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Conclusion

We use two lasers optical pumping on a caesium atomic fountain in order to prepare all atoms in the same quantum ground state. A first laser excites the F=4 ground state to pump the atoms

toward F=3 while a second π-polarized beam excites the F=3→F’=3 transition to produce Zeeman pumping toward m=0. To avoid trap states, we implemented the first laser in a 2D optical

lattice geometry thereby creating polarization gradients. This configuration has the advantage to produce Sisyphus cooling if the laser is tuned between the F=4→F’=4 and F=4→F’=5 transitions

of the D2 line, which is important to balance the heating produced by optical pumping. We have measured a total atomic flux (in the detection zone) of 7∙106 atoms/s, shot-noise limited.

Theoretical calculations predict that 98% of these atoms can be pumped in the m=0 clock state and preliminary experiments show an 80% efficiency.

Two-lasers pumping : numerical simulations

Definition and realization of the second

Preliminary results

Definition of the second Swiss primary frequency standard: 

Continuous atomic fountain clock

Motivation

To improve the stability, we want to put all the atoms 

in the F=3,mf=0 clock transition by two lasers optical 

pumping

Theoretical clock instability 

Microwave cavity

State preparation

Cold atomic beam
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Coupling coefficients

Absorption and stimulated emission 

Spontaneous emission

(natural lifetime)

Predictions

Optimal lasers parameters : F=4->F’=4 σ-polarized

F=3->F’=3 π-polarized
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FOCS-1 and FOCS2 are

two primary frequency

standards developed by

LTF in collaboration with

METAS for the realization

of the second.

The second is the duration of  9 192 631 770 periods of 

the radiation corresponding to the transition between the 

two hyperfine levels of the ground state of the caesium 

133 atom.

Fig.1 FOCS-1 is now in the 

Swiss National Institute of 

Metrology, METAS, Bern.

Fig.2 FOCS-2 under 

development at LTF, 

Neuchâtel.
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Only the atoms in state F=3, m=0 contribute to the 

atomic clock resonance :

clock transition

contribute to φ

These atoms do not contribute !

with

We are studying quantum state preparation using laser optical pumping. Numerical simulations predict a 

population inversion of 98% with two lasers optical pumping. This should result in an increase of the fountain 

clock signal by a factor of 7, and therefore a factor √7 for the stability at the shot noise limit. Preliminary 

experimental results show 80% of pumping efficiency in the F=3, mF=0 clock state.

Quantum state preparation

One laser optical pumping Two lasers optical pumping Practical difficulties

- 1st laser for hyperfine pumping to F=3

- 2nd laser for Zeeman pumping to m=0

Result: all atoms in one state F=3, m=0

Idea: use laser excitation of atoms in F=4 

to put them in F=3 after a few cycles.

Result: all atoms in F=3, m=-3,…,+3

Proposed solution

1. Existence of coherent trap states

The efficiency of hyperfine pumping may 

be reduced by the existence of coherent 

trap states. Solutions: apply a magnetic 

field or scramble the laser polarization.

2. Long Zeeman pumping time (15 s)

The number of pumping cycles to reach 

m=0 is ten times higher than for hyperfine 

pumping. Not a problem with cold atoms.

3. Spontaneous emission produces heat

Spontaneous emission (>100 photons) 

significantly increases the temperature of 

the cold atomic beam. A possible solution 

would be to combine pumping and cooling.

B

1. Zeeman pumping with polarized laser.

2. Hyperfine pumping with an optical lattice

to create a strong polarization gradient.

3. Lattice laser midway between 4-4’ and 4-5’ 

to produce Sisyphus cooling.

Atomic beam

Optical lattice
Zeeman 

pumping beam

One laser pumping Two lasers pumping

1. The central resonance corresponds to atoms in m=0.

2. One laser pumping results in a population distribution approximately 

uniform over the seven Zeeman components.

3. Two laser pumping concentrates the atoms in m=0. The distribution 

over Zeeman sub-levels is 80% in m=0 and 20% in m=+1,-1.

4. The useful flux is increased by a factor three.

+-

+

-


