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Population and sample

* Finite population U = {1,2,...,k,...,N}
* Variable of interest v.

* Values taken by the variable of interest on the
population

(yla"'ayka"'ayN)-
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Functions of interest

. 1 _
* Variance S = ~ d (e —Y)?
keU



Sample

* A sample s Is a subset of the population U.
U

Extrapolation



Sampling design

* A sampling design is a probability distribution on
all the possible samples:

p(s) >0, foralls c U, and » p(s) =1.

sCU

* The random sample S is a random set such that
Pr(S =s)=p(s).
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Basic estimation

* The inclusion probability 7., k € U, can be derived
from the sampling design

Tk = ZP(S)-

sk

* Horvitz-Thompson estimator

Poy ke

keS

* Unbiased if 7, >0 forall ke U.



Auxiliary information

Auxiliary Interest
Information Information
Auxiliary Interest
variables variables
X Y
known unknown
or partially
known
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Auxiliary information

Sampling and auxiliary
Information

Sampling design

Data collection

Estimation
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Regression estimator

¥

X X

i Regression estimator Yreg = Y + (X — X)b
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Generalized regression
estimator (GREG) (1)

Multivariate auxiliary information given by the
totals of p auxiliary variables z1, ..., z,.

* Vector xyx = (21, ..., Tkj, ..., Tp)' Of values taken by
the p auxiliary variables on unit .

* The total X = ) ~ x, is assumed to be known.
keU

» The aim is to estimate Y = » y;, using the

keU
Information given by X.
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Generalized regression
estimator (GREG) (2)

GREG estimator: Yoreg = Y + (X — X)'b

—1
Z qeXEYk
T
keS k

o (Z qukx;>

Tk
keS
* The ¢, are weights.
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Other presentation of the GREG

S o B grYk
YereG = E WEYE = E —
Tk
keSS kesS

1 R
Wi = — {1 + (X — X)'T_lquk} :

Tk

gr =1+ X -X)T lgxy, ,

/
- XEX1.qk
T:E | k2%
Tr
kesS k

PROBLEM: the weights can be negative.
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Ratio estimator 1

the regression line crosses the origin.

¥

S8
-
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Ratio estimator 2

* Let x;, = x;, only one auxiliary variable, and ¢; = --.
Then

N X1. X X
.b_<zqkkk> ZC]k kYL
kes 'k keS

B T Yk _
(x2) s2-%

* The regression estimator becomes the Ratio
estimator

> > S Y ~X
YGREG=Y+(X—X)’b:Y+(X—X)§:y§
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Multivariate calibration

* Multivariate auxiliary information given by the
totals of p auxiliary variables z1, ..., z,.

* Vector xyx = (21, ..., Tkj, ..., Tp)' Of values taken by
the p auxiliary variables on unit .

* The total
X — Z Xk,

IS assumed to be known.

» The aim is to estimate Y = » ~y;, using the

keU
Information given by X.
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|dea of calibration

* Horvitz-Thompson estimator > dyys.

keS
where d;, = 1/m.

* The idea consists of looking for new weights w;, as
close as possible to d;, and such that

> wyx;, = X (calibration constraint).
keS
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Pseudo-distance

* A pseudo-distance Gg(.,.) between w; and
dr = 1/ 1S minimized,

Z G d
Wk qk
keS

?

under the constraints of calibration.
° qu, k € S, are strictly positive known coefficients.

* Function G, (.,.) Is assumed to be strictly convex,
positive and such that G.(d;., d;.) = 0.
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Solution

* The weights w,, are then defined by

/
Wl = dka(A Xk),

where d;. Fy(.) IS the reciprocal of the function
G;g(, dk)/qk, with

OG L (wy, di)

/ _

)

and \ is the Lagrange multiplier following from the
constraints.
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Identification of A\

» The vector A\ is obtained by solving the calibration
equations:

Zwkxk — deFk(A/Xk)Xk — Z X

kesS keS keU

This system of equations can be non-linear (use of
Newton method).

* Next the weights are computed w,, = dka(Xxk).

» Finally, the calibrated estimator is Yoa = Y  wiy
kes
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Weights and g-weights

* The weights w,, are close to d;, = 1/x;, and are such

that Z WEXE = Z X .

keS keU
* g-weights g, = m,wy, (close to 1).

» Horvitz-Thompson estimator ¥ = 2
keS Tk

» Calibrated estimator Yo = > " wyyp = Y Ikl
kes kes |k

The ¢, are the distorsion of the weights with respect to
the Horvitz-Thompson estimator.
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Chi-square distance (1)

ppose that G,(.,.) Is chi-square function,

Gr(wg, dy) = (w0 ; dk)2,
k
25+
20+
5!
10+
5l
o 0 10 20 30 40
Linear method: function G(wy, d;) with ¢, = 1 and

dk — 10 —p. 22/43



Chi-square distance (2)

e derivative Is

2(wy, — dy,)

G (wk, di,) = y ,
k

0 10 20 30 4‘07
Linear method: function G'(wy, d;,) with ¢, = 1 and
l dk — 10 —p. 23/43



» Calibration function

-2+

-4

-4 -2 0 2 4

Linear method: function Fj(u) with ¢, = 1

Chi-square distance (3)
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Chi-square distance (4)

° Welghts Wy = dka(u) — dk(l + qk)\/xk).
* The calibration equation is linear

X = }/i + Z dequX%A
keS

» |dentification of A\

—1
A — (Z dkxquxg.c) (X — }2)

keS
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Chi-square distance (5)




Chi-square distance (6)

* The calibrated estimator is then equal to the
generalized regression estimator which is

Yorpc =Y + (X - X)'D,

where

1 N XEYEJE
b=T"1 § : .
Tk
kesS
and

/
- XEXLqE
T = E .
keS
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The raking ratio method:
distance

ppose that the distance Is

0 10 20 30 40

“Raking ratio": function G(w;,, = d;) with ¢;, = 1 and
d;. = 10
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The raking ratio method:
derivatives

e derivative of the distance Is

G'(wy, dy;) = log %,
k

s

0

1l

ol

3!
a4

5!

6.

-5 0 5 10 15 20 25 30

“Raking ratio": function G'(wy, d;) with ¢, = 1 and



The raking ratio method:
calibration

e calibration function Is

Fi(u) = exp giu.

70}

60

50+

40+

30+

2071

10+

O,

“Raking ratio": function Fj(u) with g, = 1
ADVANTAGE: The weights are always positive.
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Marginal calibration(1)

djust the following table

80 170 150 | 400
90 80 210| 380
10 80 130 | 220
180 330 490 | 1000
to the marginal column (430, 360, 210),
and the marginal row (150, 300, 550).
Calibration by row: iteration 1
86.00 182.75 161.25| 430.00
85.26 75.79 198.95 | 360.00
955 76.36 124.09 | 210.00
- 180.81 334.90 484.29 | 1000.00




Marginal calibration(2)

Calibration by column: iteration 2

71.35 163.70 183.13 | 418.18
70.73 67.89 22594 | 364.57
7.92 68.41 140.93| 217.25
150.00 300.00 550.00 | 1000.00
Calibration by row: iteration 3
73.36 168.33 188.31 | 430.00
69.85 67.04 223.11 | 360.00
7.65 66.12 136.22 | 210.00
150.87 301.49 547.64 | 1000.00
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Marginal calibration(3)

Calibration by column: iteration 4

72.94 167.50 189.12 | 429.56
69.45 66.71 224.07 | 360.23
7.61 65.79 136.81| 210.22
150.00 300.00 550.00 | 1000.00
Calibration by row: iteration 5
73.02 167.67 189.31| 430.00
69.40 66.67 223.93 | 360.00
7.60 65.73 136.67 | 210.00
150.02 300.06 549.91 | 1000.00

—p. 33/43



Marginal calibration(4)

Calibration by column: iteration 6
73.01 167.64 189.34 | 429.98
69.39 66.65 223.97 | 360.01
7.60 65.71 136.69| 210.01
150.00 300.00 550.00 | 1000.00

Calibration by row: iteration 7
73.01 167.64 189.35| 430.00
69.39 66.65 223.96 | 360.00

7.60 65.71 136.69 | 210.00

150.00 300.00 550.00 | 1000.00
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Marginal calibration(5)

Calibration by column: iteration 8
73.01 167.64 189.35| 430.00
69.39 66.65 223.96 | 360.00
7.60 65.71 136.69| 210.00
150.00 300.00 550.00 | 1000.00

After 8 iterations, the adjustment is very accurate.
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Pseudo-distances

G (wg, dy) Fx(u) Type
p (wy —d)” Wi 1+ Chi-squar
2dp, a. QU square
1 wyglog Z—I’; + dp, — wg log Z—: exp(qru) Entropy

1/2 2(\/wy — V/dy)? 2 (1 — d—"’) (1 —qru/2)~2  Hellinger Distance

W
d d -1
0 dj, log w—’; + wy, — dg 1 — w—’; (1 — qru) Inverse Entropy
2 2
—1 % ( —’%) /2 (1 —2qwu)~Y2  Inverse Chi-square
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Logistic function:
distance

N

0 10 20 30 40

Figure 1. function G(wg,= d;) with ¢z = 1 and
dir. = 10



Logistic function: derivative

e derivative of the dist

0.5 :

ance

0.4
0.3;
0.2;

0.1;

0
-0. 1! /

0 10 20 30 40

function G'(wy., di,) with ¢, = 1 and d;, = 10
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Logistic function

e calibration function Is
i !

2.5}
oL

1.5/

1,
0.5¢ J
-4 -2 0 2 4

function Fi.(u) with ¢, =1
ADVANTAGE: The weights are bounded.
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Remarks on the calibration problem 1

* The weights can be bounded in such a way that

For instance B~ = 0.4 and BT = 3.
» Other calibration functions can also be used.

* The variance of the regression estimator is a
variance of residuals.
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Remarks on the calibration problem 1

» Calibration to several stages (municipalities,
households, individuals)

* |f the calibration variables can explain the
nonresponse, then a calibration can be used to
correct at the same time the sampling error and
the nonresponse error.
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A good software of calibration?

Easy to use?
Which distance can be used?

Possibility to impose bound?

Special functionalities for non-responses?

Computation of the estimator of variance, or at
least of the residuals?

Shareware?
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