
1© Sun Microsystems, 2008. All rights reserved.

Joint work with: Dave Dice, Maurice Herlihy,
Doug Lea, Yossi Lev, Victor Luchangco,
Wayne Mesard, Kevin Moore, Dan Nussbaum

APPLICATIONS OF THE
ADAPTIVE TRANSACTIONAL
MEMORY TEST PLATFORM

Mark Moir, Sun Microsystems Laboratories

2© Sun Microsystems, 2008. All rights reserved.

Outline

• Background
> TM, Rock

• Adaptive Transactional Memory Test Platform (ATMTP)
> See Dan's talk later for details

• This talk:
> overview of preliminary experiments using ATMTP
> selected results, lessons learned

3© Sun Microsystems, 2008. All rights reserved.

Background: Transactional Memory

• Transactional Memory (TM) is a promising technology for
making it easier to develop concurrent programs that are
scalable, efficient, and correct.

• Software (STM), hardware (HTM), or some combination
(e.g., hybrid, hardware-assisted).

• “Unbounded” hardware solutions (a few years ago)
incomplete, too complicated to consider for mainstream
commercial processor.

4© Sun Microsystems, 2008. All rights reserved.

Background: Rock

• Rock will support best-effort HTM

• Can abort transactions that exceed resources or
encounter difficult events or instructions:
> examples: function calls, sdivx instruction, exceptions

• Useful for improving performance of Hybrid TM

• Useful for a variety of other purposes too

5© Sun Microsystems, 2008. All rights reserved.

HTM Instructions

• “Generic” best-effort HTM (as in ASPLOS 2006 paper)

> chkpt <fail_addr>
> commit

• Rock extension:
> rd %cps, <dest_reg>
> provides crucial feedback on reasons for transaction failure

6© Sun Microsystems, 2008. All rights reserved.

ATMTP supports Rock HTM instructions

• First-order approximation of Rock's success/failure
characteristics

• Goal: enable experimentation with HTM code before
Rock is widely available.

• Goal is not to accurately simulate Rock implementation or
performance

• Based on Wisconsins GEMS simulator, included in latest
open-source release (GEMS 2.1). You can play too!

7© Sun Microsystems, 2008. All rights reserved.

Preliminary exploration

• Overview of experiments described in paper:
> Transactional red-black tree with HyTM and PhTM
> Exposing TM to JavaTM programs, optimising Java-based STM
> DCAS-based collections in Java
> Eliding locks explicitly for libc and STL
> Eliding locks implicitly in Java

• Summary: some encouraging results, some less
encouraging, some pitfalls identified and lessons learned

8© Sun Microsystems, 2008. All rights reserved.

Preliminary exploration

• Overview of experiments described in paper:
> Transactional red-black tree with HyTM and PhTM
> Exposing TM to JavaTM programs, optimising Java-based STM
> DCAS-based collections in Java
> Eliding locks explicitly for libc and STL
> Eliding locks implicitly in Java

• Summary: some encouraging results, some less-
encouraging, some pitfalls identified and lessons learned

9© Sun Microsystems, 2008. All rights reserved.

Transactional red-black tree

• Concurrent Red-Black trees very challenging

• We implemented transactional version using our HyTM
compiler (ASPLOS 2006)

• Experiment:
> keys in range [0,4095]
> initialise tree with 2000 keys
> each thread repeatedly inserts (20%), deletes (20%) or looks

up (60%) randomly chosen key
> measure total operations completed per second

10© Sun Microsystems, 2008. All rights reserved.

Red-Black tree on old simulator

11© Sun Microsystems, 2008. All rights reserved.

Red-Black tree on ATMTP

12© Sun Microsystems, 2008. All rights reserved.

Red-Black tree with ATMTP

• Previous recursive version unsuccessful due to deeply
nested function calls
• After switch to iterative version, inlining, PhTM

successfully completes (almost) all operations using
hardware transactions
• HyTM less successful: 30% of operations executed as

software transactions
• Cause: TLB misses cause exceptions, txn is aborted so

exception not processed, so TLB not loaded
• In this case, ITLB was the problem.
• Need “warm up” techniques to avoid repeated failure

13© Sun Microsystems, 2008. All rights reserved.

DCAS-based collections in Java
• First DCAS approach (JDCAS):
> Modify JVM to expose “unsafe” interface to HTM instructions
> implement DCAS in Java inside transaction

• Eventually worked well, after we learned some lessons:
> compilation “catch 22”
> data warmup tricky due to “hidden” code, e.g. class metadata

needed for type cast
> nonobvious conflicts due to (false) sharing on GC metadata;

changes going into JVM to avoid this

14© Sun Microsystems, 2008. All rights reserved.

DCAS-based collections in Java

• Second DCAS approach (NDCAS):
> implement DCAS in native assembly code
> no “surprise” code executed
> factor GC metadata updates out of transactions
> works well, but less flexible than general Java code inside

hardware transaction

• Experiment:
> key range [0..63]
> each thread repeats: three lookups, one insert, one delete
> measure total operations completed per second
> compared existing list and skiplist from java.util.concurrent to

new DCAS-based ones

15© Sun Microsystems, 2008. All rights reserved.

DCAS-based collections in Java

16© Sun Microsystems, 2008. All rights reserved.

Eliding synchronization in Java
• Modified JVM attempts synchronized blocks and methods

using hardware transactions that:
> start transaction
> check lock is not held
> execute critical section
> attempt to commit; retry if unsuccessful
> if repeatedly unsuccessful, eventually acquire lock

(related to Rajwar and Goodman's “Speculative Lock Elision”,
but hardware only provides atomicity, not decisions about
whether/when to elide lock, whether/when to retry, etc.)

• Prototype does not yet revert to standard code when
ineffective

17© Sun Microsystems, 2008. All rights reserved.

Eliding synchronization in Java
• Experiment:
> Tested two collections from java.util:
• HashMap (with synchronized wrapper)

• HashTable (synchronization built in)

> Initialised collection with a set of objects
> Measured number of lookups of known-to-be-present objects

per second

• HashTable was successful; operations all completed
in hardware
• HashMap required small modification to factor division

(sdivx instruction) ouf of transaction

18© Sun Microsystems, 2008. All rights reserved.

Java lock elision

19© Sun Microsystems, 2008. All rights reserved.

Concluding Remarks
• Best effort HTM is coming in Rock. Our simulator allows us

and others to experiment with it before it arrives

• Preliminary explorations have yielded:
> some encouraging results, some less encouraging
> some pitfalls that require workarounds
> some issues not easy to address or worth addressing before we

have hardware and/or more accurate simulator

• ATMTP is a valuable tool for developing and testing HTM-
based code before Rock is available; will also be useful
afterwards

20© Sun Microsystems, 2008. All rights reserved.

More information, papers, etc:
http://research.sun.com/scalable

Mark Moir
mark.moir@sun.com

