
Annals of Mathematics and Artificial Intelligence 41: 77–93, 2004.
 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Theoretical comparison between the Gini Index and
Information Gain criteria ∗

Laura Elena Raileanu and Kilian Stoffel
University of Neuchâtel, Computer Science Department, Pierre-à-Mazel 7, CH-2000 Neuchâtel,

Switzerland
E-mail: {laura.raileanu,kilian.stoffel}@unine.ch

Knowledge Discovery in Databases (KDD) is an active and important research area with
the promise for a high payoff in many business and scientific applications. One of the main
tasks in KDD is classification. A particular efficient method for classification is decision tree
induction. The selection of the attribute used at each node of the tree to split the data (split
criterion) is crucial in order to correctly classify objects. Different split criteria were proposed
in the literature (Information Gain, Gini Index, etc.). It is not obvious which of them will
produce the best decision tree for a given data set. A large amount of empirical tests were
conducted in order to answer this question. No conclusive results were found. In this paper
we introduce a formal methodology, which allows us to compare multiple split criteria. This
permits us to present fundamental insights into the decision process. Furthermore, we are able
to present a formal description of how to select between split criteria for a given data set. As
an illustration we apply the methodology to two widely used split criteria: Gini Index and
Information Gain.
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1. Introduction

Early work in the field of decision tree construction focused mainly on the defi-
nition and on the realization of classification systems. Such systems are described in
[4,12–16,18,19]. All of them use different measures of impurity/entropy/goodness to
select the split attribute in order to construct the decision tree.

Once a certain number of algorithms were defined, a lot of research was dedicated
to compare them. This is a relatively difficult task as the systems evolved from differ-
ent backgrounds: information theory, discriminant analysis, encoding techniques, etc.
These comparisons have been predominantly empirical. Baker and Jain [2] reported ex-
periments comparing eleven feature evaluation criteria and concluded that the feature
rankings induced by various rules are very similar. Several feature evaluation criteria
are compared using simulated data by Ben-Bassat [3], on a sequential, multi-class clas-
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sification problem. The conclusions are that no feature selection rule is consistently
superior to the others, and that no specific strategy for alternating different rules is sig-
nificantly more effective. Mingers [10] compared several attribute selection criteria, and
concluded that the tree quality does not seem to depend on the specific criterion used.
Babic [1] compared ID3 and CART for two clinical diagnosis problems. Miyakawa
[11] compared three activity-based measures, both analytically and empirically. Several
researchers pointed out that Information Gain is biased towards attributes with a large
number of possible values. Mingers [9] compared Information Gain and χ2-statistic for
growing the tree as well as for stop splitting. He concluded that χ2-corrected Informa-
tion Gain’s bias towards multi-valued attributes. Quinlan [16] suggested Gain Ratio as
a remedy for the bias of Information Gain. Mantaras [5] argued that Gain Ratio had its
own set of problems, and suggested information theory based distance between parti-
tions for tree constructions. White and Liu [22] present experiments to conclude that
Information Gain, Gain Ratio and Mantara’s measure are worse than a χ2-based statisti-
cal measure, in terms of their bias towards multiple-valued attributes. Gama [6] in Esprit
Project 5170 StatLog (1991–1994) tried to predict the error rate of a particular classifica-
tion algorithm and he indicated that no single method can be considered better than the
others. About twenty different algorithms were evaluated on more than twenty different
data sets. Kononenko [7] pointed out that Minimum Description Length based feature
evaluation criteria have the least bias towards multi-valued attributes. In [8] twenty-two
decision tree and two neural network algorithms are compared in terms of classification
accuracy, training time, and number of leaves. In [20] Gini Index, Information Gain, and
the new family of split functions are tested on 9000 data sets of different sizes (from 200
to 20 000 tuples). In [21], the authors proposed a measure for the distance between the
bias of two evaluation metrics and gave numerical approximations of it.

However, a thorough understanding of the behavior of the split functions demands
an analytical and direct comparison between them, without using any other external mea-
sure. Our contribution in this paper is to introduce a formal methodology, which allows
us to analytically compare multiple split criteria. This permits us to present fundamental
insights into the decision process. Furthermore, we are able to present a formal descrip-
tion of how to select between split criteria for a given dataset. As an illustration we apply
the methodology to two widely used split criteria: Gini Index and Information Gain.

The outline of this paper is the following: we introduce the notation and definitions
required to present the classical split criteria which are central to construction of decision
trees: the Gini Index and the Information Gain criteria. After, we give the description
of the theoretical analysis of the Gini Index and Information Gain and we present the
results obtained. Finally, we present some future work and the conclusions.

2. Notation

To realize a theoretical analysis we begin by introducing some notations and defi-
nitions. Let L be a learning sample, L = {(x1, c1), . . . , (x‖L‖, cJ )}. We denote by ‖L‖
the number of objects in L. ∀i ∈ {1, . . . , ‖L‖}, xi is a measurement vector, xi ∈ X ,
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X being the measurement space. ∀i ∈ {1, . . . , J }, ci represents the class i, and ci ∈ C,
where C = {c1, c2, . . . , ck} is the set of classes. The prior probability that an object be-
longs to a given class ci , is given by p(ci) = ‖ci‖

‖L‖ . The components of the vectors xi

can be viewed as attributes and a test is based on one of these attributes. Given a test
T (based on a single attribute), with n possible outcomes, we denote by ti the set of
the objects in L having the outcome i. The probability that the test T has the outcome
i is estimated by p(ti) = ‖ti‖

‖L‖ . ‖ci, tj‖ denotes the number of objects of L that are in
the class ci and have the outcome j for the test T . The probability that an object is in
ci and has the outcome j is given by p(ci, tj ) = ‖ci ,tj ‖

‖L‖ . The conditional probability,
p(ci |tj ), that an object is in the class ci , under the condition that the test T has the out-

come j , is estimated by p(ci,tj )

p(tj )
. Obviously we have:

∑k
i=1 p(ci) = 1,

∑k
i=1 p(ci|tj ) = 1

∀j ∈ {1, . . . , n}, p(ci), p(ci|tj ), p(ti) ∈ [0, 1] and p(ci |tj ) = p(ci ,tj )

p(tj )
∀j ∈ {1, . . . , n}

and ∀i ∈ {1, . . . , k}.

3. The Gini Index and Information Gain criteria

The objects are classified by decision trees which sort them down from the root to
some leaf node, which provides the classification (the class) of each object. An decision
tree contains zero or more internal nodes and one or more leaf nodes. The internal nodes
have two or more child nodes. Each nonterminal node contains a split which specifies
a test based on a single attribute, and each branch descending from that node corresponds
to one of the possible values for this attribute. Each leaf node has its class label. A leaf
node is said to be pure if all of its training examples are belonging to the same class.

Thus, an example is classified by starting with the root node, testing the attribute
corresponding to the root node, then moving down the tree branch corresponding to the
value of the attribute in the given example. This process continues until the example
reaches a leaf node.

In [4] the binary tree classifiers are constructed by repeatedly splitting subsets of L
into two descendant subsets, beginning with L itself. To split L into smaller and smaller
subsets we have to select the splits in such a way that the descendent subsets are always
“purer” than their parents. Thus was introduced the “goodness of split” criterion, which
is derived from the notion of an impurity function.

An impurity function is a function φ defined on the set of all k-tuples of numbers
(p(c1), p(c2), . . . , p(ck)) satisfying p(ci) � 0 ∀i ∈ {1, . . . , k} and

∑k
1=1 p(ci) = 1

with the following properties:

(a) φ achieves its maximum at the point ( 1
k
, 1

k
, . . . , 1

k
);

(b) φ achieves its minimum at the points (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1);

(c) φ is a symmetric function of (p(c1), p(c2), . . . , p(ck)).

Given an impurity function φ, the impurity measure of any node t is defined by

i(t) = φ
(
p(c1|t), p(c2|t), . . . , p(ck|t)

)
.
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If a split s in a node t divides all examples into two subsets tL and tR of proportions
pL and pR, the decrease of impurity is defined as

�i(s, t) = i(t) − pLi(tL) − pRi(tR).

The goodness of split s in node t , φ(s, t), is defined as �i(s, t).
If a test T is used in a node t and this test is based on an attribute having n possible

values, the expressions defined before are generalized as follows:

i(t) = φ
(
p(c1|t), p(c2|t), . . . , p(ck|t)

)
,

�i(s, t) = i(t) −
n∑

j=1

p(tj )i(tj ).

Breiman adopts in his work the Gini diversity Index which has the following form:

φ
(
p(c1|t), p(c2|t), . . . , p(ck|t)

) =
k∑

i=1

k∑
j=1,j �=i

p(ci |t)p(cj |t) = 1−
k∑

i=1

(
p(ci|t)

)2
. (1)

In a node t , an impurity function based on the Gini Index criterion assigns a training
example to a class ci with the probability p(ci|t). The estimated probability that the item
is actually in class j is p(cj |t). Therefore, the estimated probability of misclassification
under this rule is the Gini Index:

i(t) =
k∑

i=1

k∑
j=1,j �=i

p(ci|t)p(cj |t) = 1 −
k∑

j=1

(
p(cj |t)

)2
.

This function can also be interpreted in terms of variance. In a node t we assign to all
examples belonging to class cj the value 1, and to all other examples the value 0. The
sample variance of these values is p(cj |t)(1 − p(cj |t)). There are k classes, thus the
corresponding variances are summed together:

i(t) =
k∑

j=1

p(cj |t)
(
1 − p(cj |t)

) = 1 −
k∑

j=1

(
p(cj |t)

)2
.

Having a test T with n outcomes the goodness of the split is expressed using the Gini
Index as follows:

gini(T ) = 1 −
k∑

i=1

(
p(ci)

)2 −
n∑

i=1

p(ti)

k∑
j=1

p(cj |ti)
(
1 − p(cj |ti )

)
. (2)

The Gini Index criterion selects a test that maximizes this function.
The Information Gain function [16] has its origin in information theory. It is based

on the notion of entropy, which characterizes the impurity of an arbitrary set of examples.
If we randomly select an example from a set and we announce that it belongs to the
class ci , then the probability of this message is equal to p(ci) = ‖ci‖

‖L‖ , and the amount
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of information it conveys is − log2(p(ci)). The expected information provided by a
message with respect to the class membership can be expressed as

info(L) = −
k∑

i=1

p(ci) log2

(
p(ci)

)
. (3)

The quantity info(L) measures the average amount of information needed to identify
the class of an example in L. This quantity is also known as the entropy of the set L
relative to the k-wise classification. The logarithm is in base 2 because the entropy is a
measure of the expected encoding length measured in bits. We will consider a similar
measurement after L has been partitioned in accordance with the n outcomes of a test T .
The expected information requirement is the weighted sum over the subsets:

infoT (L) =
n∑

i=1

p(ti)info(Ti).

The information gained by partitioning L in accordance to the test T is measured by the
quantity gain(T ) = info(L) − infoT (L). We can rewrite the Information Gain as

gain(T ) = −
k∑

i=1

p(ci) log2

(
p(ci)

) +
n∑

i=1

p(ti)

k∑
j=1

p(cj |ti) log2

(
p(cj |ti )

)
. (4)

The Information Gain criterion selects a test that maximizes the Information Gain func-
tion.

So, the selected test by these criteria, T ∗, will satisfy:

gini
(
T ∗) = max

∀ possible test T
gini(T )

and

gain
(
T ∗) = max

∀ possible test T
gain(T ),

respectively. Therefore, we have: gini(T ∗) � gini(T ) ∀ possible test T and gain(T ∗) �
gain(T ) ∀ possible test T .

In order to obtain a characterization of these two criteria and to compare them,
we restrict them, without loss of generality, to the situation in which we have only two
possible outcomes for the test T , n = 2, and two possible classes k = 2. Therefore, we
have:

gini(T ) = 1 −
2∑

i=1

(
p(ci)

)2 −
2∑

i=1

p(ti)

2∑
j=1

p(cj |ti )
(
1 − p(cj |ti )

)
, (5)

gain(T ) = −
2∑

i=1

p(ci) log2

(
p(ci)

) +
2∑

i=1

p(ti)

2∑
j=1

p(cj |ti ) log2

(
p(cj |ti )

)
. (6)
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For simplicity we denote: x = p(c1), r = p(t1), p = p(c1|t1) and q = p(c1|t2). We
have: 1−x = p(c2), 1− r = p(t2), 1−p = p(c2|t1) and 1−q = p(c2|t2). Using these
notations and some simple calculations we rewrite the Gini Index and the Information
Gain functions as

gini(T ) = 2x(1 − x) − 2rp(1 − p) − 2(1 − r)q(1 − q), (7)

gain(T ) = −x log2(x) − (1 − x) log2(1 − x)

+ r
[
p log2(p) + (1 − p) log2(1 − p)

]
+ (1 − r)

[
q log2(q) + (1 − q) log2(1 − q)

]
, (8)

where x, p, q ∈ (0, 1) and r ∈ [0, 1].

4. Theoretical analysis of the Gini Index and Information Gain criteria

In this section we give the description of the theoretical analysis of the Gini Index
and Information Gain. Let us suppose we have two tests, T , T ′ (based on two differ-
ent attributes) which are used to split a given node. Now we analyze if the Gini In-
dex criterion and the Information Gain criterion will select the same test. If this is not
the case, we would like to know under which conditions the two criteria select differ-
ently.

First we will write the Gini Index (Information Gain) functions for the tests T , T ′:

gini(T ) = 2x(1 − x) − 2rp(1 − p) − 2(1 − r)q(1 − q),

gini
(
T ′) = 2x′(1 − x′) − 2r ′p′(1 − p′) − 2

(
1 − r ′)q ′(1 − q ′), (9)

gain(T ) = −x log2(x) − (1 − x) log2(1 − x)

+ r
[
p log2(p) + (1 − p) log2(1 − p)

]
+ (1 − r)

[
q log2(q) + (1 − q) log2(1 − q)

]
,

gain
(
T ′) = −x′ log2

(
x′) − (

1 − x′) log2

(
1 − x′)

+ r ′[p′ log2

(
p′) + (

1 − p′) log2

(
1 − p′)]

+ (
1 − r ′)[q ′ log2

(
q ′) + (

1 − q ′) log2

(
1 − q ′)], (10)

where x, p, q, p′, q ′ ∈ (0, 1) and r, r ′ ∈ [0, 1].
We observe that x = x′ as x = p(c1) = ‖c1‖

‖L‖ = x′. This probability remains
constant, independently of the selected test. The number of examples belonging to the
class c1 and to the class c2, respectively, remains constant, independently of the selected
test, and therefore, the following relation holds:

r(p − q) + q = r ′(p′ − q ′) + q ′. (11)

The statement above holds since:

r(p − q) + q = rp + q(1 − r)
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= p(t1)
p(c1, t1)

p(t1)
+ p(c1, t2)

p(t2)
p(t2)

= p(c1, t1) + p(c1, t2) = p(c1)

and

r ′(p′ − q ′) + q ′ = r ′p′ + q ′(1 − r ′)
= p

(
t
′
1

)p(c1, t
′
1)

p(t
′
1)

+ p(c1, t
′
2)

p(t
′
2)

p
(
t
′
2

)
= p

(
c1, t

′
1

) + p
(
c1, t

′
2

) = p(c1).

Therefore, r relates to r ′, p, q, p′, q ′ and, respectively, r ′ relates to r, p, q, p′, q ′
as follows:

r = r ′(p′ − q ′) + q ′ − q

p − q
, p �= q,

r ′ = r(p − q) + q − q ′

p′ − q ′ , p′ �= q ′.
(12)

The cases p = q, p′ = q ′, and q = q ′ will be treated separately.
Furthermore, using (12), the following conditions must be satisfied:

r ′ � 0 ⇐⇒ r(p − q) + q − q ′

p′ − q ′ � 0, p′ �= q ′, (13)

r � 0 ⇐⇒ r ′(p′ − q ′) + q ′ − q

p − q
� 0, p �= q, (14)

r ′ � 1 ⇐⇒ r ′ − 1 � 0 ⇐⇒ r(p − q) + q − p′

p′ − q ′ � 0, p′ �= q ′, (15)

r � 1 ⇐⇒ r − 1 � 0 ⇐⇒ r ′(p′ − q ′) + q ′ − p

p − q
� 0, p �= q, (16)

p, q, p′, q ′ ∈ [0, 1]. (17)

The difference between the Gini Index functions corresponding to T and T ′ can be
written using (12) as

gini(T ) − gini
(
T ′)

= 2r ′p′(1 − p′) + 2
(
1 − r ′)q ′(1 − q ′) − 2rp(1 − p) − 2(1 − r)q(1 − q)

= 2
(
r ′q ′2 − r ′p′2 + r ′p′ − r ′q ′ − q ′2 + q ′)

− 2
(
rq2 − rp2 + rp − rq − q2 + q

)
= 2

[
r ′(q ′ − p′)(q ′ + p′) + r(p − q)(p + q) + (

q − q ′)(q + q ′)]
= 2

[
r(p − q)

(
p + q − p′ − q ′) + (

q − q ′)(q − p′)], (18)

where p, q, r, p′, q ′, r ′ ∈ [0, 1].
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To simplify the obtained expression, we introduce f1:

f1 = (q ′ − q)(q − p′)
(p − q)(p + q − p′ − q ′)

, p �= q, p + q �= p′ + q ′. (19)

If the difference between the Gini Index functions corresponding to the tests T , T ′ is
positive, then the favorite test for the Gini Index criterion is T , otherwise the favorite
test is T ′. The same holds for the Information Gain functions.

The difference corresponding to the Information Gain functions is expressed as
follows:

gain(T ) − gain
(
T ′) = r

[
p log2(p) + (1 − p) log2(1 − p)

]
+ (1 − r)

[
q log2(q) + (1 − q) log2(1 − q)

]
− r ′[p′ log2

(
p′) + (

1 − p′) log2

(
1 − p′)]

+ (
1 − r ′)[q ′ log2

(
q ′) + (

1 − q ′) log2

(
1 − q ′)],

where p, q, p′, q ′ ∈ (0, 1) and r, r ′ ∈ [0, 1].
To simplify this expression, we will use the function f (x) = x log2(x) +

(1 − x) log2(1 − x), f : (0, 1) → [−1, 0). It’s derivative is negative on the interval
(0, 1

2 ] and positive on the interval [ 1
2 , 1). It’s second derivative is positive on (0, 1).

Thus, this function is monotonically decreasing on (0, 1
2 ] and monotonically increasing

on [ 1
2 , 1). It is a strictly convex function. Using the function f and (12), the difference

between the Information Gain functions corresponding to the tests T , T ′ is rewritten as

gain(T ) − gain
(
T ′)

= r
(
f (p) − f (q)

) − r ′(f (
p′) − f

(
q ′)) + f (q) − f

(
q ′)

= r
(
f (p) − f (q)

) − r(p − q) + q − q ′

p′ − q ′
(
f

(
p′) − f

(
q ′)) + f (q) − f

(
q ′)

= r

[(
f (p) − f (q)

) − p − q

p′ − q ′
(
f

(
p′) − f

(
q ′))]

− q − q ′

p′ − q ′
(
f

(
p′) − f

(
q ′)) + f (q) − f

(
q ′)

= r

p′ − q ′
[(

f (p) − f (q)
)(

p′ − q ′) − (
f

(
p′) − f

(
q ′))(p − q)

]
− 1

p′ − q ′
[(

q − q ′)(f (
p′) − f

(
q ′)) − (

f (q) − f
(
q ′))(p′ − q ′)]

= 1

p′ − q ′
{
r
[(

f (p) − f (q)
)(

p′ − q ′) − (
f

(
p′) − f

(
q ′))(q − p)

]
+ (

f (q) − f
(
q ′))(p′ − q ′) − (

f
(
p′) − f

(
q ′))(q − q ′)}.

Now we apply the Lagrange theorem (also known as the Mean value theorem) to
the function f on the intervals [p, q], [p′, q ′], and [q, q ′]. The function f is continuous
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on [p, q], it’s derivative f ′ exists and it is finite on [p, q], so by the Lagrange theorem
we have:

∃x1 ∈ (p, q) f ′(x1) = f (p) − f (q)

p − q
. (20)

For [p′, q ′] the theorem’s conditions are also satisfied and therefore:

∃x2 ∈ (
p′, q ′) f ′(x2) = f (p′) − f (q ′)

p′ − q ′ (21)

and similarly for [q, q ′] we have:

∃x3 ∈ (
q, q ′) f ′(x3) = f (q) − f (q ′)

q − q ′ . (22)

We express the Information Gain difference as

gain(T ) − gain
(
T ′)

= 1

p′ − q ′
{
r
[
f ′(x1)(p − q)

(
p′ − q ′) − f ′(x2)

(
p′ − q ′)(q − q ′)]

+ f ′(x3)
(
q − q ′)(p′ − q ′) − f ′(x2)

(
p′ − q ′)(q − q ′)}

= r
[
f ′(x1)(p − q) − f ′(x2)(p − q)

] + f ′(x3)
(
q − q ′) − f ′(x2)

(
q − q ′)

= r(p − q)
(
f ′(x1) − f ′(x2)

) + (
q − q ′)(f ′(x3) − f ′(x2)

)
= rE1 + E2, (23)

where p′ �= q ′, E1 = (p − q)(f ′(x1) − f ′(x2)) and E2 = (q − q ′)(f ′(x3) − f ′(x2)).
We will establish the sign of this difference under the conditions (13), (15), p �= q,

p′ �= q ′ and q �= q ′.
We denote by f2 the ratio:

f2 = −E2

E1
= (q − q ′)(f ′(x2) − f ′(x3))

(q − p)(f ′(x2) − f ′(x1))
. (24)

The following proposition is used in our analysis to establish the order of the points
x1, x2, x3.

Proposition. If f is a strictly convex function defined on (0, 1) and 0 < a < b < c < 1,
then we have:

f (b) − f (a)

b − a
<

f (c) − f (a)

c − a
<

f (c) − f (b)

c − b
. (25)

Proof. If a < b < c then b = λa + (1 − λ)c, with λ ∈ (0, 1) and

f (b) = f
(
λa + (1 − λ)c

)
< λf (a) + (1 − λ)f (c)

by the strictly convexity of f . We have

f (b) − f (a) < (1 − λ)
(
f (c) − f (a)

)
.
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So
f (b) − f (a)

b − a
<

(1 − λ)(f (c) − f (a))

(1 − λ)(c − a)
= f (c) − f (a)

c − a
. (∗)

We have using the strictly convexity of f :

f (b) − f (c) = f
(
λa + (1 − λ)c

) − f (c) < λ
(
f (a) − f (c)

)
.

So
f (b) − f (c)

b − c
>

λ(f (a) − f (c))

λ(a − c)
= f (a) − f (c)

a − c
. (∗∗)

The proposition results from (∗) and (∗∗). �

As r, r ′ ∈ [0, 1] and (12) must be satisfied, the terms p′ − q ′, q ′ − q, and q − p

cannot be simultaneously positive or simultaneously negative, consequently, two terms
are negative and one is positive or one term is negative and two terms are positive. Thus,
the characterization of the Gini Index and Information Gain functions will be done taking
into account only the six possible cases:

(1)

{
p′ − q ′ > 0,

q − p > 0,

q ′ − q < 0,

(2)

{
p′ − q ′ > 0,

q − p < 0,

q ′ − q > 0,

(3)

{
p′ − q ′ < 0,

q − p > 0,

q ′ − q > 0,

(4)

{
p′ − q ′ < 0,

q − p < 0,

q ′ − q > 0,

(5)

{
p′ − q ′ < 0,

q − p > 0,

q ′ − q < 0,

(6)

{
p′ − q ′ > 0,

q − p < 0,

q ′ − q < 0.

(26)

As an illustration, we present in the next section all the details of the analysis of the Gini
Index and Information Gain functions for one of the six cases enumerated in (26) and
we give a summary of the remaining five cases.

5. Case study

In this section we will use the previously introduced methodology to compare the
behavior of the Gini Index and Information Gain criteria in the first case defined in (26).
We present the intervals of coincidence/non-coincidence in the choice of the split at-
tribute for the two criteria. The sign of the differences of the Gini Index functions cor-
responding to two tests T , T ′ and of the Information Gain functions are established for
the first possible situation. The complete analysis can be found in [17]. If the sign of
the difference of the Gini Index functions gini(T ) − gini(T ′) in (18) is the same as the
sign of the difference of the Information Gain functions gain(T )−gain(T ′) in (23), then
the two split criteria select the same attribute to split on, otherwise they select different
attributes to split on.

Case 1. p′ − q ′ > 0, q − p > 0, q ′ − q < 0.
This case can be subdivided into following subcases:
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(a) 0 < p < q ′ < q < p′ < 1,

(b) 0 < p < q ′ < p′ < q < 1,

(c) 0 < q ′ < p < q < p′ < 1,

(d) 0 < q ′ < p < p′ < q < 1,

(e) 0 < q ′ < p′ < p < q < 1.

Case 1(a). 0 < p < q ′ < q < p′ < 1.

Proof. We have to establish in this subcase the sign of the expression (18). First we
show that f1 ∈ (0, 1). We have f1 > 0 as q ′ − q < 0, q − p′ < 0, p − q < 0 and
p + q − p′ − q ′ < 0. Using the expression of f1 given in (19) we obtain: f1 − 1 =

(q ′−p)(p−p′)
(p−q)(p+q−p′−q ′) < 0 as q ′ − p > 0, p − p′ < 0, p − q < 0, and p + q − p′ − q ′ < 0.

For r and r ′ we must assure that conditions (13)–(16) are satisfied. (15) is satisfied
as: p − q < 0, q − p′ < 0, p′ − q ′ > 0 and r � 0. (16) is satisfied as: p′ − q ′ > 0,
q ′ − p > 0, p − q < 0 and r ′ � 0. But to verify that (13) and (14) are satisfied, it is
necessary that r � q ′−q

p−q
and r ′ � q−q ′

p′−q ′ . Both ratios: q ′−q

p−q
, q−q ′

p′−q ′ are positive and smaller

than 1, so we can conclude that for this case we have: r ∈ [0,
q ′−q

p−q
] and r ′ ∈ [0,

q−q ′
p′−q ′ ].

In addition we can easily show that f1 <
q ′−q

p−q
as f1 − q ′−q

p−q
= q−q ′

p+q−p′−q ′ and we
have that q − q ′ > 0 and p + q − p′ − q ′ < 0.

Knowing the position of r and f1 relative to q ′−q

p−q
we can establish the sign of

the difference between gini(T ) and gini(T ′) given by (18). For r ∈ [0, f1] we have
gini(T ) − gini(T ′) � 0 and for r ∈ [f1,

q ′−q

p−q
] we have gini(T ) − gini(T ′) � 0.

To evaluate the difference between gain(T ) and gain(T ′) expressed in (23) we
proceed in the same way. The conditions obtained for r and r ′ remain valid. We must
find this time the position of f2 and of r. First, we establish the order of x1, x2, x3. These
points can be ordered by considering all the possible permutations of them. Applying
the proposition (25) to the probabilities p < q < p′, p < q ′ < q, p < q ′ < p′, and
q ′ < q < p′ we find that f ′(x1) < f ′(x3) < f ′(x2). And, using that f ′ is strictly
monotonically increasing (its derivative, f ′′, is positive), we conclude that we have to
analyze only the case x1 < x3 < x2. The other cases would contradict the monotonicity
of f ′.

Now, it is easy to show that E1 � 0, E2 � 0 and f2 ∈ [0,
q ′−q

p−q
). We have f2 <

q ′−q

p−q

as using (24):

f2 <
q ′ − q

p − q
⇐⇒ f ′(x2) − f ′(x3)

f ′(x2) − f ′(x1)
< 1 ⇐⇒ f ′(x3) > f ′(x1)

which is true as demonstrated before. So, for r ∈ [0, f2] we have gain(T ) −
gain(T ′) � 0, and for r ∈ [f2,

q ′−q

p−q
] we have gain(T ) − gain(T ′) � 0.
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In conclusion, for 0 < p < q ′ < q < p′ < 1 we have: r ∈ [0,
q ′−q

p−q
], r ′ ∈ [0,

q−q ′
p′−q ′ ]

and f1, f2 ∈ [0,
q ′−q

p−q
]. If r ∈ [0, min{f1, f2}], then the same test T ′ is selected by both

split criteria. If r ∈ (min{f1, f2}, max{f1, f2}), then different splits are selected. If
r ∈ [max{f1, f2}, q ′−q

p−q
], then the same test T is selected by both split criteria. �

Case 1(b). 0 < p < q ′ < p′ < q < 1.

Proof. To establish the position of r and r ′ we use conditions (13)–(16) as we did
before, and we obtain: r ∈ [p′−q

p−q
,

q ′−q

p−q
] and r ′ ∈ [0, 1]. The expression p + q − p′ − q ′

can be negative or positive. If p+q −p′ −q ′ � 0 then, as r � 0, p−q < 0, q −q ′ > 0,
and, q − p′ > 0, we have gini(T ) − gini(T ′) � 0. If p + q − p′ − q ′ � 0 then we have
f1 � 1. As r � 1, then we have r � f1 and, therefore we have gini(T ) − gini(T ′) � 0.
Therefore, for r ∈ [p′−q

p−q
,

q ′−q

p−q
] and r ′ ∈ [0, 1] we have gini(T ) − gini(T ′) � 0.

To evaluate the difference between the gain(T ) and gain(T ′) we proceed in the
same way. The conditions obtained for r and r ′ remain valid. The points x1, x2, x3 will
be ordered as in the previous case 1(a). Applying the proposition (25) to the probabilities
p < q ′ < p′, p < q ′ < q, q ′ < p′ < q, and p < p′ < q and using that f ′ is
strictly monotonically increasing, we conclude that we have only two possible cases:
x1 < x2 < x3, and x2 < x1 < x3.

(i) In the case x1 < x2 < x3, we have that f ′(x1) < f ′(x2) < f ′(x3), therefore E1 � 0
and E2 � 0. Thus we have gain(T ) − gain(T ′) � 0.

(ii) In the case x2 < x1 < x3, we have that f ′(x2) < f ′(x1) < f ′(x3), so E1 � 0,
E2 � 0. We show that

f2 >
q ′ − q

p − q
: f2 >

q ′ − q

p − q
⇐⇒ f ′(x2) − f ′(x3)

f ′(x2) − f ′(x1)
> 1

⇐⇒ f ′(x3) > f ′(x1)

which is true as we are in the case x2 < x1 < x3 and f ′ is strictly monotonically
increasing. Therefore we have gain(T ) − gain(T ′) � 0.

In conclusion, for 0 < p < q ′ < p′ < q < 1 we have: r ∈ [p′−q

p−q
,

q ′−q

p−q
], r ′ ∈ [0, 1], and

the behavior of the two split functions is identical, both are choosing T as split. �

Case 1(c). 0 < q ′ < p < q < p′ < 1.

Proof. We have: r ∈ [0, 1] and r ′ ∈ [ p−q ′
p′−q ′ ,

q−q ′
p′−q ′ ]. The expression p + q − p′ − q ′ can

be negative or positive. If p + q − p′ − q ′ � 0 then, as r � 0, p − q < 0, q − q ′ > 0,
and q − p′ < 0, we have gini(T ) − gini(T ′) � 0. If p + q − p′ − q ′ � 0 then we have
f1 � 1. As r � 1, then we have r � f1 and, therefore we have gini(T ) − gini(T ′) � 0.
For r ∈ [0, 1] and r ′ ∈ [ p−q ′

p′−q ′ ,
q−q ′
p′−q ′ ] we have gini(T ) − gini(T ′) � 0.
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Applying proposition (25) to the probabilities q ′ < p < q, q ′ < p < p′, q ′ <

q < p′, and p < q < p′ and, using the fact that f ′ is strictly monotonically increasing,
we conclude that we have only the following cases to analyze: x3 < x1 < x2 and
x3 < x2 < x1.

(i) If x3 < x1 < x2 we have: E1 � 0, E2 � 0, and f2 > 1, and therefore,
gain(T ) − gain(T ′) < 0. To demonstrate that f2 > 1 is equivalent to show that

f ′(x2) − f ′(x3)

f ′(x2) − f ′(x1)
>

q − p

q − q ′ .

The left-hand side of the inequality is greater than 1 as we have

f ′(x2) − f ′(x3)

f ′(x2) − f ′(x1)
> 1 ⇐⇒ f ′(x3) < f ′(x1).

The right-hand side of the inequality is strictly less than 1 as we have

q − p

q − q ′ < 1 ⇐⇒ p > q ′.

By combining these two observations the inequality to show becomes obviously.
(ii) For the other situation x3 < x2 < x1 we have: E1 � 0, E2 � 0. Therefore

gain(T ) − gain(T ′) � 0.
In conclusion, for 0 < q ′ < p < q < p′ < 1 we have: r ∈ [0, 1],

r ′ ∈ [ p−q ′
p′−q ′ ,

q−q ′
p′−q ′ ], and the behavior of the two split functions is identical, both are

choosing T ′ as split. �

Case 1(d). 0 < q ′ < p < p′ < q < 1.

Proof. Using the conditions (13)–(16) we obtain: r ∈ [p′−q

p−q
, 1], r ′ ∈ [ p−q ′

p′−q ′ , 1] and

f1 ∈ [p′−q

p−q
, 1]. If r ∈ [p′−q

p−q
, f1], then we have gini(T ) − gini(T ′) � 0. If r ∈ [f1, 1],

then we have gini(T ) − gini(T ′) � 0.
Applying the proposition (25) to the probabilities q ′ < p < p′, q ′ < p < q,

q ′ < p′ < q, and p < p′ < q and, using that f ′ is strictly monotonically increasing we
conclude that we have only the case x2 < x3 < x1 to analyze. As x2 < x3 < x1 we have:
E1 � 0, E2 � 0, and f2 ∈ (

p′−q

p−q
, 1). For r ∈ [p′−q

p−q
, f2] we have gain(T )−gain(T ′) � 0

and for r ∈ [f2, 1] we have gain(T ) − gain(T ′) � 0.
(i) Proof for f2 >

p′−q

p−q
. We demonstrate this inequality by equivalencies. First we

use the expression of f2 given in (24) and we obtain:

f2 >
p′ − q

p − q
⇐⇒ (

f ′(x3) − f ′(x2)
)(

q − q ′) >
(
f ′(x1) − f ′(x2)

)(
q − p′).

After some simple calculations we obtain:

⇐⇒ f ′(x3)
(
q − q ′) + f ′(x2)

(
q ′ − p′) + f ′(x1)

(
p′ − q

)
> 0.
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We substitute f ′(x1), f
′(x2), f

′(x3) by using (20)–(22):

⇐⇒ f (q) − f (q ′)
q − q ′

(
q − q ′) + f (q ′) − f (p′)

q ′ − p′
(
q ′ − p′)

+ f (q) − f (p)

q − p

(
p′ − q

)
> 0

⇐⇒ f (q)
(
p′ − p

) − f (p)
(
p′ − q

) − f
(
p′)(q − p) > 0. (∗)

As p < p′ < q, ∃α ∈ (0, 1), so that

p′ = αp + (1 − α)q,

(∗) ⇐⇒ f (q)(1 − α) + f (p)α > f
(
αp + (1 − α)q

)
which is true by the strict convexity of f .

(ii) Proof for f2 < 1. As we did before, we use also here the proof by equivalen-
cies. We substitute f2 by its expression given in (24) and we obtain:

f2 < 1 ⇐⇒ (
f ′(x2) − f ′(x3)

)(
q − q ′) >

(
f ′(x2) − f ′(x1)

)
(q − p)

⇐⇒ f ′(x3)
(
q ′ − q

) + f ′(x2)
(
p − q ′) + f ′(x1)(q − p) > 0.

We substitute f ′(x1), f
′(x2), f

′(x3) by their expressions given in (20)–(22):

⇐⇒ f (q ′) − f (q)

q ′ − q

(
q ′ − q

) + f (p′) − f (q ′)
p′ − q ′

(
p − q ′)

+ f (q) − f (p)

q − p
(q − p) > 0

⇐⇒ f
(
q ′)(p′ − p

) − f (p)
(
p′ − q ′) + f

(
p′)(p − q ′) > 0. (∗∗)

As q ′ < p < p′, ∃ α ∈ (0, 1), so that:

p = αq ′ + (1 − α)p′

(∗∗) ⇐⇒ f
(
p′)(1 − α) + f

(
q ′)α > f

(
αq ′ + (1 − α)p′)

which is true by the strict convexity of f .
In conclusion, for 0 < q ′ < p < p′ < q < 1 we have r ∈ [p′−q

p−q
, 1] and

r ′ ∈ [ p−q ′
p′−q ′ , 1]. For r ∈ [p′−q

p−q
, min{f1, f2}] the same test T is selected by both split

criteria, for r ∈ (min{f1, f2}, max{f1, f2}) different splits are selected, and for r ∈
[max{f1, f2}, 1] the same test T ′ is selected by both split criteria. �

Case 1(e). 0 < q ′ < p′ < p < q < 1.
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Proof. This case is dropped as it contradicts to conditions (15) and (16). As p′ − q ′ < 0,

(15) ⇐⇒ r(p − q) + q − p′ � 0 ⇐⇒ r � p′ − q

p − q
.

As the ratio p′−q

p−q
is strictly greater than 1, this implies that r > 1, but this is in contra-

diction with the fact that r represents a probability, so that r must be equal or less than 1.
Therefore such a case cannot be possible. �

We do not present here the analysis of the remaining five cases enumerated in (26).
The other possible cases listed are treated in the same manner as the first one. Each of
the remaining cases is divided in several sub-cases by taking into account the position of
p, q, p′, q ′. The domains of r, r ′, f1, f2 are established for each sub-case following an
identical path as for the first case. The complete detailed analysis can be found in [17].

Here we present a synthesis of the obtained results. Suppose we have two available
tests T , T ′ and our task is to determine if the test selected by the Gini Index or Informa-
tion Gain criterion is the same or not. T and T ′ can be characterized by the parameters
p, q, r and p′, q ′, r ′, respectively. We determine the maximum and the minimum of the
probabilities {p, q, p′, q ′}:
(i) If max{p, q, p′, q ′} and min{p, q, p′, q ′} belong to the same test, i.e., we obtain

{p, q}, or {p′, q ′} as the pair of minimum and maximum, then the two criteria of
split will select the same test to split on.

(ii) If we obtain {p, p′}, {p, q ′}, {q, p′} or {q, q ′} as pair of minimum and maximum,
then there are two possible situations to analyze. If (f1 − r)(f2 − r) > 0, then the
two criteria choose the same test, and, if (f1 − r)(f2 − r) < 0, then the two criteria
choose different tests.

The results obtained for the six cases identified can be summarized in the following way.
For the case (1) we obtained two situations in which the two split criteria select different
tests; by symmetry we obtain for the case (4) two such situations. Cases (2) and (5) are
similar (also by the symmetry) and, for each of them, we obtain one situation in which
the selection of test is done differently by the two criteria. Finally, cases (3) and (6) are
symmetric, and for each of them we obtain one situation of different selection.

By this formal analysis, we were able to study the behavior of the Gini Index and
Information Gain, to give an exact mathematical description of the situations when they
are choosing the same test to split on and when they are choosing different tests. This
allows us, without constructing decision trees, to decide for a given database if the Gini
Index criterion and the Information Gain criterion select the same split attribute.

In order to compare the two split functions in a general way, we used the obtained
results to compute the frequency of agreement or disagreement of the two split func-
tions. In a sequence of tests, we considered all possible databases having two binary
attributes and one binary decision attribute containing 50–200 tuples. We calculated
then for all sizes of databases the number of cases of disagreement. The number of cases
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of disagreement was never higher than 2% of all cases. This explains why most em-
pirical studies concluded that there is no significant difference between the two criteria.
Of course this does not mean that for some specific databases there might be significant
differences.

6. Conclusions and future work

In this paper, we presented a formal comparison of the behavior of two of the most
popular split functions, namely the Gini Index function and the Information Gain func-
tion. The situations where the two split functions agree/disagree on the selected split
were mathematically characterized. Based on these characterizations we were able to
analyze the frequency of agreement/disagreement of the Gini Index function and the In-
formation Gain function. We found that they disagree only in 2% of all cases, which
explains why most previously published empirical results concluded that it is not pos-
sible to decide which one of the two tests performs better. Moreover, we would like
to emphasize that the methodology introduced in this paper is not limited to the two
analyzed split criteria. We used it successfully to formalize and compare other split cri-
teria. Based on the gained deeper insights on the split process we are currently working
on a system, which will select the optimal criterion based on a user defined optimality
criterion. Preliminary results can be found in [20].
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