection are markgqry function. With the above assumptidn < =, it follows
by arrows. thatarctan(—2k/(n?+k%—1)) ~ 0, and then (2) simplifies to

(1 _ R)2 B C—QkL,ﬁg
_ . .—2kLAo\2 —2kLBo . ain2
We will now develop a rigorous analysis of the relationship (1-R-e ) +4R-c o -sin”(nLj3) @)

between the frequency-domain and time-domain responses@@ shown in the book of Hecht and Zajac [19], a single

S0 d_omg, It s important to choose the appropriate pair ginsmission maximum of the Airy function has a shape which
Fourier transform variables. Although we usually measurg,

. . he i ) ‘ i ; I approximately a Lorentzian lineshape. It can be shown more
In-an experiment, the mtepsﬂy as a function of wave engt enerally that the Airy function is in fact identically equal to
it is much more convenient to perform the mathematic

Ivsis based . . ber d e summation of an infinite series of Lorentzian functions
analysis based on intensity versus wavenumber daf§, Iyt 5 constant separation [20]. As this is a critical identity for
wheres = 27 /A, This will ultimately provide us with a more

: ; , | the analysis that follows, we present a rigorous mathematical
direct relationship between spectral frequency and time. Wh Drivation here

doing Fourier transforms on these data, we obtain i”tens'tyStarting from (2), we can do some rearrangements; (3) then
versus optical path length(d) information. The conjugate becomes

variables are, therefore, wavenumgeand optical path length

lll. THEORY 1(8) =

d. These variables can be related to another pair of physically 13 = 9! (4)
meaningful transform variables, optical frequency= fc, 14 Gy - cos(2mf3)
and transit timet = d/c, with ¢ being the speed of light. We where 8/ = (nLf) /=, and, in addition,
choose to develop this mathematical formalism based on the 2kl
former pair. Ci=(1-R? —°

For generality, we will derive an analytical expression for 1+ R? - e=4hLo
the Fourier transform of an active or passive FP resonaf¥

. —2KkLBo

spectrum. If the considered FP resonator has a lehgémd O, = —2R. ¢ ) (5)
consists of a piece of material with parallel facets, refractive 1+ R2 . c= LA

indexn, and absorption indek, which both do not depend onThese constants can be written somewhat simplified as
the wavelength or wavenumber, then the transmitted electrical

2

field amplitude experiences multiple reflections between the O, = <1 — R) . 1

facet mirrors. It can be calculated as a geometrical series as V2R cosh(2kLf — In(R))

given by and
-1

» o L Cy = . (6)
A(B)=(1—R-¥). Z (R 2¥ym cosh(2k L3y — In(R))
m=0 By using complex functional theory arguments, which will be

ce T RLImAL/DP, Ginkmg (1) outlined below, one can show that the function shown in (3)

where 3 = 27/ is the wavenumberR — [(n — 1)2 n is identical to a new one consisting of an infinite series of
Lorentz peaks, as represented by

E?)/[(n + 1)® + k?] is the power reflectance of the facets,

and vy = arctan(—2k/n? + k? — 1) is the phase change of ) C, > 1
the light due to the facet reflection. Obviously, the expansion J(B) = am - tanh(2am) ’ Z el _—m 5 (7)
into a converging geometrical series failsffe=2*"% > 1; mETeO ] 4 < . )

for active resonators, this means that the expansion works
only below lasing threshold. For the following calculationswhere the parametes is determined through the relation
we assume that there is no dispersion in the refractive amd= (27)~* arcosh|1/C»|, which is identical toa = (27)~!-

(1 _ R)2 . C—Qkh,ﬁg +4 SiHQ(”(/})
(1 — R-¢e 2kLB0)2 L 4R . ¢=2kLB0 . gin? (1) + nLp)

I(8) = |A(B)* = A(B) - A"(8) = 2)
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(2kLBo — In(R)). The mathematical way to prove that (4)nly for the following considerations. According to (9), the
and (7) are the same is to consider their respective compteansformed spectrum consists of a series of peaks which
functional natures as follows. decay exponentially. The position of these peaks is given by
A complex function is said to be analytic or holomorphic il = +mL/#x. For m = 1, we get first-order peaks which
its derivative exists at each point of the regi@nin addition, it correspond to the full cavity length, and fet > 1, higher
is said to be entire if the derivative exists in the entire completder harmonics are obtained. We will use unitg.af for the
plane. Meromorphic functions are holomorphic except for thaptical path lengthi. If there is an intracavity reflection which
presence of poles. Under the above definitidi§g;) in (4) and divides the main cavity into two subcavities, = L; + Lo,
J(B') in (7) are meromorphic functions in the complex planghen the Fourier transformed emission spectrum will reveal
When defining parameter in the above way, the functionspeaks at positiond; andd,, which add up to the position of
I(p") and J(#') have the same poles, and at these polebe full cavity length peak af = d; +d. As already outlined
they have identical singularity parts. As a result of this, thie the paragraph about the physical model, this allows the
difference function?'(5") = I(") — J(3') no longer has any identification of cracks or other types of defects in the laser
poles; F(3’) is therefore an entire function. In addition, botltavity.
I(p") and J(/") have the same periodicity /7, and both  Since, in (10), the facet reflectance and the cavity length are
approach zero regularly when the imaginary part goes towarsgually known, the only free parameter is the absorption coef-
infinity, meaning that they both are bound. Therefore, theficient &, which is related to the cavity propagation loss/gain.
difference F'(/#') is a bound function as well. The theorenDne can, therefore, determine a wavelength-averaged cav-
of Liouville states that the only entire functiafi(3’) which ity propagation loss/gain value when performing a Fourier
is bound in the entire complex plane is the constant functitransform on a subthreshold emission spectrum.
F(") = constant. Since the functiafi(5’) vanishes when its ~ For a semiconductor laser, it is further desirable to extract
imaginary part approaches infinity, this constant must be zenoformation about the wavelength dependence of gain from the
Therefore,I(/3") and J(3') must be, in fact, identical. emission spectrum. For the more complicated case in which
The most important consequence of this is that the seriestioé refractive index is still dispersion-free, but the absorption
Lorentz functionsJ (/') is much easier to Fourier-transformindex is no longer a constart = k(3), we have to start
than the Airy functionI(3’). Since we have outlined thefrom (7) again and do some modifications. We convinced
mathematics to perform the Fourier transformyf') in [17], ourselves that (7) describes the Airy function as well as (3).
we will omit this part here and give only the final result  Furthermore, we notice that the former constant parameter

0o oo in (7) is now also a function of wavenumber= a(3). Except

Id)=]1-R- 62“‘“'|2 . Z Z for this, a(53) is defined in exactly the same way as before via
m=0 (=0 a = (2m)7 - (2k(B)LS3o — In(R)). Obviously, a(3) occurs

Rétm . o—2i(—m) both inside the infinite sum, namely as a width parameter

KL+ m+ 1) +i(rd + nL(f —m))] (8) of the individual Lorentz peaks, and in front of it, as an
gnvelope or weighting function for the series of Lorentzian
N ) : . , eaks. If we assume that a subthreshold laser spectrum can
form of .J(3') is very straightforward if one realizes tha{s’) be approximated by a series of equal-width Lorentz peaks

is a convolution of an infinite series df functions and a L C o .
- . . ) multiplied by a wavenumber-dependent weighting function
Lorentz function. The desired transform is then given by the P y P ghting

/
product of the series af functions and the transform of thew(ﬁ ) then (7) becomes

Lorentz peak, which is a symmetric exponential decay function ) ol i 1
o> = (B - tanh(2a(F)w) 3 —m\>
" = . _27””|d | . ! m=—00 |
I(d) = 27a - ¢ ; 8(d' —m). 9) + < - )
Here, the conjugate variabl¢ is defined viad' = dn/nL. =w(f)- Z ;2 (11)
This function consists of an infinite series 6ffunctions, m=—co | 4 </3/ —m>
which are arranged symmetrically to the origin. Since we are a

interested only in the amplitude of this complex function, we I . N ' .
can omit the phase factor, which is due to the translati(\)’\r/1here the weighting functiom(/%') is defined via
along thez axis. We get therefore a constant ratio between w(f) = C1

the amplitudes of adjacent harmonics, and this ratio is given a8 - tanh(2a(B)r)

by the following relation: 1— R\? 1
N < V2R ) (B - smh(2a ()

14+ R2 . ¢ *kLfo . L )
= exp <a7; cosh <W>> — R.e 2kLO0 Because of the approximation introduced in (11), we can
2R - 72k now proceed with the Fourier transform, which yields

(12)

r = exp(—2ma)

(10)

Although the complex functions in (9) and (10) consist—in 1(d’) = [ZM cemzmald] . Z 6(d' — m)] -W(d') (13)
general—of amplitude and phase, we will plot the amplitude

m=—0o<
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Fig. 3. Absorption loss in an active resonator f&t = 0%, 10%,

20%, 30%, and60% mirror reflectance (solid dots), and mirror reflectancd=ig. 4. Gain curves obtained from a simulated laser emission spectrum using

of HAR. The arrows show how to figure the mirror reflectance given thihe Hakki—Paoli method and the Fourier transform method. The initial gain

absorption coefficient and vice versa. curve which was used to calculate the emission spectrum is also shown
(labeled “correct gain curve”).

where W(d') is the Fourier-transformed weighting function. . ) . o )
From (13), we are able to obtain the wavelength-averag@fitheir peak width/separation ratio (high limit). Assuming
propagation loss/gain, which is related to the exponentf@ xperimental spectral resolutiondsh.. = 0.45 A, and the
decay rate of the higher order harmonics. In addition, we cA¥de separation of a typical blue light emittekX = 4.5 A),
extract the shape of the gain curve by inverse-transforming ti§ &ré able to determine classically a resonator finesse of
transformed weighting functio’ (') and then solving (12) £ = AA/AMes = 10. Since the relevant information of
numerically for a(3') and k(3'), respectively. Usually, the the spectrum is in fact the shape of the transmission peaks
measured laser spectrum is not normalized, meaning that fEher than their width and separation, it is likely that using the
weighting functionw(/3’) is multiplied by a constant prefactor.Same experimental setup as described in the next section and
This ambiguity can be removed by measuring the peak géma Fourier transform-based measurement technique should
value and adjusting the prefactor until the gain curve maximu@fiable us to evaluate even higher finesse FP resonators very
meets this value. The peak gain value itself is being determin@grurately.
by Fourier-transforming a narrow spectral window in which N Fig. 4, we show the results of using a simulated gain
the gain can be assumed constant. curve to generate a simulated emission spectrum using (3), and
The steps to produce such a gain spectrum using the Foufiem this simulated emission spectrum extracting the inferred
transform technique are thus as follows. First, the emissi§Rin spectrum using both the Hakki—Paoli technique and the
spectrum is measured in the desired wavelength range. TH@irier transform technique of this work. This provides a
two Fourier transforms are done; one of the full spectréieans to the results given by the two techniques. It is evident
width and one of a narrow window (1 nm) in the centrafom this figure that the Hakki-Paoli method determines the
part of the spectrum which contains the gain maximum. Fro@@in very accurately if the constant offset of the spectrum is
the full range transform, we take the (complex) data arouggactly known. Using the FT method gives a slight overes-
and including the first harmonic peak. These data underfjation of the gain in the central part of the spectrum and
an inverse Fourier transform in order to yield the weightingn underestimation at the edge of the wavenumber range.
function w(f). Starting from the weighting function, oneThese errors are mainly due to the assumption of having
solves (12) numerically and calculaté$3). The boundary only one full-width at half-maximum (FWHM) for all cavity
condition to meet the maximum gain value, as determinggsonances. However, the features in the overall shape of the
by the narrow window transform, can always be fulfilleg@ain curve are well represented.
by choosing an arbitrary prefactor in front of the weighting Concerning experimental limitations on both the
function. Hakki—Paoli and Fourier transform methods, we would
According to what we derived in (1), we present in Fig. 3 bke to point out that Hakki—Paoli works very nicely as
nomograph which reveals the relationship between mirror lodsng as the spectrometer resolves the modes sufficiently
absorption loss, and the harmonic amplitude ratio (HAR). Theell. However, there are principal limitations if the fringe
nomograph in Fig. 3 can thus be used, with measured HARsibility becomes close to one. Even small baseline shifts
to deduce the absorption coefficientgiven the mirror power can introduce large errors in the calculation of the gain curve
reflectanceR or vice versa The advantage of this method isonce this point is reached. In addition, as soon as the fringe
that it can be used for both low and high finesse resonatovisibility is essentially one, Hakki—Paoli does not work any
This is mainly because of the Fourier transform processore, even if a better spectrometer is used. For the Fourier
containing information on the overall shape of the FP fringieansform method, since it measures the width and the shape
pattern instead of only considering their contrast (IgWimit)  of the fringes rather than their visibility, a better spectrometer



always helps to make the determinationof the gain curve
more accurate.Also, a baselineshift does not hurt at all
becausehe dc componentof the spectrumcollapsesinto the
zeroeth-ordeharmonic peak.

IV. EXPERIMENTAL SETUP

We have collected experimentaldata with this technique
using both electrically injectedand optically pumpeddevices.
The electrically injected deviceswere probe-testecat room
temperatureBroad-areadeviceswere testedin bar form and
under pulsed conditions (800-ns pulse length, 0.08% duty
cycle),whereagheinfraredsingle-moddaserswverebondedas
individual deviceson copperheatsinksandoperatedinderCW
conditions.In bothcasesthe emittedlight wascollectedwith a
microscopeobjective (magnification50x, numericalaperture
0.95) and focusedonto a quartzfiber which fed onto the 50-
pm-wide slit of a high-resolutiorgratingspectromete(SPEX,
1.26 m focal length, 0.25 A spectralresolution, A\ = 1800
lines/mm). Light detection was accomplishedby a 1024-
elementarray photodetectorUsing this configuration spectral
measurementsf a 10-nmwavelengthrangewith atheoretical
resolutionof 0.1 A could be performed.Due to the pulsed
operatiorof theredlaserdiodesandthebluelasersandLED'’s,
it wasnecessaryo collectthe light of thesedevicesfor up to
30 s. Although this collection techniqueis very convenient
andsufiiciently accuratefor mostapplicationsthe noiselevel
of this systemis higherthanwhatis in principle achievable.

The experimentasetupfor the optically pumpedGaN-based
deviceswas very similar to our earlier experimentg[12]. It
relied on the pulsedemissionof a 337-nm Ny laser, which
wasfocusedto a 1004:m-wide and4-mme-longstripe.In order
to measureoutputintensity versuspump intensity curves,we
attenuatedhe pump beamwith an appropriatenumberof 1-
mm-thick glass slides which acted as neutral density filters
for the IV, laser emissionwavelength.The emissionof the
blue laserwas then collectedby a microscopeobijective,in
the samemanneras describedabove.

V. MEASUREMENT RESULTS

A. RedBroad-Ara Lasers

In order to show how well this simple analysis applies
to experimental data, we present here spectral measure-
mentsof GalnP-AlGalnP-baseded broad-areadiode lasers
[21], [22] which will be comparedwith calculations.The
laser material was a conventionalred laser structure with
500-nm-thick Alg 5Ing 5P cladding layers, a 240-nm-thick
(Alg.6G&.4)0.5IN0.5P waveguide core with an 8-nm-thick
GalnP quantumwell in the center.It was grown on a 10°
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Fig. 5. High-resolutionlaserspectrunof aredlaserat0.933- I;;,. Theinset
showsFourier transformof this spectrum.

In this paper,we measuredpectraof a red broad-aredaser
at four different injection currents(120, 130, 140, and 150
mA) correspondingo 0.8,0.867,0.933,and1x Iy;,. A typical
emissionspectrumis shownin Fig. 5; it showsan FP mode
spacingof 1.1 A, correspondingto 450-:m cavity length.
This spectrumwas obtainedat an injection current of 140
mA (0.933 x [3,). The numerical Fourier transformof this
spectrumis shown as an inset of Fig. 5. Thereis a main
peakat dg = 450 pum, correspondingo the cavity length,
and several smaller peaks at integer multiples of dy. The
presenceandthe slow decayrate of thesepeaksindicatethat
the @Q-factor of the cavity is alreadyhigh, and the shapeof
the individual FP modesis closerto a seriesof Dirac-delta
functionsthanto a sine-function Moreover,whenchoosinga
logarithmic scalefor the i axis, thereappeargo be a unique
ratio betweenthe height of adjacentpeaksin the transform,
i.e., the peaksof the harmonicslie on a straightline. In
orderto extractthe peakgain value of the device,we chose
a small wavelengthwindow of only 0.5-nm width for the
actualtransform;this narrow spectralrangetransformsinto a
substantiabroadeningof the harmonicpeaksin the transform
domain.In Fig. 6, we comparethe gain curve for 140 mA
obtainedby a Hakki—Paoli analysiswith the gain spectrum
asdeterminedwith our method.The two methodsagreevery
well on the long-wavelengttshoulderof the spectrum.Some
deviationsare visible on the short-wavelengttside, probably
becausef the neglecteddispersioneffectsin the FT method.

In orderto extractthe peakgain valuesat differentinjection
currents,we measuredhe HAR r for eachcurrentlevel and
in a narrow wavenumbemwindow and determinedthe cavity
propagatiorloss/gainby usingtheformular = R-exp(—(a—

misoriented GaAs substrate by metalorganic chemical vappi). The facet reflectivityR is known from the literature
deposition (MOCVD). The emission wavelength of thesg3]. For this particular device, the threshold current was
devices was 670 nm, corresponding to a Ga mole fractiooughly at 150 mA. As mentioned in the theory section, the
of 0.4 in the alloy composition Gan;_,P of the quantum analysis does not allow the extraction of the propagation loss
well. After deposition of 50zm-wide Ti—Au stripes to form at threshold. For the investigated injection currents (120, 130,
broad-area p-contacts, and Au-Ge n-contact metallurgy40, and 150 mA), we determined loss/gain values-4f05,
450m-long laser bars were cleaved from the material.  1.43, 7.48, and 11.79 cm, respectively. These values are
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Fig. 6. Comparison between gain curves obtained with the Hakki—Paoli afi§- 8.  Emission spectrum of an IR laser operated at 9 mA injection current.
the Fourier transform methods for a 45@a-long red broad-area laser. The TE/TM mode families are distinguishable.
15— T 2.5%, a resolution of at least 0A is required in order to
i ) ‘/ see clearly the twin peaks in the transform. For the first-order
ok %7 10.cm (?'Ve” constant) ] twin peak, this is, because of the width of the individual peaks,
= G,=166cm almost impossible. At higher pump levels, where higher order
= l,= 107 mA ,,x' harmonics become stronger, the TM peaks are suppressed by
B S5r 1 almost an order of magnitude, which makes it again very
% ' difficult to resolve TE versus TM structure. At lower pump
s ol i levels, however, the higher order harmonics decay too fast and
| therefore disappear in the noisy background. Given both the
g & @ Measured with FT method narrow wavelength window and the small difference in mode
a Fitted to K()) = G, * Log(l1,)-ct, | spacing, we were not able to distinguish the two peak families
in the Fourier transform. However, we could measure the peak
-10 — L.

gain value with the Fourier transform method, although the
two mode families being present at the same time prevented
us from correctly determining the fringe visibility required for
Fig. 7. Cavity propagation loss/gain versus injection current for the Hakki—Paoli method.
45_0-um-long red b_road-area laser. The fitted line assumes a Iogarithmic\/ve show in Fig. 8 the spectrum and in Fig. 9 three gain
gain/current behavior. . .
spectra for representative current levels of such a device. The
blue shift of the gain peak at increasing injection current levels
represented by dots in Fig. 7. The dashed line is a fit of theFig. 9 is characteristic for band-filling effects. In Fig. 10, we
curve K(I) = Gy -log (I/1y)— v through these points, wherepresent the propagation loss/gain values obtained from HAR
ap = 10 cm~* is known from an independent cavity lengthmeasurements on transformed emission spectra. We measured
study [24]. The values we obtain when performing this fit argkne propagation loss/gain in current steps of 0.5 mA from 8
I = 107 mA and G = 166 cm~1. The injection current, up to 11.5 mA. Again, from an independent measurement of
is called the transparency current level. At this current, whithe absorption loss, we sat, = 5 cm™* [26]. The fit through
was determined to be at 107 mA, there is no gain in the laglese points, similar to Fig. 7, results fg = 7.6 mA, and
cavity; it is thus characterized hy = 0. Gy = 226 cm L,

n 1 1 1
120 125 130 135 140 145 150
Injection current [mA]

B. IR Laser Devices C. Blue LED’s

The IR lasers tested with our technique were buried het-In this class of devices, we analyzed the emission spectrum
erostructure lasers with a single-mode waveguide defined &y an AlGalnN double-heterostructure which is grown on
impurity-induced layer disordering [25]. The lasers have @ 100um-thick sapphire substrate. TheuBa-thick epitaxial
cavity length of 260um and typical threshold currents oflayers have an average refractive index of 2.51; the refractive
around 12 mA; the emission wavelength is 840 nm. Thes®elex of sapphire is 1.77. Due to the reflections at the GaN
devices show, at least at certain pump levels below threshddsface, the GaN-sapphire interface, and the sapphire surface,
TE/TM- polarized longitudinal mode families of comparabl¢hree different FP cavities were formed. However, only two
intensity. Although we were able to distinguish between theaf them show up as closely spaced peaks in the Fourier-
slightly different refractive indices, it was not possible to retransformed emission spectrum of this device. The third peak
solve the resulting twin peaks in the transform unambiguousig.too close to the origin to be resolved, mainly because of the
Since the refractive index difference is only on the order d¢drge mode spacingX\ = 5.3 nm) of the AlGalnN cavity.
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Fig. 9. Gain curves for three different current levels of a 280-long IR

laser. The curves are measured using the Fourier transform technique. g 17 Emission spectrum of a blue GaN LED. The inset shows the Fourier

transform of the spectrum. The twin peaks are due to multiple reflections at
the GaN-sapphire interface.

40 . . ———
A=848 nm, L=260pm, n=4.0 o
30+ a4, . formed by two polished facets and a high reflectivity (HR)
= & =5 cm (?'Ve” constant)/,.,— ] Al-mirror on one side B = 93%). A 5-um-wide and 300-
= 20 G, =226 cm e i nm-deep groove was dry etched into a sample that we did
s l,=76mA s not expect to be cracked. The etched groove was oriented
é w0k ' | at a shallow angle to the emitting facets and divided the
5 main cavity into two shorter subcavities of variable length.
% ol 1/" At position A, there was no etched groove. At a different
oy * measured data points position B, the two subcavities were 200 and 31f long,
= e e fitted to K(I) = G, *Log(l/1,) - o, | respectively. At a position C, they finally measured 240 and
10r 1 270 pm.
P Fourier transforms of the laser spectra of the devices at
Injection current [mA] positions A, B, and C allowed us to compare the effect

of the etched groove and the crystal imperfections on the
Fig. 10. Cavity propogation loss/gain versus injection current for ;
260um-long IR single-mode buried heterostructure laser. The fitted Iinf(aa\a'Ser ;pectrum [27]' _ObVI(_)usw’ the etched groove_ an_d those
assumes a logarithmic gain/current behavior. reflecting features which give sufficient backscattering into the
waveguide mode serve as additional parasitic mirrors within

the laser cavity. Each additional reflection forms its own two

A typical emission spectrum and its Fourier transform aiep g pcavities: one with the back and one with the front facet.

shown in Fig. 1_1' By extracting a HAR of 0.1, and assuming there is more than one intra-cavity reflection, then there are
an average mirror reflectance of 10%, an averaged cavity,

on | ¢ . v 1 o be found. Thi en more possibilities for the formation of subcavities. Let
propagation loss of approximately 1 cmcan be found. This ¢ 4sume here for simplicity that each feature produces only

assumes that _the cavity loss in th'.s case is entirely _due dfle pair of subcavities. We therefore expect for each of these
distributed cavity loss. It is also possible, however, that in th bcavities its own FP mode spacing, corresponding to one

case, scattering losses at the surfaces are also high, resu 08k pair in the Fourier transform of the emission spectrum.
n discrete Ipssy planes at, for example, the GaN—sapphr e measured the emission spectra of the above sample
interface. This example shows the dahggr of assuming th"’.‘t Hl.ea position beyond the etched groove (position A), and at
presence of pronounced FP modes indicates that a devw?v\) further positions within the grooved region (positions

close to threshold. In the example, the device has just reacfga nd C). Fig. 12 shows the Fourier transformed emission
the transparency condition (= 0) and might still be far from spectrum of the unperturbed laser cavity at position A and

threshold. . - .
as an inset, the emission spectrum itself. There are clearly

visible FP oscillations in the spectrum which give rise to
very pronounced cavity length peaks at around %10 in

For these experiments, we used undoped MOCVD-grovie transform. The origin of this peak family instead of a
samples with a 4sm-thick GaN buffer, a 500-nm AlGaN single peak is a result of filamenting in the laser cavity.
lower clad, a 240-nm GaN waveguide with five InGaN QW'sSince the films were grown without rotation of the sapphire
and a 50-nm-thick upper clad on top. We investigated boglubstrate, there is a substantial thickness gradient across the
samples where cracks were visible and samples in which wafer leading to different emission wavelengths for the various
did not expect cracks. The 510n-long laser cavities were lasing filaments.

D. Pits and Cracks in Blue Optically Pumped Lasers
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Fig. 12. Fourier-transformed emission spectrum of an optically pumped blue . o .
laser measured beyond the grooved region. The spectrum, which is showfTigls 14. Fourier-transformed emission spectrum of a 3@®iong electri-

an inset, was measured with a high-resolution spectrometer. cally pumped blue laser diode. The regular structures occurring at optical
path lengths below the cavity length are due to the optical coupling between

laser waveguide and substrate waveguide. The inset shows the spectrum with
12 T T T T the gain modulations which are responsible for the intracavity peaks.

107 groove peaks cavity peaks i higher than the density of scatterers given by the number of
i reflection peaks. However, it is likely that the laser filaments
are established along lines which minimize scattering loss and
therefore minimize the number of pit intersections. In addition,
it is possible that some number of pits do not backscatter into
the waveguide mode.

As a comparison, we show in Fig. 14 the Fourier-
transformed emission spectrum of an electrically pumped
blue laser device below threshold. The regularly spaced peaks
occurring between the harmonic peaks are due to the coupling
0 . : : between laser waveguide and substrate waveguide. This

0 200 400 600 800 1000 . .. . L.
Optical path length [uum] effect causes a gain var|at!on, WhI.Ch modulates thg emission
ptical p: gin [p
spectrum with a period of five to six FP mode spacings [28].
Fig. 13. Fourier-transformed spectrum from the grooved area. The peak p'pgking into account the greatly improved material quality
corresponding to the etched groove is marked by arrows. and the fact that only very little noise is visible between the
harmonic peaks, it becomes obvious that the fine structure in

A measurement of the emission spectra at positions B ahig)s. 12 and 13 is not due to noise but rather due to scattering

C resulted typically in Fourier transforms as shown in Fig. 18enters within the laser cavity.
Both of them revealed peak pairs whose inverse spacings were
clearly related to the distance to the grooved facet for each VI. CONCLUSIONS

particular position. This establishes that the etched groove add%e have shown a new powerful method for the quanti-
additional peaks to the transform of the existing Iaserspectru&ive and qualitative analysis of laser resonators in terms

at positions determined by the position of the etched grooye propagation loss/gain. The method is based on Fourier

within the cavity. _ analysis of subthreshold laser spectra and measurement of the
‘There are many other features in the transform spectiyflaiive amplitude of adjacent higher order harmonics in these
with optical path lengths below 51m. This structure must gqrier transforms. As a result of this, we have measured gain
be due to additional perturbations within the laser cavity. Weectra of red/infrared semiconductor lasers using the Fourier
have seen data for which the inverse mode separationsyghsform method and compared them with Hakki—Paoli gain
pairs of these additional peaks add up to the mode spacijctra. We also obtained information about the origin of
of the full cavity length peak, as described above. Thigattering loss, especially with respect to devices in the gallium
implies the presence of discrete scattering centers at spegifi¢ide material system. The main loss mechanism in the laser
locations within the cavity. The TEM investigation of thiscavity of our AlGalnN-based laser material appeared to be
sample revealed hexagonally shaped 300-nm-deep and 25 in the surface which penetrate to the active region. Since
nm-wide pits that extended from the surface into the activke laser oscillates in narrow filaments, even relatively small
layer. By doing an AFM surface scan, we found an averagits can cause a strong backreflection resulting in the insertion
pit-to-pit distance of 2um. This figure, taken by itself, is of fine structure into the Fourier transformed spectrum. Since

Amplitude




our methodrequiresonly simple processingjt offers anim-
portantdiagnostidechniquefor the evaluationof the structural
integrity of the optical waveguide.

ACKNOWLEDGMENT

The authorsare gratefulto D. P. Bour, D. W. Treat, and
H. F. Chungfor crystalgrowth, D. Sun,andR. Donaldsorfor
devicefabrication,F. Endicott,D. F. Fork, and G. Anderson
for setting up the experiment,M. K. W. Seifert from the
MathematicsDepartmentof the University of California at
Irvine for his help in some of the calculations,and R. D.
BringansandT. L. Paolifor helpful discussionsnd support.

REFERENCES
[1] B.W.HakkiandT. L. Paoli,“"CW degradatiorat 300K of GaAsdouble-
heterostructurgunction lasers,|l. Electronicgain,” J. Appl. Phys.,vol.
44, no. 9, pp. 4113-4119,1973.
__, “Gain spectrain GaAsdouble-heterostructuri@jection lasers,”
J. Appl. Phys.,vol. 46, no. 3, pp. 1299-1306,1975.
M. Born and E. Wolf, Interferenceand Interferometers,Principles of
Optics, 6th ed. New York: Pegamon,1984,vol. 256.
B. D. PattersonC. Musil, H. SiegwartandA. Vonlanthen;Focused-ion
beammaoadification of waveguidephotonic devices,” Microelect.Eng.,
vol. 27, pp. 347-350,1995.
B. D. Patterson;Characterizatiorof activewaveguidephotonicdevices
using optical coherencedomainreflectometry,”Opt. Eng., vol. 34, no.
8, pp. 2289-2298,1995.
V. G. Cooper,“Analysis of Fabry—Perotn erferogramsby meansof
their Fouriertransforms,”Appl. Opt., vol. 10, no. 3, pp. 525-530,1971.
D. M. Rust,“Etalon filters,” Opt. Eng.,vol. 33, no. 10, pp. 3342-3348,
1994.
W. B. Cook, H. E. Snell, and P. B. Hays, “Multiplex-Fabry—Perot
interferometersl. Theory,” Appl. Opt., vol. 34, no. 24, pp. 5263-5267,
1995.
Z. L. Liau, R. L. Aggarwal,P.A. Maki, R. J. Molnar, J. N. Walpole,R.
C. Williamson, and |. Melngailis, “Light scatteringin high-dislocation
densityGaN,” Appl. Phys.Lett., vol. 69, no. 12, pp. 1665—-1667,1996.
L. T. Romano,B. S. Krusor, W. Godtz, N. M. JohnsonR. J. Molnar,
and E. Brown, “Structural characterizatiorof thick GaN films grown
by hydride vapor phaseepitaxy,” in Proc. Materials Reseath Society,
1996, vol. 423, pp. 500-505.
F.A. PonceB. S.Krusor,J.S.Major, Jr.,W. E. Plano,andD. F. Welch,
“Microstructureof GaN epitaxyon SiC usingAIN buffer layers,” Appl.
Phys.Lett., vol. 67, no. 3, pp. 410-412,1995.
D. Hofstetter, D. P. Bour, R. L. Thornton, and N. M. Johnson,
“Excitation of a higher order transversemodein an optically pumped
Ing.15Gay.85N/Ing 05 Gay.o5 N multiguantum well laser structure,”
Appl. Phys.Lett., vol. 70, no. 13, pp. 1650-16521997.
S. T. Kim, H. Amano, and I. Akasaki, “Surface-modestimulated
emissionfrom optically pumpedGalnN at room temperature,”Appl.
Phys.Lett., vol. 67, no. 2, pp. 267—269,1995. B
T. J.Schmidt,X. H. Yang,W. ShanJ.J.Song,A. SalvadorW. Kim, O.
Aktas, A. Botchkarev,and H. Morkog, “Room-temperaturetimulated
emissionin GaN/AlGaN separateconfinementheterostructuregrown
by molecular beam epitaxy,” Appl. Phys. Lett., vol. 68, no. 7, pp.
1820-1822,1996.
A. S. Zubrilov, V. I. Nikolaev, V. A. Dmitriev, K. G. Irvine, J. A.
Edmond,and C. H. Carter,Jr., “Stimulatedemissionfrom GaN grown
on SiC,” in Inst. Phys.Conf. Ser.,1994,vol. 141, pp. 525-530.
D. Hofstetterand R. L. Thornton, “Theory of loss measurementsn
Fabry—Perotesonatordy Fourieranalysisof the transmissiorspectra,”
Opt. Lett., vol. 12, no. 24, pp. 1831-1833,1997.
D. HofstetterandR. L. Thornton,‘Loss measuremenisn semiconductor
lasersby Fourier analysisof the emissionspectra,”Appl. Phys.Lett.,
vol. 72, no. 4, pp. 404-406,1998.

(2]
(3]
(4]

(5]

(6]
(7]
(8]

(9]

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

10

[18] R. N. Bracewell, The Fourier Transformand its Applications,2nd ed.
New York: McGraw-Hill, 1986, pp. 267-272.

E. HechtandA. Zajac,Optics,3rded. ReadingMA: AddisonWesley,
1976, vol. 307.

W. H. Steel, Interferometry, 2nd ed. Cambridge,U.K.: Cambridge
Univ., 1983, ch. 9, pp. 141-149.

D. P.Bour, R. S. Geels,D. W. Treat, T. L. Paoli,F. A. Ponce,R. L.
Thornton, B. S. Krusor, R. D. Bringans,and D. F. Welch, “Strained
Ga,Ini—,P/(AlGa) 51ng 5 heterostructuresand quantumwell laser
diodes,”|IEEE J. QuantumElectron., vol. 30, pp. 593-607,1994.

D. P.Bour,D. W. Treat,R. L. Thornton,T. L. Paoli,R. D. Bringans,B.
S. Krusor, R. S. Geels,D. F. Welch,andT. Y. Wang, “Low threshold
Ga:In1_.P/(Al,Ga; _y)o.5IN0.5P strained quantumwell lasers,” J.
Cryst. Growth, vol. 124, no. 3, pp. 751-756,1992.

I. P. Kaminow, G. Eisensteinand L. W. Stulz, “Measuremenbf the
modal reflectivity of an antireflectioncoating on a superluminescent
diode,”|EEEJ. QuanturrElecton.,vol. QE-19,pp.493-495Apr. 1983.
D. P.BourandG. A. Evans,“Lateral modediscriminationin AlGalnP
selectivelyburied ridge waveguidelasers,”Proc. Inst. Elect. Eng, vol.
139, no. 1, pp. 71-74,1992.

R. L. Thornton,R. D. Burnham,T. L. Paoli, N. Holonyak, Jr., and D.
G. Deppe,‘Low thresholdplanarburiedheterostructuréasersfabricated
by impurity-induceddisordering,”Appl. Phys. Lett.,vol. 47,no. 12, pp.
1239-1241,1985.

R. L. Thornton,T. L. Paoli,andF. Endicott, private communication.
B. D. PattersonJ. E. Epler,B. Graf,H. W. LehmannandH. C. Sigg,“A
superluminescerdiode at 1.3 pm with very low spectralmodulation,”
IEEE J. QuantumElectron., vol. 30, pp. 703-712 Mar. 1994.

I. A. Arvutsky, R. Gordon,R. Clayton,andJ. M. Xu, “Investigations
of the spectralcharacteristicef 980 nm InGaAs-GaAs-AlGaAdasers,”
IEEE J. QuantumElectron., vol. 33, pp. 1801-18090ct. 1997.

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]

Daniel Hofstetter was born in Zug, Switzerland,in 1966. He receivedthe
Dipl. Phys.ETH degreen physicsfrom the SwissNational Institute of Tech-
nology (ETH) in 1993.His diplomathesis,entitled “CO-laserphoto-acoustic
spectroscopyof fatty acid vapors,” was directedby Prof. F. K. Kneuhihl
and Prof. M. W. Sigrist from the Infrared Laboratoryof the ETH in Zurich.
He receivedthe Ph.D. degreein physicsfrom the University of Neuctatelin
1996.His dissertatioraboutmonolithicallyintegrateddisplacemensensorgor
optical displacemenimeasurementyhich wascarriedout und the supervision
of Prof. R. Dankliker and Dr. H. P. Zappe,was awardedthe prize of the
Swiss Physical Societyin 1997

After anapprenticeshigt Landis& Gyr, Zug, Switzerland asan Electrical
Mechanicfrom 1982to 1986, he was employedat the samecompanyas a
PhysicsTechnician.From 1996 to 1998, he worked at the Xerox Palo Alto
ResearclCenter,Palo Alto, CA, wherehe wasinvolved with the fabrication
and testingof AlGalnN DFB lasersand the integrationof multicolor lasers
for scanningapplications.He is currently with the Physics Department,
Neuctatel University, Neuclatel, Switzerland,developinglong-wavelength
guantumcascadeDFB lasers.

Robert L. Thornton (M’'85) was born in Washington,DC, in 1955. He
receivedheB.S.degredrom the Californialnstituteof TechnologyPasadena,
in 1978, and the Ph.D. degreefrom Stanford University, Stanford,CA, in
1983, where he performedresearchon nonlinearsignal processingdevices
using surfaceacousticwaves.

In 1983, he becamea Member of the ResearctStaf at Xerox Palo Alto
ResearciCenter,Palo Alto, CA. He was promotedto Principal Scientistin
1991.His work at Xerox, conductingresearcton semiconductotaserdevice
technology, has resultedin more than 30 patentsand over 100 technical
publications.In 1998, he becamethe Director of Photonic Technologyat
Maxtek Componentorporation BeavertonOR, whereheis responsibldor
guiding technologyselectionand developmenin the areasof semiconductor
lasers,photodetectorsand architecturedor integratedoptoelectronics.

Dr. Thorntonis a memberof the AmericanPhysicalSociety.



