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Plan

• Reminder on the theory of sampling
• Regression estimator
• Calibration estimators, choice of the function of

calibration
• General remarks
• What is a good calibration software?
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Population and sample

• Finite population U = {1, 2, . . . , k, . . . , N}

• Variable of interest y.

• Values taken by the variable of interest on the
population

(y1, . . . , yk, . . . , yN ).
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Functions of interest

• Total Y =
∑

k∈U

yk

• Mean Y =
1

N

∑

k∈U

yk

• Variance S2
y =

1

N

∑

k∈U

(yk − Y )2
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Sample

• A sample s is a subset of the population U.

s

U

Extrapolation
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Sampling design

• A sampling design is a probability distribution on
all the possible samples:

p(s) ≥ 0, for all s ⊂ U, and
∑

s⊂U

p(s) = 1.

• The random sample S is a random set such that
Pr(S = s) = p(s).
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Basic estimation

• The inclusion probability πk, k ∈ U, can be derived
from the sampling design

πk =
∑

s∋k

p(s).

• Horvitz-Thompson estimator

Ŷ =
∑

k∈S

yk

πk

.

• Unbiased if πk > 0 for all k ∈ U.
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Auxiliary information

Auxiliary
Information

Auxiliary
variables

X

known
or partially
known

Interest
Information

Interest
variables

Y

unknown
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Sampling and auxiliary
information

Auxiliary information

Sampling design

Estimation

Data collection
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Regression estimator

Ŷ

Ŷ REG

X̂ X

Regression estimator Ŷ REG = Ŷ + (X − X̂ )̂b
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Generalized regression
estimator (GREG) (1)

• Multivariate auxiliary information given by the
totals of p auxiliary variables x1, ..., xp.

• Vector xk = (xk1, ..., xkj , ..., xkp)
′ of values taken by

the p auxiliary variables on unit k.

• The total X =
∑

k∈U

xk, is assumed to be known.

• The aim is to estimate Y =
∑

k∈U

yk, using the

information given by X.
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Generalized regression
estimator (GREG) (2)

• GREG estimator: ŶGREG = Ŷ + (X − X̂)′b̂

• X =
∑

k∈U

xk

• X̂ =
∑

k∈S

xk

πk

• b̂ =

(
∑

k∈S

qkxkx
′

k

πk

)−1∑

k∈S

qkxkyk

πk

• The qk are weights.
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Other presentation of the GREG

ŶGREG =
∑

k∈S

wkyk =
∑

k∈S

gkyk

πk

,

wk =
1

πk

{
1 + (X − X̂)′T̂−1qkxk

}
,

gk = 1 + (X − X̂)′T̂−1qkxk ,

T̂ =
∑

k∈S

xkx
′

kqk

πk

.

PROBLEM: the weights can be negative.
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Ratio estimator 1

If the regression line crosses the origin.

Ŷ

Ŷ REG

X̂ X
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Ratio estimator 2

• Let xk = xk only one auxiliary variable, and qk = 1
xk

.

Then

• b̂ =

(
∑

k∈S

qkxkx
′

k

πk

)−1∑

k∈S

qkxkyk

πk

=

(
∑

k∈S

xk

πk

)−1∑

k∈S

yk

πk

=
Ŷ

X̂

• The regression estimator becomes the Ratio
estimator

ŶGREG = Ŷ + (X − X̂)′b̂ = Ŷ + (X − X̂)
Ŷ

X̂
= Ŷ

X

X̂
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Multivariate calibration

• Multivariate auxiliary information given by the
totals of p auxiliary variables x1, ..., xp.

• Vector xk = (xk1, ..., xkj , ..., xkp)
′ of values taken by

the p auxiliary variables on unit k.
• The total

X =
∑

k∈U

xk,

is assumed to be known.
• The aim is to estimate Y =

∑

k∈U

yk, using the

information given by X.
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Idea of calibration

• Horvitz-Thompson estimator
∑

k∈S

dkyk,

where dk = 1/πk.

• The idea consists of looking for new weights wk as
close as possible to dk and such that

∑

k∈S

wkxk = X (calibration constraint).
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Pseudo-distance

• A pseudo-distance Gk(., .) between wk and
dk = 1/πk is minimized,

min
wk

∑

k∈S

Gk(wk, dk)

qk

,

under the constraints of calibration.
• qk, k ∈ S, are strictly positive known coefficients.
• Function Gk(., .) is assumed to be strictly convex,

positive and such that Gk(dk, dk) = 0.
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Solution

• The weights wk are then defined by

wk = dkFk(λ
′

xk),

where dkFk(.) is the reciprocal of the function
G′

k(., dk)/qk, with

G′

k(wk, dk) =
∂Gk(wk, dk)

∂wk

,

and λ is the Lagrange multiplier following from the
constraints.
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Identification of λ

• The vector λ is obtained by solving the calibration
equations:

∑

k∈S

wkxk =
∑

k∈S

dkFk(λ
′

xk)xk =
∑

k∈U

xk.

This system of equations can be non-linear (use of
Newton method).

• Next the weights are computed wk = dkFk(λ
′

xk).

• Finally, the calibrated estimator is ŶCAL =
∑

k∈S

wkyk

– p. 20/43



Weights and g-weights

• The weights wk are close to dk = 1/πk and are such
that

∑

k∈S

wkxk =
∑

k∈U

xk

• g-weights gk = πkwk (close to 1).

• Horvitz-Thompson estimator Ŷ =
∑

k∈S

yk

πk

• Calibrated estimator ŶC =
∑

k∈S

wkyk =
∑

k∈S

gkyk

πk

.

The gk are the distorsion of the weights with respect to
the Horvitz-Thompson estimator.
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Chi-square distance (1)

Suppose that Gk(., .) is chi-square function,

Gk(wk, dk) =
(wk − dk)

2

dk

,
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Linear method: function G(wk, dk) with qk = 1 and
dk = 10 – p. 22/43



Chi-square distance (2)

The derivative is

G′

k(wk, dk) =
2(wk − dk)

dk

,

0 10 20 30 40

-1

0

1

2

3

Linear method: function G′(wk, dk) with qk = 1 and
dk = 10
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Chi-square distance (3)

• Calibration function

Fk(u) = 1 + qku.

-4 -2 0 2 4
-4

-2

0

2

4

6

Linear method: function Fk(u) with qk = 1
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Chi-square distance (4)

• Weights wk = dkFk(u) = dk(1 + qkλ
′

xk).

• The calibration equation is linear

X = X̂ +
∑

k∈S

dkxkqkx
′

kλ

• Identification of λ

λ =

(
∑

k∈S

dkxkqkx
′

k

)−1

(X − X̂)
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Chi-square distance (5)

• Weights

wk = dkFk(u) = dk(1 + qkλ
′

xk)

= dk



1 + qk(X − X̂)′

(
∑

k∈S

xkqkx
′

k

πk

)−1

xk



 .
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Chi-square distance (6)

• The calibrated estimator is then equal to the
generalized regression estimator which is

ŶGREG = Ŷ + (X − X̂)′b̂,

where
b̂ = T̂

−1
∑

k∈S

xkykqk

πk

.

and

T̂ =

(
∑

k∈S

xkx
′

kqk

πk

)
.
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The raking ratio method:
distance

Suppose that the distance is

G(wk, dk) = wk log
wk

dk

+ dk − wk.
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“Raking ratio": function G(wk,= dk) with qk = 1 and
dk = 10
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The raking ratio method:
derivatives

The derivative of the distance is

G′(wk, dk) = log
wk

dk

,

-5 0 5 10 15 20 25 30

-6

-5

-4

-3

-2

-1

0

1

“Raking ratio": function G′(wk, dk) with qk = 1 and
dk = 10
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The raking ratio method:
calibration

The calibration function is

Fk(u) = exp qku.

-4 -2 0 2 4
0
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40
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70

“Raking ratio": function Fk(u) with qk = 1

ADVANTAGE: The weights are always positive.
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Marginal calibration(1)

Adjust the following table

80 170 150 400
90 80 210 380
10 80 130 220

180 330 490 1000

to the marginal column (430, 360, 210),
and the marginal row (150, 300, 550).

Calibration by row: iteration 1
86.00 182.75 161.25 430.00
85.26 75.79 198.95 360.00

9.55 76.36 124.09 210.00
180.81 334.90 484.29 1000.00 – p. 31/43



Marginal calibration(2)

Calibration by column: iteration 2
71.35 163.70 183.13 418.18
70.73 67.89 225.94 364.57

7.92 68.41 140.93 217.25
150.00 300.00 550.00 1000.00

Calibration by row: iteration 3
73.36 168.33 188.31 430.00
69.85 67.04 223.11 360.00

7.65 66.12 136.22 210.00
150.87 301.49 547.64 1000.00

– p. 32/43



Marginal calibration(3)

Calibration by column: iteration 4
72.94 167.50 189.12 429.56
69.45 66.71 224.07 360.23

7.61 65.79 136.81 210.22
150.00 300.00 550.00 1000.00

Calibration by row: iteration 5
73.02 167.67 189.31 430.00
69.40 66.67 223.93 360.00

7.60 65.73 136.67 210.00
150.02 300.06 549.91 1000.00
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Marginal calibration(4)

Calibration by column: iteration 6
73.01 167.64 189.34 429.98
69.39 66.65 223.97 360.01

7.60 65.71 136.69 210.01
150.00 300.00 550.00 1000.00

Calibration by row: iteration 7
73.01 167.64 189.35 430.00
69.39 66.65 223.96 360.00

7.60 65.71 136.69 210.00
150.00 300.00 550.00 1000.00
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Marginal calibration(5)

Calibration by column: iteration 8
73.01 167.64 189.35 430.00
69.39 66.65 223.96 360.00

7.60 65.71 136.69 210.00
150.00 300.00 550.00 1000.00

After 8 iterations, the adjustment is very accurate.
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Pseudo-distances

α Gα(wk, dk) gα(wk, dk) F α
k (u) Type

2
(wk−dk)2

2dk

wk

dk

− 1 1 + qku Chi-square

1 wk log wk

dk

+ dk − wk log wk

dk

exp(qku) Entropy

1/2 2(
√

wk −

√

dk)2 2

�
1 −

q
dk

wk

�
(1 − qku/2)−2 Hellinger Distance

0 dk log dk

wk

+ wk − dk 1 −
dk

wk

(1 − qku)−1 Inverse Entropy

−1
(wk−dk)2

2wk

�
1 −

d2

k

w2

k

�
/2 (1 − 2qku)−1/2 Inverse Chi-square
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Logistic function:
distance

0 10 20 30 40

0.5

1

1.5

2

Figure 1: function G(wk,= dk) with qk = 1 and

dk = 10
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Logistic function: derivative

The derivative of the distance

0 10 20 30 40
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function G′(wk, dk) with qk = 1 and dk = 10
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Logistic function

The calibration function is

-4 -2 0 2 4
0

0.5

1
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3

function Fk(u) with qk = 1

ADVANTAGE: The weights are bounded.
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Remarks on the calibration problem 1

• The weights can be bounded in such a way that

B− ≤
wk

dk

≤ B+.

For instance B− = 0.4 and B+ = 3.
• Other calibration functions can also be used.
• The variance of the regression estimator is a

variance of residuals.
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Remarks on the calibration problem 1

• Calibration to several stages (municipalities,
households, individuals)

• If the calibration variables can explain the
nonresponse, then a calibration can be used to
correct at the same time the sampling error and
the nonresponse error.
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A good software of calibration?

• Easy to use?
• Which distance can be used?
• Possibility to impose bound?
• Special functionalities for non-responses?
• Computation of the estimator of variance, or at

least of the residuals?
• Shareware?
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