Inequality: Ordinal	
Cowell, Flachaire	
Motivation Basic Problem Previous work	Measuring Inequality with ordinal data
Approach Model Basic structure	
Characterisation Inequality	Frank Cowell ¹ Emmanuel Flachaire ²
Measures Transfer principle Reference point Sensitivity	¹ STICERD London School of Economics
Normalisation Empirical aspects	² GREQAM, Marseille.
Implementation Performance Application	Neuchâtel, June 2012
Summary	< ロ > 《 同 > 《 同 > 《 同 > 《 同 > 《 同 > 《 同 > 《 同 > 》 回 ・ ク Q (>

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality

Transfer princip

Reference po

Normalisation

Empirical aspects Implementation

Application

Summary

1 Motivation

- Basics
- Previous work
- 2 Approach
 - Model
 - Basic structure
 - Characterisation
- Inequality Measures
 - Transfer principle
 - Reference point
 - Sensitivity
 - Normalisation
- 4 Empirical aspects
 - Implementation

ヘロト 人間 トイヨト イヨト

3

Sac

- Performance
- Application
- 5 Summarv

Ordinal
Cowell, Flachaire
Aotivation

- Basic Problem
- Approach Model
- Characterisation
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation Performance
- Summary

- Inequality analysis: origins go back to Pigou and Dalton
 - explicitly tied into welfare: contrast Gini and Lorenz
 seen as more fundamental than approaches such as Pareto
- But all of this is erected on rather demanding informational structure
 - income, wealth, cardinally measurable and comparableincome, earnings usually assumed to be non-negative

-

Sar

Inequality: Ordinal Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structu

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

• Inequality analysis: origins go back to Pigou and Dalton

- explicitly tied into welfare: contrast Gini and Lorenz
- seen as more fundamental than approaches such as Pareto
- But all of this is erected on rather demanding informational structure
 - income, wealth, cardinally measurable and comparableincome, earnings usually assumed to be non-negative

イロト イロト イヨト イヨト ニヨー

Sar

Inequality: Ordinal Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structur

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- Inequality analysis: origins go back to Pigou and Dalton
 explicitly tied into welfare: contrast Gini and Lorenz
 - seen as more fundamental than approaches such as Pareto
- But all of this is erected on rather demanding informational structure
 - income, wealth, cardinally measurable and comparableincome, earnings usually assumed to be non-negative

イロト イロト イヨト イヨト ニヨー

Sar

Inequality: Ordinal Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structu

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- Inequality analysis: origins go back to Pigou and Dalton
 explicitly tied into welfare: contrast Gini and Lorenz
 seen as more fundamental than approaches such as Pareto
- But all of this is erected on rather demanding informational structure

income, wealth, cardinally measurable and comparableincome, earnings usually assumed to be non-negative

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inequality: Ordinal Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Characterisation

Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- Inequality analysis: origins go back to Pigou and Dalton
 - explicitly tied into welfare: contrast Gini and Lorenz
 - seen as more fundamental than approaches such as Pareto
- But all of this is erected on rather demanding informational structure
 - income, wealth, cardinally measurable and comparableincome, earnings usually assumed to be non-negative

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inequality: Ordinal Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- Inequality analysis: origins go back to Pigou and Dalton
 - explicitly tied into welfare: contrast Gini and Lorenz
 - seen as more fundamental than approaches such as Pareto
- But all of this is erected on rather demanding informational structure
 - income, wealth, cardinally measurable and comparable
 income, earnings usually assumed to be non-negative

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inequality: Ordinal Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- Inequality analysis: origins go back to Pigou and Dalton
 - explicitly tied into welfare: contrast Gini and Lorenz
 - seen as more fundamental than approaches such as Pareto
- But all of this is erected on rather demanding informational structure
 - income, wealth, cardinally measurable and comparable
 income, earnings usually assumed to be non-negative

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inequality: Ordinal Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- Inequality analysis: origins go back to Pigou and Dalton
 - explicitly tied into welfare: contrast Gini and Lorenz
 - seen as more fundamental than approaches such as Pareto
- But all of this is erected on rather demanding informational structure
 - income, wealth, cardinally measurable and comparable

- income, earnings usually assumed to be non-negative
- Maybe need a new approach to inequality measurement

Outline

Inequality: Ordinal

Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

1 Motivation

Basics

• Previous work

- Approach
 - Model
 - Basic structure
 - Characterisation
- 3 Inequality Measures
 - Transfer principle
 - Reference point
 - Sensitivity
 - Normalisation
- 4 Empirical aspects
 - Implementation

Э

Sac

- Performance
- Application
- Summarv

Inequality: Ordinal Cowell, Flachaire

Motivation

Basic Problem

11011043 11011

Model

Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

• 3 ingredients of the income-inequality measurement problem:

• the definition of "income"

• the definition of the "income-receiving unit"

• method of aggregation

• Same issues arise in cases where "income" is ordinal

• Look at standard income-inequality problem before modelling ordinal-data problem

Inequality: Ordinal Cowell,

Flachaire

Motivation

Basic Problem

Approach Model

Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

- 3 ingredients of the income-inequality measurement problem:
 - the definition of "income"
 - the definition of the "income-receiving unit"
 - method of aggregation
- Same issues arise in cases where "income" is ordinal
- Look at standard income-inequality problem before modelling ordinal-data problem

Inequality: Ordinal Cowell.

Flachaire

Motivation

Basic Problem

Previous work

Approach Model Basic structu

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

- 3 ingredients of the income-inequality measurement problem:
 - the definition of "income"
 - the definition of the "income-receiving unit"
 - method of aggregation
- Same issues arise in cases where "income" is ordinal
- Look at standard income-inequality problem before modelling ordinal-data problem

Inequality: Ordinal Cowell.

Flachaire

Motivation

Basic Problem

Previous work

Approach Model

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

- 3 ingredients of the income-inequality measurement problem:
 - the definition of "income"
 - the definition of the "income-receiving unit"
 - method of aggregation
- Same issues arise in cases where "income" is ordinal
- Look at standard income-inequality problem before modelling ordinal-data problem

Inequality: Ordinal Cowell.

Flachaire

Motivation

Basic Problem

11011043 11011

Model

Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

- 3 ingredients of the income-inequality measurement problem:
 - the definition of "income"
 - the definition of the "income-receiving unit"
 - method of aggregation
- Same issues arise in cases where "income" is ordinal
- Look at standard income-inequality problem before modelling ordinal-data problem

Inequality: Ordinal Cowell,

Flachaire

Motivation

Basic Problem

Approach

Model

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

- 3 ingredients of the income-inequality measurement problem:
 - the definition of "income"
 - the definition of the "income-receiving unit"
 - method of aggregation
- Same issues arise in cases where "income" is ordinal
- Look at standard income-inequality problem before modelling ordinal-data problem

Inequality: Ordinal

Cowell, Flachaire

Motivation

Basic Problem

Previous work

Approacl Model

Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation

Application

Summary

• 3 ingredients:

- **"income":** family income, earnings, wealth $x \in X \subseteq \mathbb{R}$.
- "income-receiving unit": n persons
- method of aggregation: function $X^n \to \mathbb{R}$

• Usually work with $X^n_{\mu} \subset \mathbb{R}$

• X^n_{μ} : Distributions obtainable from a given total income $n\mu$ using lump-sum transfers

• Obviously can't do that here: μ is undefined

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

Inequality: Ordinal

Cowell, Flachaire

Motivation

Basic Problem

T TEVIOUS WOL

Model

Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation

Application

Summary

• 3 ingredients:

- **"income":** family income, earnings, wealth $x \in X \subseteq \mathbb{R}$.
- "income-receiving unit": *n* persons
- method of aggregation: function $X^n \to \mathbb{R}$

• Usually work with $X^n_{\mu} \subset \mathbb{R}$

• X^n_{μ} : Distributions obtainable from a given total income $n\mu$ using lump-sum transfers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Obviously can't do that here: μ is undefined

Inequality: Ordinal

Cowell, Flachaire

Motivation

Basic Problem

Previous work

Approact Model

Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Application

Summary

• 3 ingredients:

- **"income":** family income, earnings, wealth $x \in X \subseteq \mathbb{R}$.
- "income-receiving unit": *n* persons
- method of aggregation: function $X^n \to \mathbb{R}$
- Usually work with $X^n_{\mu} \subset \mathbb{R}$
- X^n_{μ} : Distributions obtainable from a given total income $n\mu$ using lump-sum transfers

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• Obviously can't do that here: μ is undefined

Inequality: Ordinal

Cowell, Flachaire

Motivation

Basic Problem

Approach

Model

Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation

Application

- 3 ingredients:
 - "income": family income, earnings, wealth $x \in X \subseteq \mathbb{R}$.
 - "income-receiving unit": *n* persons
 - method of aggregation: function $X^n \to \mathbb{R}$
- Usually work with $X^n_{\mu} \subset \mathbb{R}$
- X^n_{μ} : Distributions obtainable from a given total income $n\mu$ using lump-sum transfers
- Obviously can't do that here: μ is undefined

Inequality: Ordinal

Cowell. Flachaire

Basic Problem

• 3 ingredients:

• "income": u = U(x).

• "income-receiving unit": *n* persons (as before)

• **method of aggregation:** function $\mathbb{U}^n \to \mathbb{R}$

- ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○

Inequality: Ordinal

Cowell, Flachaire

Motivation

Basic Problem

Model

Characterisation

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects Implementatio

Performance

Application

Summary

• 3 ingredients:

- "income": u = U(x).
- **"income-receiving unit":** *n* persons (as before)
- method of aggregation: function $\mathbb{U}^n \to \mathbb{R}$

• Problem of cardinalisation

- But just assuming cardinal utility is no use
 - Already pointed out in Atkinson (1970)
 - Dalton (1920) suggested inequality of (cardinal) utility
 - But if, for all *i*, you multiply u_i by $\lambda \in (0, 1)$ and add $\delta = \mu [1 \lambda] \dots$
 - ...this will automatically reduce measured inequality.
- Is this just a technicality?
- Can we proceed just as with regular income?

Inequality: Ordinal

Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementatio

Performance

Application

- 3 ingredients:
 - "income": u = U(x).
 - **"income-receiving unit":** *n* persons (as before)
 - method of aggregation: function $\mathbb{U}^n \to \mathbb{R}$
- Problem of cardinalisation
- But just assuming cardinal utility is no use
 - Already pointed out in Atkinson (1970)
 - Dalton (1920) suggested inequality of (cardinal) utility
 - But if, for all *i*, you multiply u_i by $\lambda \in (0,1)$ and add $\delta = \mu [1 \lambda] \dots$
 - ...this will automatically reduce measured inequality.
- Is this just a technicality?
 - Can we proceed just as with regular income?

Inequality: Ordinal

Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementatio

Performance

Summarv

- 3 ingredients:
 - "income": u = U(x).
 - **"income-receiving unit":** *n* persons (as before)
 - method of aggregation: function $\mathbb{U}^n \to \mathbb{R}$

• Problem of cardinalisation

- But just assuming cardinal utility is no use
 - Already pointed out in Atkinson (1970)
 - Dalton (1920) suggested inequality of (cardinal) utility
 - But if, for all *i*, you multiply u_i by $\lambda \in (0,1)$ and add $\delta = \mu [1 \lambda] \dots$
 - ...this will automatically reduce measured inequality.
- Is this just a technicality?
- Can we proceed just as with regular income?

Inequality: Ordinal

Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Characterisation

Inequality Measures Transfer principl Reference point Sensitivity

Empirical aspects

Performance

Application

- Atkinson and Dalton examples of "aggregation process"
 - How social values are introduced into an inequality-evaluation of income distribution...
 - ...not the inequality-evaluation of a distribution of utilities.
- Sometimes these are equivalent
 - but sometimes not
 - maybe utility has no natural income equivalent?
- Case 1. U depends on x with no agreed monetary valuation
 - quality of life
 - happiness
- Case 2. *U* depends on *x* that is categorical:
 - health status
 - level of completed education
 - access to public services

Inequality: Ordinal

Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Characterisation

Inequality Measures Transfer principl Reference point Sensitivity

Empirical aspects Implementation

Performance

11

- Atkinson and Dalton examples of "aggregation process"
 - How social values are introduced into an inequality-evaluation of income distribution...
 - ...not the inequality-evaluation of a distribution of utilities.
- Sometimes these are equivalent
 - but sometimes not
 - maybe utility has no natural income equivalent?
 - Case 1. U depends on x with no agreed monetary valuation
 - quality of life
 - happiness
- Case 2. *U* depends on *x* that is categorical:
 - health status
 - level of completed education
 - access to public services

Inequality: Ordinal

Cowell, Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Characterisation

Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation

Performance

Application

- Atkinson and Dalton examples of "aggregation process"
 - How social values are introduced into an inequality-evaluation of income distribution...
 - ...not the inequality-evaluation of a distribution of utilities.
- Sometimes these are equivalent
 - but sometimes not
 - maybe utility has no natural income equivalent?
- Case 1. *U* depends on *x* with no agreed monetary valuation
 - quality of life
 - happiness
- Case 2. *U* depends on *x* that is categorical:
 - health status
 - level of completed education
 - access to public services

Inequality: Ordinal

Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Inequality Measures Transfer principle Reference point

Normalisation

Empirical aspects Implementation Performance

Application

- Atkinson and Dalton examples of "aggregation process"
 - How social values are introduced into an inequality-evaluation of income distribution...
 - ...not the inequality-evaluation of a distribution of utilities.
- Sometimes these are equivalent
 - but sometimes not
 - maybe utility has no natural income equivalent?
- Case 1. U depends on x with no agreed monetary valuation
 - quality of life
 - happiness
- Case 2. U depends on x that is categorical:
 - health status
 - level of completed education
 - access to public services

Inequality: Ordinal

Flachaire

Motivation

Basic Problem

Approach Model Basic structure

Inequality Measures Transfer principle Reference point

Normalisation

Empirical aspects Implementation Performance

Application

- Atkinson and Dalton examples of "aggregation process"
 - How social values are introduced into an inequality-evaluation of income distribution...
 - ...not the inequality-evaluation of a distribution of utilities.
- Sometimes these are equivalent
 - but sometimes not
 - maybe utility has no natural income equivalent?
- Case 1. U depends on x with no agreed monetary valuation
 - quality of life
 - happiness
- Case 2. U depends on x that is categorical:
 - health status
 - level of completed education
 - access to public services

Categorical variable Example: Access to Services

Inequality: Ordinal			
Cowell, Flachaire		Case 1	Case 2
Motivation		n_k	n_k
Basic Problem Previous work	Both Gas and Electricity	25	0
Approach	Electricity only	25	50
Model Basic structure Characterisation	$\underline{\underline{\mathbf{G}}}$ as only	25	50
Inequality Measures	Neither	25	0
Transfer principle			

• Suppose we have no information about needs / usage

• Nevertheless it is clear that Case 1 seems more unequal than Case 2

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

Categorical variable Example: Access to Services

Inequality: Ordinal			
Cowell, Flachaire		Case 1	Case
lotivation		n_k	n_k
Basic Problem Previous work	B oth Gas and Electricity	25	0
pproach	Electricity only	25	50
lodel asic structure	$\overline{\mathbf{G}}$ as only	25	50
characterisation	Neither	25	0

• Suppose we have no information about needs / usage

• Nevertheless it is clear that Case 1 seems more unequal than Case 2

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Categorical variable Example: Access to Services

Inequality: Ordinal			
Cowell, Flachaire		Case 1	Case 2
Motivation		10 .	10 .
Basic Problem		n_k	n_k
Previous work	Both Gas and Electricity	25	0
Approach	Electricity only	25	50
Model	Electricity only	25	50
Basic structure	Gas only	25	50
Characterisation			00
Inequality	<u>N</u> either	25	0
Mogenroe			

• Suppose we have no information about needs / usage

• Nevertheless it is clear that Case 1 seems more unequal than Case 2

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

1 Motivation

• Basics

Previous work

- Approach
 - Model
 - Basic structure
 - Characterisation
- Inequality Measures
 - Transfer principle
 - Reference point
 - Sensitivity
 - Normalisation
- 4 Empirical aspects
 - Implementation

Э

Sac

- Performance
- Application
- Summarv

Ways Forward?

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Previous work

Approach Model Basic structu

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Application

Summary

• We could try to develop dominance criteria based on median

• Median may be well defined although mean is not

• what principle should play the role that is played by PoT in income inequality?

- Could try a family of measures using only median
- For such things as happiness could just use arbitrary cardinalisation
 - over large part of domain may be empirically robust
 - psychologists think Likert scales are OK for cardinalising
 - but what happens in tails?

Ways Forward?

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model Basic structure

Inequality Measures Transfer principl Reference point Sensitivity

Normalisation

Empirical aspects Implementatio Performance

Application

Summary

We could try to develop dominance criteria based on median Median may be well defined although mean is not

• what principle should play the role that is played by PoT in income inequality?

- Could try a family of measures using only median
- For such things as happiness could just use arbitrary cardinalisation
 - over large part of domain may be empirically robust
 - psychologists think Likert scales are OK for cardinalising
 - but what happens in tails?

Ways Forward?

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model Basic structur

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- We could try to develop dominance criteria based on median
 Median may be well defined although mean is not
 - what principle should play the role that is played by PoT in income inequality?
- Could try a family of measures using only median
- For such things as happiness could just use arbitrary cardinalisation
 - over large part of domain may be empirically robust
 - psychologists think Likert scales are OK for cardinalising
 - but what happens in tails?

Ways Forward?

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach

Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- We could try to develop dominance criteria based on median
 Median may be well defined although mean is not
 - what principle should play the role that is played by PoT in income inequality?
- Could try a family of measures using only median
- For such things as happiness could just use arbitrary cardinalisation
 - over large part of domain may be empirically robust
 - psychologists think Likert scales are OK for cardinalising
 - but what happens in tails?

Ways Forward?

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- We could try to develop dominance criteria based on median
 Median may be well defined although mean is not
 - what principle should play the role that is played by PoT in income inequality?
- Could try a family of measures using only median
- For such things as happiness could just use arbitrary cardinalisation
 - over large part of domain may be empirically robust
 - psychologists think Likert scales are OK for cardinalising
 - but what happens in tails?

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach

Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation

Application

Summary

Step 1 is to define status

- depends on the purpose of inequality analysis
- depends on structure of information
- conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases status is defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
- In some cases status requires information dependent on distribution
 - GRE
 - TOEFL

Inequality: Ordinal Cowell,

Cowell, Flachaire

Motivation Basic Problem

Approach

Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation

Performance

Summary

• Step 1 is to define status

- depends on the purpose of inequality analysis
- depends on structure of information
- conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases status is defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
- In some cases status requires information dependent on distribution
 - GRE
 - TOEFL

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach

Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation

Performance

_

Summary

• Step 1 is to define status

• depends on the purpose of inequality analysis

- depends on structure of information
- conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases status is defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
- In some cases status requires information dependent on distribution
 - GRE
 - TOEFL

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach

Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation

Application

Summary

• Step 1 is to define status

- depends on the purpose of inequality analysis
- depends on structure of information
- conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases status is defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
- In some cases status requires information dependent on distribution
 - GRE
 - TOEFL

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem
- Previous work

Approach

Model Basic structure

- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation
- Application
- Summary

• Step 1 is to define status

- depends on the purpose of inequality analysis
- depends on structure of information
- conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases status is defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
- In some cases status requires information dependent on distribution
 - GRE
 - TOEFL

- Motivation Basic Problem Previous work
- Approach
- Model Basic structure
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation Performance
- Application
- Summary

- Step 1 is to define status
 - depends on the purpose of inequality analysis
 - depends on structure of information
 - conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases status is defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
- In some cases status requires information dependent on distribution
 - GRE
 - TOEFL

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach

Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Application

Summary

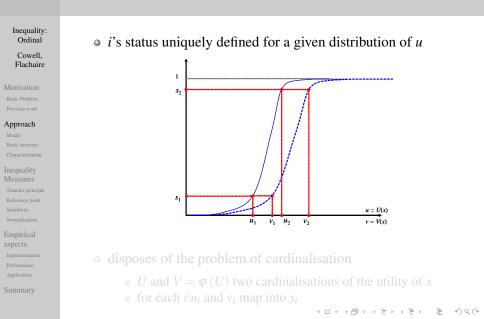
• Step 1 is to define status

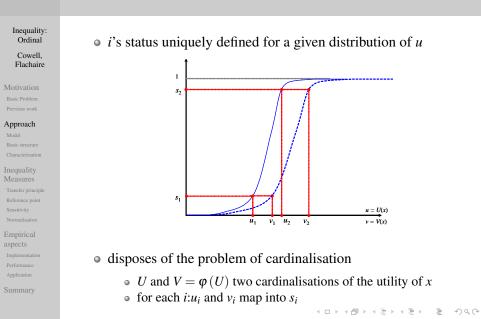
- depends on the purpose of inequality analysis
- depends on structure of information
- conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases status is defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
- In some cases status requires information dependent on distribution
 - GRE
 - TOEFL

- Motivation Basic Problem Previous work
- Approach
- Model Basic structure
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation
- Application
- Summary

- Step 1 is to define status
 - depends on the purpose of inequality analysis
 - depends on structure of information
 - conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases status is defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
- In some cases status requires information dependent on distribution
 - GRE
 - TOEFL

- Motivation Basic Problem Previous work
- Approach
- Model Basic structure
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation
- Application
- Summary


- Step 1 is to define status
 - depends on the purpose of inequality analysis
 - depends on structure of information
 - conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases status is defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
- In some cases status requires information dependent on distribution
 - GRE
 - TOEFL


- Motivation Basic Problem Previous work
- Approach
- Model Basic structure
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation
- Application
- Summary

- Step 1 is to define status
 - depends on the purpose of inequality analysis
 - depends on structure of information
 - conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases status is defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
- In some cases status requires information dependent on distribution
 - GRE • TOEFL

- Motivation Basic Problem Previous work
- Approach
- Model Basic structure
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation
- Application
- Summary

- Step 1 is to define status
 - depends on the purpose of inequality analysis
 - depends on structure of information
 - conventional inequality approach only works in narrowly defined information structure
- In some cases a person's status is self-defining
 - income
 - wealth
- In some cases status is defined given additional distribution-free information
 - example: if it is known that utility is $\log(x)$
- In some cases status requires information dependent on distribution
 - GRE
 - TOEFL

Inequality: Ordinal Cowell, Flachaire

Motivatior Basic Problem

Approach

Model Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

• This approach works for categorical data

- we just have an ordered arrangement of categories 1, 2, ..., k, ..., K
- and the numbers in each category $n_1, n_2, ..., n_k, ..., n_K$

• Merger principle

- merge two adjacent categories that are irrelevant for i
- then this should leave *i*'s status unaltered
- Merger principle implies that s should be additive in the n_k

イロト イロト イヨト イヨト ニヨー

Sar

- could have upward-looking ...
- ... or downward-looking status

Inequality: Ordinal Cowell, Flachaire

Motivation

Basic Problem Previous work

Approach

Model Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

• This approach works for categorical data

- we just have an ordered arrangement of categories 1,2,...,*k*,...,*K*
- and the numbers in each category $n_1, n_2, ..., n_k, ..., n_K$

Merger principle

- merge two adjacent categories that are irrelevant for i
- then this should leave *i*'s status unaltered
- Merger principle implies that s should be additive in the n_k

- could have upward-looking ...
- ... or downward-looking status

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Previous work

Approach

Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

• This approach works for categorical data

- we just have an ordered arrangement of categories 1, 2, ..., k, ..., K
- and the numbers in each category $n_1, n_2, ..., n_k, ..., n_K$

• Merger principle

- merge two adjacent categories that are irrelevant for i
- then this should leave *i*'s status unaltered
- Merger principle implies that s should be additive in the n_k

- could have upward-looking ..
- ... or downward-looking status

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem
- Previous work

Approach

- Model Basic structure Characterisation
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation Performance
- Summary

• This approach works for categorical data

- we just have an ordered arrangement of categories 1, 2, ..., k, ..., K
- and the numbers in each category $n_1, n_2, ..., n_k, ..., n_K$

• Merger principle

- merge two adjacent categories that are irrelevant for i
- then this should leave *i*'s status unaltered
- Merger principle implies that s should be additive in the n_k
 - could have upward-looking ...
 - ... or downward-looking status

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model

Basic structure Characterisatio

Inequality Measures Transfer princi

Reference poi Sensitivity

Normalisation

Empirical aspects Implementation Performance

Summary

- Motivation
 - Basics
 - Previous work
- 2 Approach
 - Model
 - Basic structure
 - Characterisation
 - Inequality Measures
 - Transfer principle
 - Reference point
 - Sensitivity
 - Normalisation
 - 4 Empirical aspects
 - Implementation

э

Sac

- Performance
- Application
- Summarv

Inequality: Ordinal Cowell, Flachaire

Motivation

Previous work

Approach Model

Basic structure Characterisation

Inequality Measures Transfer princip Reference point Sensitivity

Empirical aspects Implementation

Application

Summary

• individual's status is given by $s \in S \subseteq \mathbb{R}$

• status determined from utility using ψ

• vector of status in a population of size $n : \mathbf{s} \in S^n$.

 $e \in S$: an equality-reference point

- could be specified exogenously
- could also depend on status vector $e = \eta$ (s)
- η need not be increasing in each component of s
- Inequality: aggregate distance from *e*
 - don't need an explicit distance function
 - implicitly define through inequality ordering \succeq

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の Q (?)</p>

Inequality: Ordinal Cowell, Flachaire

Motivation

Previous work

Approach Model

Basic structure Characterisation

Inequality Measures Transfer princip Reference point Sensitivity

Empirical aspects Implementation Performance

Summary

- individual's status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility using ψ

• vector of status in a population of size $n : \mathbf{s} \in S^n$.

 $e \in S$: an equality-reference point

- could be specified exogenously
- could also depend on status vector $e = \eta$ (s)
- η need not be increasing in each component of s
- Inequality: aggregate distance from *e*
 - don't need an explicit distance function
 - implicitly define through inequality ordering \succeq

Inequality: Ordinal Cowell, Flachaire

Motivation

Previous work

Approach Model

Basic structure Characterisation

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- individual's status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility using ψ
- vector of status in a population of size $n : \mathbf{s} \in S^n$.

• $e \in S$: an equality-reference point

- could be specified exogenously
- could also depend on status vector $e = \eta$ (s)
- η need not be increasing in each component of s
- Inequality: aggregate distance from *e*
 - don't need an explicit distance function
 - implicitly define through inequality ordering \succeq

Inequality: Ordinal Cowell, Flachaire

Motivation

Previous work

Approach Model

Basic structure Characterisation

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- individual's status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility using ψ
- vector of status in a population of size $n : \mathbf{s} \in S^n$.
- $e \in S$: an equality-reference point
 - could be specified exogenously
 - could also depend on status vector $e = \eta$ (s)
 - η need not be increasing in each component of s
- Inequality: aggregate distance from *e*
 - don't need an explicit distance function
 - implicitly define through inequality ordering \succeq

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Previous work

Approach Model

Basic structure Characterisation

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- individual's status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility using ψ
- vector of status in a population of size $n : \mathbf{s} \in S^n$.
- $e \in S$: an equality-reference point
 - could be specified exogenously
 - could also depend on status vector $e = \eta$ (s)
 - η need not be increasing in each component of s
- Inequality: aggregate distance from *e*
 - don't need an explicit distance function
 - implicitly define through inequality ordering \succeq

Inequality: Ordinal Cowell, Flachaire

Motivation

Previous work

Approach Model

Basic structure Characterisation

Inequality Measures Transfer principi Reference point Sensitivity

Empirical aspects Implementation Performance

Summary

- individual's status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility using ψ

• vector of status in a population of size $n : \mathbf{s} \in S^n$.

- $e \in S$: an equality-reference point
 - could be specified exogenously
 - could also depend on status vector $e = \eta$ (s)
 - η need not be increasing in each component of s
 - Inequality: aggregate distance from e
 - don't need an explicit distance function
 - implicitly define through inequality ordering \succeq

Inequality: Ordinal Cowell, Flachaire

Motivation

Previous work

Approach Model

Basic structure Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- individual's status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility using ψ

• vector of status in a population of size $n : \mathbf{s} \in S^n$.

- $e \in S$: an equality-reference point
 - could be specified exogenously
 - could also depend on status vector $e = \eta$ (s)
 - η need not be increasing in each component of s
- Inequality: aggregate distance from *e*
 - don't need an explicit distance function
 - implicitly define through inequality ordering \succeq

Inequality: Ordinal Cowell, Flachaire

Motivation

Previous work

Approach Model

Basic structure Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance • individual's status is given by $s \in S \subseteq \mathbb{R}$

• status determined from utility using ψ

• vector of status in a population of size $n : \mathbf{s} \in S^n$.

• $e \in S$: an equality-reference point

- could be specified exogenously
- could also depend on status vector $e = \eta$ (s)
- η need not be increasing in each component of s
- Inequality: aggregate distance from e
 - don't need an explicit distance function

• implicitly define through inequality ordering \succeq

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Previous work

Approach Model

Basic structure Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- individual's status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility using ψ

• vector of status in a population of size $n : \mathbf{s} \in S^n$.

- $e \in S$: an equality-reference point
 - could be specified exogenously
 - could also depend on status vector $e = \eta$ (s)
 - η need not be increasing in each component of s
- Inequality: aggregate distance from *e*
 - don't need an explicit distance function
 - implicitly define through inequality ordering \succeq

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Previous work

Approach Model

Basic structure Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- individual's status is given by $s \in S \subseteq \mathbb{R}$
 - status determined from utility using ψ

• vector of status in a population of size $n : \mathbf{s} \in S^n$.

- $e \in S$: an equality-reference point
 - could be specified exogenously
 - could also depend on status vector $e = \eta$ (s)
 - η need not be increasing in each component of s
- Inequality: aggregate distance from *e*
 - don't need an explicit distance function
 - implicitly define through inequality ordering \succeq

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model

Basic structure

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

- Motivation
 - Basics
- Previous work

2 Approach

- Model
- Basic structure
 - Characterisation
- Inequality Measures
 - Transfer principle
 - Reference point
 - Sensitivity
 - Normalisation
- 4 Empirical aspects
 - Implementation
 - Performance
 - Application
- 5 Summarv

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem
- Previous work
- Approacl Model
- Basic structure
- Characterisation
- Inequality Measures Transfer principl Reference point Sensitivity Normalisation
- Empirical aspects Implementation Performance
- Commencer

• [Continuity] \succeq is continuous on S^n .

- [Monotonicity in distance] If $\mathbf{s}, \mathbf{s}' \in S_e^n$ differ only in their *i*th component then (a) if $s'_i \ge e : s_i > s'_i \iff \mathbf{s} \succ \mathbf{s}'$; (b) if $s'_i \le e : s'_i > s_i \iff \mathbf{s} \succ \mathbf{s}'$.
- **[Independence]** For $\mathbf{s}, \mathbf{s}' \in S_e^n$, if $\mathbf{s} \sim \mathbf{s}'$ and $s_i = s'_i$ for some i then $\mathbf{s}(\varsigma, i) \sim \mathbf{s}'(\varsigma, i)$ for all $\varsigma \in [s_{i-1}, s_{i+1}] \cap [s'_{i-1}, s'_{i+1}]$.
- [Anonymity] For all $s \in S^n$ and permutation matrix P, Ps $\sim s$

イロト イロト イヨト イヨト ニヨー

Sac

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model

Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

11

- [Continuity] \succeq is continuous on S^n .
- [Monotonicity in distance] If $\mathbf{s}, \mathbf{s}' \in S_e^n$ differ only in their *i*th component then (a) if $s'_i \ge e : s_i > s'_i \iff \mathbf{s} \succ \mathbf{s}'$; (b) if $s'_i \le e : s'_i > s_i \iff \mathbf{s} \succ \mathbf{s}'$.
- **[Independence]** For $\mathbf{s}, \mathbf{s}' \in S_e^n$, if $\mathbf{s} \sim \mathbf{s}'$ and $s_i = s'_i$ for some i then $\mathbf{s}(\varsigma, i) \sim \mathbf{s}'(\varsigma, i)$ for all $\varsigma \in [s_{i-1}, s_{i+1}] \cap [s'_{i-1}, s'_{i+1}]$.
- [Anonymity] For all $s \in S^n$ and permutation matrix P, Ps $\sim s$

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model

Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- [Continuity] \succeq is continuous on S^n .
- [Monotonicity in distance] If $\mathbf{s}, \mathbf{s}' \in S_e^n$ differ only in their *i*th component then (a) if $s'_i \ge e : s_i > s'_i \iff \mathbf{s} \succ \mathbf{s}'$; (b) if $s'_i \le e : s'_i > s_i \iff \mathbf{s} \succ \mathbf{s}'$.
- **[Independence]** For $\mathbf{s}, \mathbf{s}' \in S_e^n$, if $\mathbf{s} \sim \mathbf{s}'$ and $s_i = s'_i$ for some i then $\mathbf{s}(\varsigma, i) \sim \mathbf{s}'(\varsigma, i)$ for all $\varsigma \in [s_{i-1}, s_{i+1}] \cap [s'_{i-1}, s'_{i+1}]$.

• [Anonymity] For all $s \in S^n$ and permutation matrix P, Ps $\sim s$

- Inequality: Ordinal Cowell, Flachaire
- Motivation Basic Problem
- Approach Model
- Basic structure
- Characterisation
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation Performance
- Application
- Summary

- [Continuity] \succeq is continuous on S^n .
- [Monotonicity in distance] If $\mathbf{s}, \mathbf{s}' \in S_e^n$ differ only in their *i*th component then (a) if $s'_i \ge e : s_i > s'_i \iff \mathbf{s} \succ \mathbf{s}'$; (b) if $s'_i \le e : s'_i > s_i \iff \mathbf{s} \succ \mathbf{s}'$.
- **[Independence]** For $\mathbf{s}, \mathbf{s}' \in S_e^n$, if $\mathbf{s} \sim \mathbf{s}'$ and $s_i = s'_i$ for some i then $\mathbf{s}(\varsigma, i) \sim \mathbf{s}'(\varsigma, i)$ for all $\varsigma \in [s_{i-1}, s_{i+1}] \cap [s'_{i-1}, s'_{i+1}]$.
- [Anonymity] For all $s \in S^n$ and permutation matrix P, Ps $\sim s$

Standard result

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Characteriation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

Theorem

Continuity, Monotonicity, Independence, Anonymity jointly imply \succeq is representable by the continuous function $I: S_e^n \to \mathbb{R}$ where $I(\mathbf{s}; e) = \Phi(\sum_{i=1}^n d(s_i, e), e)$, where $d: S \to \mathbb{R}$ is a continuous function that is strictly increasing (decreasing) in its first argument if $s_i > e(s_i < e)$.

Corollary

Inequality is total "distance" from equality. Distance d is continuous, satisfies d(e,e) = 0. d(s,e) is increasing in status if you move away from the reference point.

Standard result

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model

Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

Theorem

Continuity, Monotonicity, Independence, Anonymity jointly imply \succeq is representable by the continuous function $I: S_e^n \to \mathbb{R}$ where $I(\mathbf{s}; e) = \Phi(\sum_{i=1}^n d(s_i, e), e)$, where $d: S \to \mathbb{R}$ is a continuous function that is strictly increasing (decreasing) in its first argument if $s_i > e(s_i < e)$.

Corollary

Inequality is total "distance" from equality. Distance d is continuous, satisfies d(e,e) = 0. d(s,e) is increasing in status if you move away from the reference point.

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

- Motivation
 - Basics
- Previous work

2 Approach

- Model
- Basic structure

Characterisation

- Inequality Measures
 - Transfer principle
 - Reference point
 - Sensitivity
 - Normalisation
- 4 Empirical aspects
 - Implementation

э

Sac

- Performance
- Application
- 5 Summarv

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

• We need to impose more structure on the problem

• **[Scale irrelevance]** For all $\lambda \in \mathbb{R}_+$: if $\mathbf{s}, \mathbf{s}' \in S_e^n$ and $\lambda \mathbf{s}, \lambda \mathbf{s}' \in S_{\lambda e}^n$ then $\mathbf{s} \sim \mathbf{s}' \Rightarrow \lambda \mathbf{s} \sim \lambda \mathbf{s}'$.

Theorem

Impose also Scale irrelevance. Then \succeq is representable by $I(\mathbf{s}; e) = \Phi(\sum_{i=1}^{n} d(s_i, e), e)$, where the function d takes the form $(s, e) = e^c \phi(\frac{s}{e}), \phi$ is a continuous function and c is an arbitrary constant.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- We need to impose more structure on the problem
- [Scale irrelevance] For all $\lambda \in \mathbb{R}_+$: if $\mathbf{s}, \mathbf{s}' \in S_e^n$ and $\lambda \mathbf{s}, \lambda \mathbf{s}' \in S_{\lambda e}^n$ then $\mathbf{s} \sim \mathbf{s}' \Rightarrow \lambda \mathbf{s} \sim \lambda \mathbf{s}'$.

Theorem

Impose also Scale irrelevance. Then \succeq is representable by $I(\mathbf{s}; e) = \Phi(\sum_{i=1}^{n} d(s_i, e), e)$, where the function d takes the form $(s, e) = e^c \phi(\frac{s}{e}), \phi$ is a continuous function and c is an arbitrary constant.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- We need to impose more structure on the problem
- **[Scale irrelevance]** For all $\lambda \in \mathbb{R}_+$: if $\mathbf{s}, \mathbf{s}' \in S_e^n$ and $\lambda \mathbf{s}, \lambda \mathbf{s}' \in S_{\lambda e}^n$ then $\mathbf{s} \sim \mathbf{s}' \Rightarrow \lambda \mathbf{s} \sim \lambda \mathbf{s}'$.

Theorem

Impose also Scale irrelevance. Then \succeq is representable by $I(\mathbf{s}; e) = \Phi(\sum_{i=1}^{n} d(s_i, e), e)$, where the function d takes the form $(s, e) = e^c \phi(\frac{s}{e}), \phi$ is a continuous function and c is an arbitrary constant.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- We need to impose more structure on the problem
- **[Scale irrelevance]** For all $\lambda \in \mathbb{R}_+$: if $\mathbf{s}, \mathbf{s}' \in S_e^n$ and $\lambda \mathbf{s}, \lambda \mathbf{s}' \in S_{\lambda e}^n$ then $\mathbf{s} \sim \mathbf{s}' \Rightarrow \lambda \mathbf{s} \sim \lambda \mathbf{s}'$.

Theorem

Impose also Scale irrelevance. Then \succeq is representable by $I(\mathbf{s}; e) = \Phi(\sum_{i=1}^{n} d(s_i, e), e)$, where the function d takes the form $(s, e) = e^c \phi(\frac{s}{e}), \phi$ is a continuous function and c is an arbitrary constant.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

aspects Implementation Performance

...

Summary

• We now impose yet more structure on the problem

• **[Ratio scale irrelevance]** Suppose there are $\mathbf{s} \in S_e^n$ and $\mathbf{s}^\circ \in S_{e^\circ}^n$ such that $\mathbf{s} \sim \mathbf{s}^\circ$. Then for all $\lambda > 0$, $\mathbf{s}' \in S_{e'}^n$ and $\mathbf{s}^\circ \in S_{e'}^n$ such that for each $i, s'_i/e = \lambda s_i/e$ and

$$s_i''/e = \lambda s_i^\circ/e^\circ$$
: $\mathbf{s}' \sim \mathbf{s}''$.

Theorem

Impose also Ratio scale irrelevance. Then \succeq is representable as $\Phi(I(\mathbf{s};e),e)$ where $I_{\alpha}(\mathbf{s};e) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n}\sum_{i=1}^{n} \left[\frac{s_{i}}{e}\right]^{\alpha} - c\right], \ \alpha, c \in \mathbb{R}$ and Φ is increasing in its first argument.

イロト イポト イヨト イヨト 三日

Sac

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Summary

- We now impose yet more structure on the problem
- **[Ratio scale irrelevance]** Suppose there are $\mathbf{s} \in S_e^n$ and $\mathbf{s}^{\circ} \in S_{e^{\circ}}^n$ such that $\mathbf{s} \sim \mathbf{s}^{\circ}$. Then for all $\lambda > 0$, $\mathbf{s}' \in S_{e'}^n$ and $\mathbf{s}'' \in S_{e''}^n$ such that for each $i, s'_i/e = \lambda s_i/e$ and $s_i''/e = \lambda s_i^{\circ}/e^{\circ}$: $\mathbf{s}' \sim \mathbf{s}''$.

Theorem

Impose also Ratio scale irrelevance. Then \succeq is representable as $\Phi(I(\mathbf{s}; e), e)$ where $I_{\alpha}(\mathbf{s}; e) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{s_{i}}{e}\right]^{\alpha} - c\right], \alpha, c \in \mathbb{R}$ and Φ is increasing in its first argument.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

- We now impose yet more structure on the problem
- **[Ratio scale irrelevance]** Suppose there are $\mathbf{s} \in S_e^n$ and $\mathbf{s}^{\circ} \in S_{e^{\circ}}^n$ such that $\mathbf{s} \sim \mathbf{s}^{\circ}$. Then for all $\lambda > 0$, $\mathbf{s}' \in S_{e'}^n$ and $\mathbf{s}'' \in S_{e'}^n$ such that for each $i, s'_i/e = \lambda s_i/e$ and $s_i''/e = \lambda s_i^{\circ}/e^{\circ}$: $\mathbf{s}' \sim \mathbf{s}''$.

Theorem

Impose also Ratio scale irrelevance. Then \succeq is representable as $\Phi(I(\mathbf{s};e),e)$ where $I_{\alpha}(\mathbf{s};e) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n}\sum_{i=1}^{n} \left[\frac{s_{i}}{e}\right]^{\alpha} - c\right], \alpha, c \in \mathbb{R}$ and Φ is increasing in its first argument.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

- We now impose yet more structure on the problem
- **[Ratio scale irrelevance]** Suppose there are $\mathbf{s} \in S_e^n$ and $\mathbf{s}^{\circ} \in S_{e^{\circ}}^n$ such that $\mathbf{s} \sim \mathbf{s}^{\circ}$. Then for all $\lambda > 0$, $\mathbf{s}' \in S_{e'}^n$ and $\mathbf{s}'' \in S_{e'}^n$ such that for each $i, s'_i/e = \lambda s_i/e$ and $s_i''/e = \lambda s_i^{\circ}/e^{\circ}$: $\mathbf{s}' \sim \mathbf{s}''$.

Theorem

Impose also Ratio scale irrelevance. Then \succeq is representable as $\Phi(I(\mathbf{s};e),e)$ where $I_{\alpha}(\mathbf{s};e) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n}\sum_{i=1}^{n} \left[\frac{s_{i}}{e}\right]^{\alpha} - c\right], \alpha, c \in \mathbb{R}$ and Φ is increasing in its first argument.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Inequality: Ordinal Cowell, Flachaire

Motivation

Previous work

Approach Model

Characterisation

Inequality Measures

Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation

Performance

Cummory

- Class of functions that could be used as inequality measures:
 - $\Phi(I(\mathbf{s}; e), e)$ • $e = \eta(\mathbf{s})$, the reference point

•
$$I(\mathbf{s}; e) = I_{\alpha}(\mathbf{s}; \boldsymbol{\eta}(\mathbf{s})) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{s_i}{\boldsymbol{\eta}(\mathbf{s})} \right]^{\alpha} - c(\boldsymbol{\eta}(\mathbf{s})) \right]$$

• Key questions:

Do functions of the form Φ(I(s;e),e) "look like" inequality measures?

イロト イロト イヨト イヨト ニヨー

500

- transfer principle?
- reference point?
- sensitivity to parameters
- What is the appropriate form for Φ ?
 - may depend on the reference status e
 - may depend on interpretation

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model Basic structure

Characterisation

Inequality Measures

Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation

Performance

Summary

- Class of functions that could be used as inequality measures:
 - $\Phi(I(\mathbf{s}; e), e)$ • $e = \eta(\mathbf{s})$, the reference point • $I(\mathbf{s}; e) = I_{\alpha}(\mathbf{s}; \eta(\mathbf{s})) = \frac{1}{\alpha(\alpha - 1)} \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{s_i}{\eta(\mathbf{s})} \right]^{\alpha} - c(\eta(\mathbf{s})) \right]$

• Key questions:

• Do functions of the form $\Phi(I(\mathbf{s}; e), e)$ "look like" inequality measures?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- transfer principle?
- reference point?
- sensitivity to parameters
- What is the appropriate form for Φ ?
 - may depend on the reference status e
 - may depend on interpretation

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model

Characterisation

Inequality Measures

Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementatio

Performance

Summary

- Class of functions that could be used as inequality measures:
 - $\Phi(I(\mathbf{s}; e), e)$ • $e = \eta(\mathbf{s})$, the reference point • $I(\mathbf{s}; e) = I_{\alpha}(\mathbf{s}; \eta(\mathbf{s})) = \frac{1}{\alpha(\alpha-1)} \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{s_i}{\eta(\mathbf{s})} \right]^{\alpha} - c(\eta(\mathbf{s})) \right]$

• Key questions:

Do functions of the form Φ(I(s;e),e) "look like" inequality measures?

- transfer principle?
- reference point?
- sensitivity to parameters
- What is the appropriate form for Φ?
 - may depend on the reference status *e*
 - may depend on interpretation

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model

Characterisation

Inequality Measures

Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementatio

Performance

Summary

- Class of functions that could be used as inequality measures:
 - $\Phi(I(\mathbf{s}; e), e)$ • $e = \eta(\mathbf{s})$, the reference point • $I(\mathbf{s}; e) = I_{\alpha}(\mathbf{s}; \eta(\mathbf{s})) = \frac{1}{\alpha(\alpha-1)} \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{s_i}{\eta(\mathbf{s})} \right]^{\alpha} - c(\eta(\mathbf{s})) \right]$

• Key questions:

Do functions of the form Φ(I(s;e),e) "look like" inequality measures?

- transfer principle?
- reference point?
- sensitivity to parameters
- What is the appropriate form for Φ?
 - may depend on the reference status *e*
 - may depend on interpretation

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model

Characterisation

Inequality Measures

Transfer principle

Reference poi Sensitivity

Normalisation

Empirical aspects Implementation Performance

Application

Summary

- Motivation
 - Basics
 - Previous work
- Approach
 - Model
 - Basic structure
 - Characterisation

Inequality Measures Transfer principle

- Reference point
- Sensitivity
- Normalisation
- 4 Empirical aspects
 - Implementation

э

Sac

- Performance
- Application
- Summarv

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model Basic structure

Characterisation

Inequality Measures

Transfer principle

Reference poin Sensitivity

Empirical aspects Implementation

Application

Summary

• Standard version of transfer principle is not applicable

- "Mean status" is not quite like mean income
- can change in interesting ways
- Can show a property related to transfer principle
 - if *e* is independent of s
 - or if *e* depends only on $\mu(\mathbf{s}) = \frac{1}{n} \sum_{i=1}^{n} s_i$
- Then for all α in such cases:
 - if *i*'s status increases $\delta > 0$ and *j*'s status decreases by δ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- such that $s_i < s_j$ and $s_i + \delta < s_j \delta$),
- then inequality is reduced
- But is this property attractive?

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Characterisation

Inequality Measures

Transfer principle

Reference poin Sensitivity

Empirical aspects Implementation

Application

Summary

- Standard version of transfer principle is not applicable
 - "Mean status" is not quite like mean income
 - can change in interesting ways

• Can show a property related to transfer principle

• if e is independent of s

• or if *e* depends only on $\mu(\mathbf{s}) = \frac{1}{n} \sum_{i=1}^{n} s_i$

• Then for all α in such cases:

- if *i*'s status increases $\delta > 0$ and *j*'s status decreases by δ
- such that $s_i < s_j$ and $s_i + \delta < s_j \delta$),
- then inequality is reduced

• But is this property attractive?

・ロト (四) (日) (日) (日) (日) (日)

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Characterisation

Inequality Measures

Transfer principle

Reference poin Sensitivity

Empirical aspects Implementation

Application

Summary

- Standard version of transfer principle is not applicable
 - "Mean status" is not quite like mean income
 - can change in interesting ways

• Can show a property related to transfer principle

• if *e* is independent of s

• or if *e* depends only on $\mu(\mathbf{s}) = \frac{1}{n} \sum_{i=1}^{n} s_i$

• Then for all α in such cases:

• if *i*'s status increases $\delta > 0$ and *j*'s status decreases by δ

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- such that $s_i < s_j$ and $s_i + \delta < s_j \delta$),
- then inequality is reduced
- But is this property attractive?

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures

Transfer principle

Reference poir Sensitivity

Empirical aspects Implementation Performance

Application

Summary

- Standard version of transfer principle is not applicable
 - "Mean status" is not quite like mean income
 - can change in interesting ways

• Can show a property related to transfer principle

• if e is independent of s

• or if *e* depends only on $\mu(\mathbf{s}) = \frac{1}{n} \sum_{i=1}^{n} s_i$

• Then for all α in such cases:

- if *i*'s status increases $\delta > 0$ and *j*'s status decreases by δ
- such that $s_i < s_j$ and $s_i + \delta < s_j \delta$),
- then inequality is reduced

• But is this property attractive?

・ロト・西ト・山田・山田・山下

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures

Transfer principle

Reference poir Sensitivity

Empirical aspects Implementation Performance

Application

Summary

- Standard version of transfer principle is not applicable
 - "Mean status" is not quite like mean income
 - can change in interesting ways
- Can show a property related to transfer principle
 - if e is independent of s
 - or if *e* depends only on $\mu(\mathbf{s}) = \frac{1}{n} \sum_{i=1}^{n} s_i$

• Then for all α in such cases:

• if *i*'s status increases $\delta > 0$ and *j*'s status decreases by δ

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- such that $s_i < s_j$ and $s_i + \delta < s_j \delta$),
- then inequality is reduced
- But is this property attractive?

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures

Transfer principle

Reference point Sensitivity

Empirical aspects Implementation Performance

Application

Summary

- Standard version of transfer principle is not applicable
 - "Mean status" is not quite like mean income
 - can change in interesting ways
- Can show a property related to transfer principle
 - if e is independent of s
 - or if *e* depends only on $\mu(\mathbf{s}) = \frac{1}{n} \sum_{i=1}^{n} s_i$
- Then for all α in such cases:
 - if *i*'s status increases $\delta > 0$ and *j*'s status decreases by δ
 - such that $s_i < s_j$ and $s_i + \delta < s_j \delta$),
 - then inequality is reduced

• But is this property attractive?

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures

Transfer principle

Reference point Sensitivity

Empirical aspects Implementation Performance

Application

Summary

- Standard version of transfer principle is not applicable
 - "Mean status" is not quite like mean income
 - can change in interesting ways
- Can show a property related to transfer principle
 - if *e* is independent of **s**
 - or if *e* depends only on $\mu(\mathbf{s}) = \frac{1}{n} \sum_{i=1}^{n} s_i$
- Then for all α in such cases:
 - if *i*'s status increases $\delta > 0$ and *j*'s status decreases by δ

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- such that $s_i < s_j$ and $s_i + \delta < s_j \delta$),
- then inequality is reduced
- But is this property attractive?

Four distributional scenarios (1)

Inequality: Ordinal Cowell, Flachaire		Case 0	Cas	se 1	Cas	se 2	Ca	ise 3
Motivation Basic Problem Previous work Approach Model Basic structure Characterisation	B E G N	$ \begin{array}{cccc} n_k & s_i \\ 0 & & \\ 50 & 1 \\ 25 & \frac{1}{2} \\ 25 & \frac{1}{4} \end{array} $		S_i 1 3/4 1/2 1/4	$egin{array}{c} n_k \ 0 \ 50 \ 50 \ 0 \end{array}$	s_i $\frac{1}{1/2}$	n_k 25 25 50 0	s_i 1 3/4 1/2
Inequality Measures Transfer principle Reference point Sensitivity Normalisation Empirical	$\mu(\mathbf{s})$	11/1 # persons in		5/8 $k \in \{$	B E G	3/4 N}		11/16
Application		$\sum_{\ell=1}^{k(i)} n_\ell - $						

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Four distributional scenarios (1)

Inequality: Ordinal									
Cowell, Flachaire		Ca	se 0	Cas	se 1	Cas	se 2	Ca	se 3
Motivation		n_k	Si	n_k	Si	n_k	Si	n_k	Si
Basic Problem	В	0		25	1	0		25	1
Previous work	Е	50	1	25	3/4	50	1	25	3/4
Approach	G	25	1/2	25	1/2	50	1/2	50	
Basic structure							1/2	_	1/2
Characterisation	N	25	1/4	25	1/4	0		0	
Inequality Measures									
Transfer principle	$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16
Reference point	• ()		/		'		/		,
Sensitivity Normalisation									
Empirical	• n_k is	# perso	ons in ca	ategory	$k \in \{\mathbf{E}$	B, E, G,	N}		

• $s_i = \frac{1}{n} \sum_{\ell=1}^{k(i)} n_\ell - downward$ -looking status

Summary

Four distributional scenarios (1)

Inequality: Ordinal									
Cowell, Flachaire		Ca	ise 0	Cas	se 1	Cas	se 2	Ca	ise 3
Motivation		n_k	Si	n_k	Si	n_k	Si	n_k	Si
Basic Problem	В	0		25	1	0		25	1
Previous work Approach	Ε	50	1	25	3/4	50	1	25	3/4
Model	G	25	1/2	25	1/2	50	1/2	50	1/2
Basic structure Characterisation	Ν	25	1/4	25	1/4	0	7	0	/
Inequality Measures			-						
Transfer principle	$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16
Reference point Sensitivity	• ()		,		/		,		,
Normalisation									
Empirical aspects	• n_k is	# pers	ons in ca	ategory	$k \in \{\mathbf{E}\}$	B, E, G,	N		

• $s_i = \frac{1}{n} \sum_{\ell=1}^{k(i)} n_\ell$ - *downward*-looking status

・ロト・日本・モト・モー ショー ショー

Four distributional scenarios

Inequality: Ordinal Cowell,		G	0	G		G	2	G	2
Flachaire		Ca	se 0	Cas	se I	Cas	se 2	Ca	ise 3
Motivation Basic Problem Previous work	В	n_k 0	s'_i	$\frac{n_k}{25}$	$\frac{s'_i}{1/4}$	n_k 0	s'_i	$\frac{n_k}{25}$	s'_i 1/4
Approach Model Basic structure Characterisation	E G N	50 25 25	$\frac{1/2}{3/4}$	25 25 25	$\frac{1/2}{3/4}$	50 50 0	$\frac{1}{2}$	25 50 0	$\frac{1}{2}$
Inequality Measures Transfer principle Reference point Sensitivity Normalisation	$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16
Empirical aspects Implementation	• n_k is	<u>^</u>	ons in ca	ategory	$k \in \{\mathbf{I}\}$	B,E,G,	N}		

- Performance
- Application

Summary

 $s'_i = \frac{1}{n} \sum_{\ell=k(i)}^{K} n_{\ell} - upward$ -looking status

Four distributional scenarios

Inequality: Ordinal									
Cowell, Flachaire		Ca	se 0	Cas	se 1	Cas	se 2	Ca	se 3
Motivation		n_k	s'_i	n_k	s'_i	n_k	s'_i	n_k	s'_i
Basic Problem	В	0		25	1/4	0		25	1/4
Previous work Approach	Е	50	1/2	25	1/2	50	1/2	25	1/2
Model	G	25	3/4	25	3/4	50	1	50	1
Basic structure Characterisation	Ν	25	1	25	1	0		0	
Inequality Measures									
Transfer principle	$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16
Reference point Sensitivity	,		•						

• n_k is # persons in category $k \in \{B, E, G, N\}$

• $s'_i = \frac{1}{n} \sum_{\ell=k(i)}^{K} n_{\ell}$ - *upward*-looking status

Summary

Four distributional scenarios

Inequality: Ordinal									
Cowell, Flachaire		Cas	se 0	Cas	se 1	Cas	se 2	Ca	se 3
Motivation		n_k	s'_i	n_k	s'_i	n_k	s'_i	n_k	s'_i
Basic Problem	В	0		25	1/4	0		25	1/4
Previous work Approach	E	50	1/2	25	1/2	50	1/2	25	1/2
Model	G	25	3/4	25	3/4	50	1	50	1
Basic structure Characterisation	N	25	1	25	1	0		0	
Inequality Measures									
Transfer principle	$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16
Reference point Sensitivity	. ()		,		,		1		,

• n_k is # persons in category $k \in \{B, E, G, N\}$

•
$$s'_i = \frac{1}{n} \sum_{\ell=k(i)}^{K} n_{\ell}$$
- *upward*-looking status

Summary

Four distributional scenarios (2)

Inequality: Ordinal									
Cowell, Flachaire		Ca	se 0	Cas	se 1	Cas	se 2	Ca	ise 3
		n_k	S_i	n_k	S_i	n_k	S_i	n_k	S_i
Motivation	В	0		25	1	0		25	1
Basic Problem	D	0		25	1	0		25	1
Previous work	E	50	1	25	3/4	50	1	25	3/4
Approach	G	25	1/2	25	1/2	50	1/2	50	1/2
Model	G	25	1/2	23	1/2	50	1/2	50	1/2
Basic structure	Ν	25	1/4	25	1/4	0		0	
Characterisation	1	25	-/4	25	-/4	0		0	
Inequality									
Measures	u (a)		11/16		5/8		3/4		11/16
Transfer principle	$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16
Pafaranca point									

• Case 0 to Case 1:

- 25 people promoted from E to B
- if *e* equals to any of values taken by $\mu(s)$
- then inequality increases

Four distributional scenarios (2)

Inequality: Ordinal									
Cowell, Flachaire		Ca	se 0	Cas	se 1	Cas	se 2	Ca	se 3
		n_k	S_i	n_k	S_i	n_k	Si	n_k	Si
Motivation Basic Problem	В	0		25	1	0		25	1
Previous work	Ε	50	1	25	3/4	50	1	25	3/4
Approach	G	25	1/2	25	1/2	50	1/2	50	1/2
Basic structure Characterisation	Ν	25	1/4	25	1/4	0		0	
Inequality									
Measures Transfer principle	$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16
Reference point Sensitivity									
Normalisation	• Case	0 to C	ase 1:						
The state of the set	- Cube	0.000							

- 25 people promoted from E to B
- if *e* equals to any of values taken by $\mu(\mathbf{s})$

< □ > < @ > < E > < E > E のQ@

• then inequality increases

Four distributional scenarios (3)

Inequality: Ordinal									
Cowell, Flachaire		Ca	se 0	Cas	se 1	Cas	se 2	Ca	se 3
		n_k	S_i	n_k	S_i	n_k	S_i	n_k	S_i
Motivation	В	0		25	1	0		25	1
Basic Problem	D	0		25	1	0		25	1
Previous work	E	50	1	25	3/4	50	1	25	3/4
Approach	G	25	1/2	25	1/2	50	1/2	50	1/2
Model	G	23	1/2	23	1/2	50	1/2	50	1/2
Basic structure	Ν	25	1/4	25	1/4	0		0	
Characterisation	14	23	-/+	23	-/+	0		0	
Inequality									
Measures	$u(\mathbf{s})$		11/16		5/8		3/4		11/16
Transfer principle	$\mu(\mathbf{s})$		11/16		5/8		5/4		11/10

• Case 0 to Case 2:

- 25 people promoted from N to G
- if *e* equals to any of values taken by $\mu(\mathbf{s})$
- then inequality decreases

Four distributional scenarios (3)

Inequality: Ordinal									
Cowell, Flachaire		Ca	se 0	Ca	se 1	Cas	se 2	Ca	se 3
		n_k	Si	n_k	Si	n_k	Si	n_k	Si
Motivation Basic Problem	В	0		25	1	0		25	1
Previous work	Е	50	1	25	3/4	50	1	25	3/4
Approach Model	G	25	1/2	25	1/2	50	1/2	50	1/2
Basic structure Characterisation	Ν	25	1/4	25	1/4	0		0	
Inequality Measures	u(a)		11/16		5/8		3/4		11/16
Transfer principle	$\mu(\mathbf{s})$		11/10		5/8		5/4		11/10
Reference point Sensitivity									
Normalisation	• Case	0 to C	ase 2.						
Empirical	J Case	0100	ube 2.						

- 25 people promoted from N to G
- if *e* equals to any of values taken by $\mu(\mathbf{s})$

< □ > < @ > < E > < E > E のQ@

• then inequality decreases

Transfer Principle again

Ta a ser a l'éta se									
Inequality: Ordinal									
Cowell, Flachaire		Са	ise 0	Ca	se 1	Cas	se 2	Са	se 3
Motivation		n_k	Si	n_k	S_i	n_k	Si	n_k	S_i
Basic Problem	В	0		25	1	0		25	1
Previous work	E	50	1	25	3/4	50	1	25	3/4
Approach Model	G	25	1/2	25	1/2	50	1/2	50	1/2
Basic structure Characterisation	Ν	25	1/4	25	1/4	0		0	
Inequality Measures					5/0				
Transfer principle Reference point	$\mu(\mathbf{s})$				5/8		3/4		11/1
Sensitivity									
Normalisation	• Case	e 0 to C	ase 1: ir	nequali	tv incr	eases			
Empirical aspects				<u>_</u>	~				
Implementation	• Case	e U to C	ase 2: ir	requali	ty decr	eases			
Performance Application	• Case	e 0 to C	ase 3: c	ombina	tion re	sults in	ambig	puous c	hang
S								5	

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Transfer Principle again

Inequality: Ordinal									
Cowell, Flachaire		Ca	se 0	Cas	se 1	Cas	se 2	Ca	se 3
Motivation		n_k	Si	n_k	Si	n_k	Si	n_k	Si
Basic Problem	В	0		25	1	0		25	1
Previous work	Ε	50	1	25	3/4	50	1	25	3/4
Approach Model	G	25	1/2	25	1/2	50	1/2	50	1/2
Basic structure Characterisation	N	25	1/4	25	1/4	0	/	0	7
Inequality Measures					,				
Transfer principle	$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16
Reference point Sensitivity Normalisation	• ()		7		,		,		1

Empirical aspects Implementation

Application

Summary

- Case 0 to Case 1: inequality increases
- Case 0 to Case 2: inequality decreases

• Case 0 to Case 3: combination results in ambiguous change

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Transfer Principle again

Inequality: Ordinal									
Cowell, Flachaire		Case 0		Case 1		Case 2		Case 3	
Motivation		n_k	Si	n_k	Si	n_k	Si	n_k	Si
Basic Problem	В	0		25	1	0		25	1
Previous work	Ε	50	1	25	3/4	50	1	25	3/4
Approach Model	G	25	1/2	25	1/2	50	1/2	50	1/2
Basic structure Characterisation	N	25	1/4	25	1/4	0	/ -	0	/ -
Inequality			,		,				
Measures	$u(\mathbf{s})$		11/16		5/8		3/4		11/16
Transfer principle Reference point	$\mu(\mathbf{s})$		11/10		5/8		5/4		11/10

Empirical aspects Implementatio

Performance

Application

Summary

• Case 0 to Case 1: inequality increases

• Case 0 to Case 2: inequality decreases

• Case 0 to Case 3: combination results in ambiguous change

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Transfer Principle again

Inequality: Ordinal									
Cowell, Flachaire		Ca	se 0	Cas	se 1	Cas	se 2	Ca	ise 3
Motivation		n_k	Si	n_k	Si	n_k	Si	n_k	Si
Basic Problem	В	0		25	1	0		25	1
Previous work	Е	50	1	25	3/4	50	1	25	3/4
Approach	G	25	1/2	25	1/2	50	1/2	50	1/2
Basic structure Characterisation	N	25	1/4	25	1/4	0	/ -	0	/ -
Inequality Measures					- /		21		
Transfer principle	$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16
Reference point Sensitivity									
Normalisation	C	0.4.0	1	1.					
Empirical	• Case	U to C	ase 1: in	equali	ty incre	eases			

• Case 0 to Case 2: inequality decreases

• Case 0 to Case 3: combination results in ambiguous change

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Summary

Transfer Principle again

Inequality: Ordinal									
Cowell, Flachaire		Ca	se 0	Cas	se 1	Cas	se 2	Ca	se 3
Motivation		n_k	Si	n_k	Si	n_k	Si	n_k	Si
Basic Problem	В	0		25	1	0		25	1
Previous work	Ε	50	1	25	3/4	50	1	25	3/4
Approach Model	G	25	1/2	25	1/2	50	1/2	50	1/2
Basic structure Characterisation	Ν	25	1/4	25	1/4	0	/	0	7
Inequality									
Measures Transfer principle	$\mu(\mathbf{s})$		11/16		5/8		3/4		11/16
Reference point Sensitivity	/								

- Case 0 to Case 1: inequality increases
- Case 0 to Case 2: inequality decreases
- Case 0 to Case 3: combination results in ambiguous change

< □ > < @ > < E > < E > E のQ@

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures

Transfer principle

Reference point

Normalisation

Empirical aspects Implementation

Application

Summary

Motivation

• Basics

• Previous work

- Approach
 - Model
 - Basic structure
 - Characterisation

Inequality Measures

Transfer principle

Reference point

- Sensitivity
- Normalisation
- 4 Empirical aspects
 - Implementation

Э

Sac

- Performance
- Application
- Summarv

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Previous work

```
Approach
Model
```

Characterisation

Inequality Measures

Reference point

Sensitivity Normalisation

Empirical aspects

Implementatio

Ampliantian

Summary

• Inequality index requires a reference point

• Mean status: $e = \eta(s) = \mu(s)$

• for continuous distributions will equal 0.5

• for categorical data, there is no counterpart to fixed-mean assumption in income-inequality analysis

• Median status:
$$e = \eta$$
 (s) = med(s)

• not well-defined

• in the example median is any value in interval M(s)

- $M(\mathbf{s}) = [1/2, 1)$ in cases 0 and 2
- $M(\mathbf{s}) = [1/2, 3/4)$ in cases 1 and 3

```
• Max status: e = 1
```

for constant *e* this is only value that makes sense
natural normalisation of index is *c* = 1: ensures *I*(1;1) = 0

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model

Characterisation

Inequality Measures Transfer princip

Reference point

Normalisation

Empirical aspects

Performance

Application

Summary

• Inequality index requires a reference point

• Mean status: $e = \eta (\mathbf{s}) = \mu(\mathbf{s})$

• for continuous distributions will equal 0.5

• for categorical data, there is no counterpart to fixed-mean assumption in income-inequality analysis

• Median status:
$$e = \eta$$
 (s) = med(s)

not well-defined

• in the example median is any value in interval $M(\mathbf{s})$

•
$$M(\mathbf{s}) = [1/2, 1)$$
 in cases 0 and 2

•
$$M(\mathbf{s}) = [1/2, 3/4)$$
 in cases 1 and 3

• Max status: e = 1

for constant *e* this is only value that makes sense
natural normalisation of index is *c* = 1: ensures *I*(1;1) = 0

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model Basic structure

Characterisation

Inequality Measures Transfer princip Reference point

Sensitivity

Empirical aspects

Performance

Application

Summary

• Inequality index requires a reference point

• Mean status: $e = \eta (\mathbf{s}) = \mu(\mathbf{s})$

• for continuous distributions will equal 0.5

• for categorical data, there is no counterpart to fixed-mean assumption in income-inequality analysis

• Median status:
$$e = \eta$$
 (s) = med(s)

- not well-defined
- in the example median is any value in interval $M(\mathbf{s})$
- $M(\mathbf{s}) = [1/2, 1)$ in cases 0 and 2
- $M(\mathbf{s}) = [1/2, 3/4)$ in cases 1 and 3

```
• Max status: e = 1
```

for constant *e* this is only value that makes sense
natural normalisation of index is *c* = 1: ensures *I*(1;1) = 0

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model Basic structur

Characterisation

Inequality Measures Transfer princip Reference point

Sensitivity

Empirical aspects

Performance

Application

Summary

• Inequality index requires a reference point

• Mean status: $e = \eta (\mathbf{s}) = \mu(\mathbf{s})$

• for continuous distributions will equal 0.5

• for categorical data, there is no counterpart to fixed-mean assumption in income-inequality analysis

• Median status:
$$e = \eta$$
 (s) = med(s)

- not well-defined
- in the example median is any value in interval $M(\mathbf{s})$
- $M(\mathbf{s}) = [1/2, 1)$ in cases 0 and 2
- $M(\mathbf{s}) = [1/2, 3/4)$ in cases 1 and 3

• Max status: e = 1

- for constant *e* this is only value that makes sense
- natural normalisation of index is c = 1: ensures I(1; 1) = 0

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Characterisation

Measures Transfer princip

Reference poin

Sensitivity

Normalisation

Empirical aspects Implementation Performance

Application

Summary

- Motivation
 - Basics
 - Previous work
- Approach
 - Model
 - Basic structure
 - Characterisation

Inequality Measures

- Transfer principle
- Reference point

Sensitivity

- Normalisation
- 4 Empirical aspects
 - Implementation
 - Performance
 - Application
- Summarv

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem
- Approach Model Basic structure
- Characterisation
- Inequality Measures Transfer princip
- Sensitivity

Normalisation

- Empirical aspects Implementatio Performance
- Application
- Summary

• α captures the sensitivity of measured inequality

• If α is high $I_{\alpha}(\mathbf{s}; e) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{s_i}{e} \right]^{\alpha} - c \right]$ sensitive to high status-inequality

イロト イロト イヨト イヨト ニヨー

Sar

• If
$$e = \mu(\mathbf{s})$$
 and $\alpha = c = 1$ then we have $I_1(\mathbf{s}; e) = \frac{1}{n} \sum_{i=1}^n \frac{s_i}{e} \log\left(\frac{s_i}{e}\right)$

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem
- Approach Model Basic structure
- Characterisation
- Inequality Measures Transfer princip Reference point
- Sensitivity
- Normalisation
- Empirical aspects Implementatio Performance
- Application
- Summary

- α captures the sensitivity of measured inequality
- If α is high $I_{\alpha}(\mathbf{s}; e) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{s_i}{e} \right]^{\alpha} c \right]$ sensitive to high status-inequality

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• If
$$e = \mu(\mathbf{s})$$
 and $\alpha = c = 1$ then we have $I_1(\mathbf{s}; e) = \frac{1}{n} \sum_{i=1}^n \frac{s_i}{e} \log\left(\frac{s_i}{e}\right)$

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem
- Approach Model Basic structure
- Characterisation
- Inequality Measures Transfer princip Reference point
- Sensitivity
- Normalisation
- Empirical aspects Implementatio Performance
- Application
- Summary

- α captures the sensitivity of measured inequality
- If α is high $I_{\alpha}(\mathbf{s}; e) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{s_i}{e} \right]^{\alpha} c \right]$ sensitive to high status-inequality

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• If
$$e = \mu(\mathbf{s})$$
 and $\alpha = c = 1$ then we have $I_1(\mathbf{s}; e) = \frac{1}{n} \sum_{i=1}^n \frac{s_i}{e} \log\left(\frac{s_i}{e}\right)$

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem
- Approach Model Basic structure
- Characterisation
- Inequality Measures Transfer princip Reference point
- Sensitivity

Normalisation

- Empirical aspects Implementatio Performance
- Application
- Summary

- α captures the sensitivity of measured inequality
- If α is high $I_{\alpha}(\mathbf{s}; e) = \frac{1}{\alpha[\alpha-1]} \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{s_i}{e} \right]^{\alpha} c \right]$ sensitive to high status-inequality

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• If
$$e = \mu(\mathbf{s})$$
 and $\alpha = c = 1$ then we have $I_1(\mathbf{s}; e) = \frac{1}{n} \sum_{i=1}^n \frac{s_i}{e} \log\left(\frac{s_i}{e}\right)$

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures Transfer principl Reference point Sensitivity

Normalisation

Empirical aspects Implementation Performance Application

Summary

- Motivation
 - Basics
 - Previous work
- Approach
 - Model
 - Basic structure
 - Characterisation

Inequality Measures

- Transfer principle
- Reference point
- Sensitivity
- Normalisation
- Empirical aspects
 - Implementation

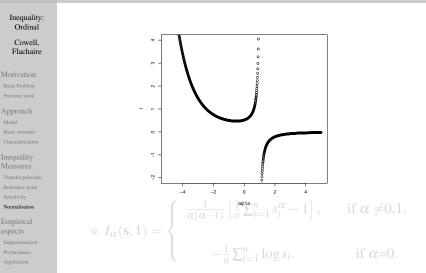
Э

Sac

- Performance
- Application
- Summarv

Inequality: Ordinal					
Cowell,		Case 0	Case 1	Case 2	Case 3
Flachaire	$\mu(\mathbf{s})$	11/16	5/8	3/4	11/16
Motivation	$med_1(s)$	3/4	5/8	3/4	5/8
Basic Problem Previous work	$med_2(\mathbf{s})$	1/2	1/2	1/2	1/2
Approach	$I_0(\mathbf{s}; \boldsymbol{\mu}(\mathbf{s}))$	0.1451	0.1217	0.0588	0.0438
Model Basic structure	$I_0(\mathbf{s}; \operatorname{med}_1(\mathbf{s}))$	0.2321	0.1217	0.0588	-0.0515
Characterisation	$I_0(\mathbf{s}; \operatorname{med}_2(\mathbf{s}))$	-0.1732	-0.1013	-0.3465	-0.2746
Measures	$I_0(\mathbf{s}; 1)$	0.5198	0.5917	0.3465	0.4184
Transfer principle Reference point	10(0, 1)	0.5170	0.0917	0.5 105	0.1101
Sensitivity	• $I_0(\mathbf{s}; \boldsymbol{\mu}(\mathbf{s})),$	$I_0(\mathbf{s}; \text{med}_1)$	(s)): inequalit	v decreases v	when one
Normalisation				<i>j meerenses</i> (
Empirical	person prom	noted from I	E to B		
aspects	• Case 0 t	to Case1, or (Case 2 to Case	3	

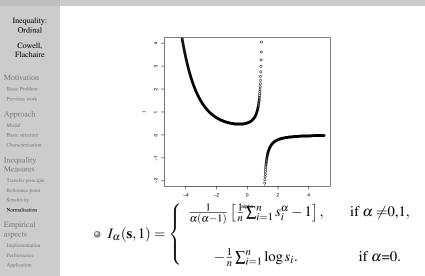
- movement changes both the $\mu(s)$ and med₁(s) ref points
- $I_0(\mathbf{s}; \operatorname{med}_2(\mathbf{s})) < 0$ for *all* cases in example!


Inequality: Ordinal					
Cowell,		Case 0	Case 1	Case 2	Case 3
Flachaire	$\mu(\mathbf{s})$	11/16	5/8	3/4	11/16
Motivation	$med_1(\mathbf{s})$	3/4	5/8	3/4	5/8
Basic Problem Previous work	$med_2(\mathbf{s})$	1/2	1/2	1/2	1/2
Approach	$I_0(\mathbf{s}; \boldsymbol{\mu}(\mathbf{s}))$	0.1451	0.1217	0.0588	0.0438
Basic structure	$I_0(\mathbf{s}; \operatorname{med}_1(\mathbf{s}))$	0.2321	0.1217	0.0588	-0.0515
Characterisation	$I_0(\mathbf{s}; \operatorname{med}_2(\mathbf{s}))$	-0.1732	-0.1013	-0.3465	-0.2746
Measures Transfer principle	$I_0(\mathbf{s}; 1)$	0.5198	0.5917	0.3465	0.4184
Reference point Sensitivity Normalisation Empirical aspects Implementation Performance		noted from E to Case1, or C	E to B Case 2 to Case	-	
Application		•	• • • /		I · ···
Summary	• $I_0(\mathbf{s}; \operatorname{med}_2(\mathbf{s}))$	(5)) < 0 for a	ill cases in ex	ample!	
	• But $I_{\alpha}(\mathbf{s}; 1)$	seems sensi	ible 🔹		

Inequality: Ordinal					
Cowell,		Case 0	Case 1	Case 2	Case 3
Flachaire	$\mu(\mathbf{s})$	11/16	5/8	3/4	11/16
Motivation	$med_1(s)$	3/4	5/8	3/4	5/8
Basic Problem Previous work	$med_2(\mathbf{s})$	1/2	1/2	1/2	1/2
Approach	$I_{0}(\mathbf{s};\boldsymbol{\mu}\left(\mathbf{s} ight))$	0.1451	0.1217	0.0588	0.0438
Basic structure	$I_0(\mathbf{s}; \operatorname{med}_1(\mathbf{s}))$	0.2321	0.1217	0.0588	-0.0515
Characterisation	$I_0(\mathbf{s}; \operatorname{med}_2(\mathbf{s}))$	-0.1732	-0.1013	-0.3465	-0.2746
Measures Transfer principle	$I_0(\mathbf{s}; 1)$	0.5198	0.5917	0.3465	0.4184
Reference point Sensitivity Normalisation	• $I_0(\mathbf{s}; \boldsymbol{\mu}(\mathbf{s})),$			y decreases v	when one
Empirical	person prom	loted from E	e to B		
aspects	• Case 0 t	o Case1, or (Case 2 to Case	3	
Implementation Performance Application	• moveme	ent changes b	both the $\mu(\mathbf{s})$ a	nd $med_1(\mathbf{s})$ res	f points
Summary	• $I_0(\mathbf{s}; \operatorname{med}_2(\mathbf{s}))$	(s)) < 0 for a	all cases in ex	ample!	

・ロト・西ト・モート ヨー うくの

Inequality: Ordinal									
Cowell,		Case 0	Case 1	Case 2	Case 3				
Flachaire	$\mu(\mathbf{s})$	11/16	5/8	3/4	11/16				
Motivation	$med_1(s)$	3/4	5/8	3/4	5/8				
Basic Problem Previous work	$med_2(\mathbf{s})$	1/2	1/2	1/2	1/2				
Approach	$I_0(\mathbf{s}; \boldsymbol{\mu}(\mathbf{s}))$	0.1451	0.1217	0.0588	0.0438				
Basic structure	$I_0(\mathbf{s}; \text{med}_1(\mathbf{s}))$	0.2321	0.1217	0.0588	-0.0515				
Characterisation	$I_0(\mathbf{s}; \operatorname{med}_2(\mathbf{s}))$	-0.1732	-0.1013	-0.3465	-0.2746				
Measures	$I_0(s; 1)$	0.5198	0.5917	0.3465	0.4184				
Transfer principle Reference point Sensitivity Normalisation Empirical aspects Implementation Performance Application	 I₀(s; μ(s)), I₀(s; med₁(s)): inequality <i>decreases</i> when one person promoted from E to B Case 0 to Case1, or Case 2 to Case 3 movement changes both the μ(s) and med₁(s) ref points 								
Summary	• $I_0(\mathbf{s}; \operatorname{med}_2(\mathbf{s}))$	• $I_0(\mathbf{s}; \operatorname{med}_2(\mathbf{s})) < 0$ for <i>all</i> cases in example!							
	• But $I_{\alpha}(\mathbf{s};1)$	seems sens	ible		<≣> ≣ ∕0.0°				


Behaviour of $I_{\alpha}(\mathbf{s}; 1)$ with α

Summary

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

Behaviour of $I_{\alpha}(\mathbf{s}; 1)$ with α

Summary

< ロト < 団 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model

Characterisation

Inequality Measures Transfer principl Reference point Sensitivity

Normalisation

Empirical aspects Implementatic Performance

Application

Summary

• Inequality can also be written $I_{\alpha}(\mathbf{s}, 1) = \frac{1}{\alpha - 1} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{s_{i}^{\alpha} - 1}{\alpha} \right]$

• if
$$0 < s < 1$$
 then $[s^{\alpha} - 1]/\alpha < 0$ and if $s = 1$ then $[s^{\alpha} - 1]/\alpha = 0$

• $I_{\alpha}(\mathbf{s}; 1)$ only well behaved under the parameter restriction $\alpha < 1$.

• Alternative representation as Atkinson index on status • $A_{\alpha}(\mathbf{s}) := \begin{cases} 1 - \left[\frac{1}{n}\sum_{i=1}^{n}s_{i}^{\alpha}\right]^{1/\alpha} & \text{if } \alpha < 0 \text{ or } 0 < \alpha < 1, \\ \\ 1 - \left[\prod_{i=1}^{n}s_{i}\right]^{1/n} & \text{if } \alpha = 0. \end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model

Characterisation

Inequality Measures Transfer principl Reference point Sensitivity

Normalisation

Empirical aspects Implementatic Performance

Application

Summary

• Inequality can also be written $I_{\alpha}(\mathbf{s}, 1) = \frac{1}{\alpha - 1} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{s_i^{\alpha} - 1}{\alpha} \right]$

) if
$$0 < s < 1$$
 then $[s^{\alpha} - 1]/\alpha < 0$ and if $s = 1$ then $[s^{\alpha} - 1]/\alpha = 0$

- *I*_α(s; 1) only well behaved under the parameter restriction α < 1.
- Alternative representation as Atkinson index on status • $A_{\alpha}(\mathbf{s}) := \begin{cases} 1 - \left[\frac{1}{n}\sum_{i=1}^{n}s_{i}^{\alpha}\right]^{1/\alpha} & \text{if } \alpha < 0 \text{ or } 0 < \alpha < 1, \\ \\ 1 - \left[\prod_{i=1}^{n}s_{i}\right]^{1/n} & \text{if } \alpha = 0. \end{cases}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆・ 釣々ぐ

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structur

Characterisation

Inequality Measures Transfer principl Reference point Sensitivity

Normalisation

Empirical aspects Implementatic Performance

Application

Summary

• Inequality can also be written $I_{\alpha}(\mathbf{s}, 1) = \frac{1}{\alpha - 1} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{s_{i}^{\alpha} - 1}{\alpha} \right]$

• if
$$0 < s < 1$$
 then $[s^{\alpha} - 1]/\alpha < 0$ and if $s = 1$ then $[s^{\alpha} - 1]/\alpha = 0$

• $I_{\alpha}(\mathbf{s}; 1)$ only well behaved under the parameter restriction $\alpha < 1$.

• Alternative representation as Atkinson index on status • $A_{\alpha}(\mathbf{s}) := \begin{cases} 1 - \left[\frac{1}{n}\sum_{i=1}^{n}s_{i}^{\alpha}\right]^{1/\alpha} & \text{if } \alpha < 0 \text{ or } 0 < \alpha < 1, \\ \\ 1 - \left[\prod_{i=1}^{n}s_{i}\right]^{1/n} & \text{if } \alpha = 0. \end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Characterisation

Transfer principle Reference point Sensitivity

Normalisation

Empirical aspects Implementatio Performance

...

• Inequality can also be written $I_{\alpha}(\mathbf{s}, 1) = \frac{1}{\alpha - 1} \left| \frac{1}{n} \sum_{i=1}^{n} \frac{s_{i}^{\alpha} - 1}{\alpha} \right|$

• if
$$0 < s < 1$$
 then $[s^{\alpha} - 1]/\alpha < 0$ and if $s = 1$ then $[s^{\alpha} - 1]/\alpha = 0$

*I*_α (s; 1) only well behaved under the parameter restriction α < 1.

• Alternative representation as Atkinson index on status • $A_{\alpha}(\mathbf{s}) := \begin{cases} 1 - \left[\frac{1}{n}\sum_{i=1}^{n}s_{i}^{\alpha}\right]^{1/\alpha} & \text{if } \alpha < 0 \text{ or } 0 < \alpha < 1, \\ \\ 1 - \left[\prod_{i=1}^{n}s_{i}\right]^{1/n} & \text{if } \alpha = 0. \end{cases}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

(

Approach Model Basic structure

Characterisation

Inequality Measures Transfer principle Reference point Sensitivity

Normalisation

Empirical aspects Implementatio Performance

Summary

• Inequality can also be written $I_{\alpha}(\mathbf{s}, 1) = \frac{1}{\alpha - 1} \left| \frac{1}{n} \sum_{i=1}^{n} \frac{s_i^{\alpha} - 1}{\alpha} \right|$

• if
$$0 < s < 1$$
 then $[s^{\alpha} - 1]/\alpha < 0$ and if $s = 1$ then $[s^{\alpha} - 1]/\alpha = 0$

- $I_{\alpha}(\mathbf{s}; 1)$ only well behaved under the parameter restriction $\alpha < 1$.
- Alternative representation as Atkinson index on status

•
$$A_{\alpha}(\mathbf{s}) := \begin{cases} 1 - \left[\frac{1}{n}\sum_{i=1}^{n}s_{i}^{\alpha}\right]^{1/\alpha} & \text{if } \alpha < 0 \text{ or } 0 < \alpha < 1, \\ \\ 1 - \left[\prod_{i=1}^{n}s_{i}\right]^{1/n} & \text{if } \alpha = 0. \end{cases}$$

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects

Implementation

Application

Summary

- Motivation
 - Basics
- Previous work
- Approach
 - Model
 - Basic structure
 - Characterisation
- Inequality Measures
 - Transfer principle
 - Reference point
 - Sensitivity
 - Normalisation
- 4 Empirical aspects
 - Implementation

Э

Sac

- Performance
- Application
- 5 Summarv

Implementation

Inequality: Ordinal Cowell Flachaire

Implementation

Description of sample

 $x_i = \begin{cases} 1 & \text{with sample proportion } p_1 \\ 2 & \text{with sample proportion } p_2 \\ \dots \\ K & \text{with sample proportion } p_K \end{cases}$

,

Implementation

Inequality: Ordinal Cowell Flachaire

Implementation

Description of sample

 $x_i = \begin{cases} 1 & \text{with sample proportion } p_1 \\ 2 & \text{with sample proportion } p_2 \\ \dots \\ K & \text{with sample proportion } p_K \end{cases}$

Point estimate of the index:

• $I_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[\sum_{i=1}^{K} p_i \left[\sum_{j=1}^{i} p_j \right]^{\alpha} - 1 \right] & \text{if } \alpha \neq 0, 1 \\ \\ -\sum_{i=1}^{K} p_i \log \left[\sum_{j=1}^{i} p_j \right] & \text{if } \alpha = 0 \end{cases}$ • function of *K* parameter estimates (p_1, p_2, \dots, p_K) following a

multinomial

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

,

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects

Implementation

Performance

C......

• From the CLT I_{α} is asymptotically Normally distributed

Estimator of cov matrix of (p_1, p_2, \dots, p_k) is $\Sigma = \frac{1}{n} \begin{bmatrix} p_1(1-p_1) & -p_1p_2 & \dots & -p_1p_K \\ -p_2p_1 & p_2(1-p_2) & \dots & -p_2p_K \\ \vdots & \vdots & \vdots & \vdots \\ -p_Kp_1 & -p_Kp_2 & \dots & p_K(1-p_K) \end{bmatrix}$

• $\widehat{\operatorname{Var}}(I_{\alpha}) = D\Sigma D^{\top}$ with $D = \begin{bmatrix} \frac{\partial I_{\alpha}}{\partial p_{1}}; & \frac{\partial I_{\alpha}}{\partial p_{2}}; \dots; & \frac{\partial I_{\alpha}}{\partial p_{K}} \end{bmatrix}$ • $\frac{\partial I_{\alpha}}{\partial p_{l}} = \frac{1}{\alpha(\alpha-1)} \left(\left[\sum_{i=1}^{l} p_{i} \right]^{\alpha} + \alpha \sum_{i=l}^{K-1} p_{i} \left[\sum_{j=1}^{i} p_{j} \right]^{\alpha-1} \right), \alpha \neq 0$ • $\frac{\partial I_{0}}{\partial p_{l}} = -\log \left[\sum_{j=1}^{l} p_{j} \right] - \sum_{i=l}^{K-1} p_{i} \left[\sum_{j=1}^{i} p_{j} \right]^{-1}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Model Basic structure

Inequality Measures Transfer principi Reference point Sensitivity Normalisation

Empirical aspects

Implementation

Performance

Summary

• From the CLT I_{α} is asymptotically Normally distributed

Estimator of cov matrix of (p_1, p_2, \dots, p_k) is $\Sigma = \frac{1}{n} \begin{bmatrix} p_1(1-p_1) & -p_1p_2 & \dots & -p_1p_K \\ -p_2p_1 & p_2(1-p_2) & \dots & -p_2p_K \\ \vdots & \vdots & \vdots & \vdots \\ -p_Kp_1 & -p_Kp_2 & \dots & p_K(1-p_K) \end{bmatrix}$

• $\widehat{\operatorname{Var}}(I_{\alpha}) = D\Sigma D^{\top}$ with $D = \begin{bmatrix} \frac{\partial I_{\alpha}}{\partial p_{1}}; & \frac{\partial I_{\alpha}}{\partial p_{2}}; \dots; & \frac{\partial I_{\alpha}}{\partial p_{K}} \end{bmatrix}$ • $\frac{\partial I_{\alpha}}{\partial p_{l}} = \frac{1}{\alpha(\alpha-1)} \left(\left[\sum_{i=1}^{l} p_{i} \right]^{\alpha} + \alpha \sum_{i=l}^{K-1} p_{i} \left[\sum_{j=1}^{i} p_{j} \right]^{\alpha-1} \right), \alpha \neq 0$ • $\frac{\partial I_{0}}{\partial p_{l}} = -\log \left[\sum_{j=1}^{l} p_{j} \right] - \sum_{i=l}^{K-1} p_{i} \left[\sum_{j=1}^{i} p_{j} \right]^{-1}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Model Basic structure

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects

Implementation

Performance

Summary

• From the CLT I_{α} is asymptotically Normally distributed

• Estimator of cov matrix of (p_1, p_2, \dots, p_k) is $\Sigma = \frac{1}{n} \begin{bmatrix} p_1(1-p_1) & -p_1p_2 & \dots & -p_1p_K \\ -p_2p_1 & p_2(1-p_2) & \dots & -p_2p_K \\ \vdots & \vdots & \vdots & \vdots \\ -p_Kp_1 & -p_Kp_2 & \dots & p_K(1-p_K) \end{bmatrix}$

• $\widehat{\operatorname{Var}}(I_{\alpha}) = D\Sigma D^{\top}$ with $D = \left\lfloor \frac{\partial I_{\alpha}}{\partial p_{1}}; \frac{\partial I_{\alpha}}{\partial p_{2}}; \dots; \frac{\partial I_{\alpha}}{\partial p_{K}} \right\rfloor$ • $\frac{\partial I_{\alpha}}{\partial p_{l}} = \frac{1}{\alpha(\alpha-1)} \left(\left[\sum_{i=1}^{l} p_{i} \right]^{\alpha} + \alpha \sum_{i=l}^{K-1} p_{i} \left[\sum_{j=1}^{i} p_{j} \right]^{\alpha-1} \right), \alpha \neq 0$ • $\frac{\partial I_{0}}{\partial p_{l}} = -\log \left[\sum_{j=1}^{l} p_{j} \right] - \sum_{i=l}^{K-1} p_{i} \left[\sum_{j=1}^{i} p_{j} \right]^{-1}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Model Basic structure

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects

Implementation

Performance

Summary

• From the CLT I_{α} is asymptotically Normally distributed

• Estimator of cov matrix of (p_1, p_2, \ldots, p_k) is $\Sigma = \frac{1}{n} \begin{bmatrix} p_1(1-p_1) & -p_1p_2 & \dots & -p_1p_K \\ -p_2p_1 & p_2(1-p_2) & \dots & -p_2p_K \\ \vdots & \vdots & \vdots & \vdots \\ -p_Kp_1 & -p_Kp_2 & \dots & p_K(1-p_K) \end{bmatrix}$ • $\widehat{\operatorname{Var}}(I_{\alpha}) = D\Sigma D^{\top}$ with $D = \begin{bmatrix} \frac{\partial I_{\alpha}}{\partial p_1} ; & \frac{\partial I_{\alpha}}{\partial p_2} ; \dots ; & \frac{\partial I_{\alpha}}{\partial p_K} \end{bmatrix}$ • $\frac{\partial I_{\alpha}}{\partial p_l} = \frac{1}{\alpha(\alpha-1)} \left(\left[\sum_{i=1}^l p_i \right]^{\alpha} + \alpha \sum_{i=l}^{K-1} p_i \left[\sum_{j=1}^l p_j \right]^{\alpha-1} \right), \alpha \neq 0$

• $\frac{\partial I_0}{\partial p_l} = -\log\left[\sum_{j=1}^l p_j\right] - \sum_{i=l}^{K-1} p_i\left[\sum_{j=1}^i p_j\right]^{-1}$

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects

Performance

Application

Summary

- Motivation
 - Basics
 - Previous work
- Approach
 - Model
 - Basic structure
 - Characterisation
- 3 Inequality Measures
 - Transfer principle
 - Reference point
 - Sensitivity
 - Normalisation
- 4 Empirical aspects
 - Implementation

Э

Sac

- Performance
- Application
- 5 Summarv

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model

Characterisation

Inequality Measures Transfer princip Reference point Sensitivity Normalisation

Empirical aspects

Performance

Application

Summary

• 3 variants of CIs: <u>Asymptotic</u>, <u>Percentile</u> Bootstrap, Studentized Bootstrap

• $CI_{asym} = [I_{\alpha} - c_{0.975} \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}; I_{\alpha} + c_{0.975} \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}]$

• $c_{0.975}$ from the Student distribution T(n-1)

• do not always perform well in finite samples

• Bootstraps: generate resamples, $b = 1, \dots, B$

- for each resample *b* compute the inequality index
- obtain *B* bootstrap statistics, I_{α}^{b}

• also *B* bootstrap *t*-statistics $t^b_{\alpha} = (I^b_{\alpha} - I_{\alpha})/\widehat{\operatorname{Var}}(I^b_{\alpha})^{1/2}$

•
$$CI_{stud} = [I_{\alpha} - c^*_{0.975} \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}; I_{\alpha} - c^*_{0.025} \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}]$$

• $c^*_{0.025}$ and $c^*_{0.975}$ are from EDF of the bootstrap *t*-statistics

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model

Characterisation

Inequality Measures Transfer princip Reference point Sensitivity Normalisation

Empirical aspects

Performance

Application

Summary

• 3 variants of CIs: <u>Asymptotic</u>, <u>Percentile</u> Bootstrap, Studentized Bootstrap

• $\overline{CI_{asym}} = [I_{\alpha} - c_{0.975} \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}; I_{\alpha} + c_{0.975} \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}]$

- $c_{0.975}$ from the Student distribution T(n-1)
- do not always perform well in finite samples

Bootstraps: generate resamples, $b = 1, \dots, B$

- for each resample *b* compute the inequality index
- obtain *B* bootstrap statistics, I_{α}^{b}

• also *B* bootstrap *t*-statistics $t^b_{\alpha} = (I^b_{\alpha} - I_{\alpha})/\widehat{\operatorname{Var}}(I^b_{\alpha})^{1/2}$

•
$$CI_{stud} = [I_{\alpha} - c_{0.975}^* \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}; I_{\alpha} - c_{0.025}^* \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}]$$

• $c_{0.025}^*$ and $c_{0.975}^*$ are from EDF of the bootstrap *t*-statistic

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures Transfer principi Reference point Sensitivity Normalisation

Empirical aspects

Performance

Application

Summary

• 3 variants of CIs: <u>Asymptotic</u>, <u>Percentile</u> Bootstrap, Studentized Bootstrap

• $\overline{CI_{asym}} = [I_{\alpha} - c_{0.975} \widehat{Var}(I_{\alpha})^{1/2}; I_{\alpha} + c_{0.975} \widehat{Var}(I_{\alpha})^{1/2}]$

• $c_{0.975}$ from the Student distribution T(n-1)

• do not always perform well in finite samples

• Bootstraps: generate resamples, $b = 1, \dots, B$

- for each resample *b* compute the inequality index
- obtain *B* bootstrap statistics, I_{α}^{b}

• also *B* bootstrap *t*-statistics $t^b_{\alpha} = (I^b_{\alpha} - I_{\alpha})/\widehat{\operatorname{Var}}(I^b_{\alpha})^{1/2}$

• $CI_{perc} = [c_{0.025}^b; c_{0.975}^b]$ • $c_{0.025}^b$ and $c_{0.975}^b$ are from EDF of bootstrap statistics

• $CI_{stud} = [I_{\alpha} - c_{0.975}^* \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}; I_{\alpha} - c_{0.025}^* \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}]$

• $c_{0.025}^*$ and $c_{0.975}^*$ are from EDF of the bootstrap *t*-statistics

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects

Performance

Application

Summary

• 3 variants of CIs: <u>Asymptotic</u>, <u>Percentile</u> Bootstrap, Studentized Bootstrap

•
$$\overline{CI_{asym}} = [I_{\alpha} - c_{0.975} \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}; I_{\alpha} + c_{0.975} \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}]$$

- $c_{0.975}$ from the Student distribution T(n-1)
- do not always perform well in finite samples
- Bootstraps: generate resamples, $b = 1, \dots, B$
 - for each resample *b* compute the inequality index
 - obtain *B* bootstrap statistics, I_{α}^{b}
 - also *B* bootstrap *t*-statistics $t^b_{\alpha} = (I^b_{\alpha} I_{\alpha})/\widehat{\operatorname{Var}}(I^b_{\alpha})^{1/2}$

•
$$CI_{perc} = [c_{0.025}^b; c_{0.975}^b]$$

• $c_{0.025}^b$ and $c_{0.975}^b$ are from EDF of bootstrap statistics

• $CI_{stud} = [I_{\alpha} - c_{0.975}^* \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}; I_{\alpha} - c_{0.025}^* \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}]$ • $c_{0.025}^*$ and $c_{0.975}^*$ are from EDF of the bootstrap *t*-statistics

Confidence Intervals

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects

Performance

Application

Summary

• 3 variants of CIs: <u>Asymptotic</u>, <u>Percentile</u> Bootstrap, Studentized Bootstrap

•
$$\overline{CI_{asym}} = [I_{\alpha} - c_{0.975} \widehat{Var}(I_{\alpha})^{1/2}; I_{\alpha} + c_{0.975} \widehat{Var}(I_{\alpha})^{1/2}]$$

- $c_{0.975}$ from the Student distribution T(n-1)
- do not always perform well in finite samples
- Bootstraps: generate resamples, b = 1, ..., B
 - for each resample *b* compute the inequality index
 - obtain *B* bootstrap statistics, I_{α}^{b}
 - also *B* bootstrap *t*-statistics $t^b_{\alpha} = (I^b_{\alpha} I_{\alpha})/\widehat{\operatorname{Var}}(I^b_{\alpha})^{1/2}$

•
$$CI_{stud} = [I_{\alpha} - c_{0.975}^* \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}; I_{\alpha} - c_{0.025}^* \widehat{\operatorname{Var}}(I_{\alpha})^{1/2}]$$

• $c_{0.025}^*$ and $c_{0.975}^*$ are from EDF of the bootstrap *t*-statistic

Ξ

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model Basic structure Characterisation

Inequality Measures Transfer princip Reference point Sensitivity Normalisation

Empirical aspects Implementatio

Performance

Application

Summary

• Take an example with 3 ordered categories (K = 3)

• Samples are drawn from a multinomial distribution with probabilities $\pi = (0.3, 0.5, 0.2)$

• Is asymptotic or bootstrap distribution a good approximation of the exact distribution of the statistic?

• if we are using 95% CIs of I_{α}

• coverage error rate should be close to nominal rate, 0.05

• Check coverage error rate of CIs as sample size increases

• $\alpha = -1, 0, 0.5, 0.99$

- 199 bootstraps
- 10 000 replications to compute error rates
- n = 20, 50, 100, 200, 500, 1000

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model Basic structure

Inequality Measures Transfer princip Reference point Sensitivity Normalisation

Empirical aspects Implementatio

Performance

Application

Summary

• Take an example with 3 ordered categories (K = 3)

• Samples are drawn from a multinomial distribution with probabilities $\pi = (0.3, 0.5, 0.2)$

• Is asymptotic or bootstrap distribution a good approximation of the exact distribution of the statistic?

• if we are using 95% CIs of I_{α}

• coverage error rate should be close to nominal rate, 0.05

• Check coverage error rate of CIs as sample size increases

- $\alpha = -1, 0, 0.5, 0.99$
- 199 bootstraps
- 10 000 replications to compute error rates
- n = 20, 50, 100, 200, 500, 1000

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem Previous work
- Approach Model Basic structure Characterisation
- Inequality Measures Transfer principl Reference point Sensitivity Normalisation
- Empirical aspects Implementatio
- Performance

Application

Summary

- Take an example with 3 ordered categories (K = 3)
- Samples are drawn from a multinomial distribution with probabilities $\pi = (0.3, 0.5, 0.2)$
- Is asymptotic or bootstrap distribution a good approximation of the exact distribution of the statistic?
 - if we are using 95% CIs of I_{α}
 - coverage error rate should be close to nominal rate, 0.05
- Check coverage error rate of CIs as sample size increases
 - $\alpha = -1, 0, 0.5, 0.99$
 - 199 bootstraps
 - 10 000 replications to compute error rates
 - n = 20, 50, 100, 200, 500, 1000

・ロト (四) (日) (日) (日) (日) (日)

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure Characterisation

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects Implementatio

Performance

Application

Summary

• Take an example with 3 ordered categories (K = 3)

• Samples are drawn from a multinomial distribution with probabilities $\pi = (0.3, 0.5, 0.2)$

• Is asymptotic or bootstrap distribution a good approximation of the exact distribution of the statistic?

• if we are using 95% CIs of I_{α}

• coverage error rate should be close to nominal rate, 0.05

Check coverage error rate of CIs as sample size increases

- $\alpha = -1, 0, 0.5, 0.99$
- 199 bootstraps
- 10 000 replications to compute error rates
- n = 20, 50, 100, 200, 500, 1000

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem Previous work
- Approach Model Basic structure Characterisation
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementatio
- Performance
- Application

Summary

- Take an example with 3 ordered categories (K = 3)
- Samples are drawn from a multinomial distribution with probabilities $\pi = (0.3, 0.5, 0.2)$
- Is asymptotic or bootstrap distribution a good approximation of the exact distribution of the statistic?
 - if we are using 95% CIs of I_{α}
 - coverage error rate should be close to nominal rate, 0.05

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Check coverage error rate of CIs as sample size increases
 - $\alpha = -1, 0, 0.5, 0.99$
 - 199 bootstraps
 - 10 000 replications to compute error rates
 - n = 20, 50, 100, 200, 500, 1000

Inequality:

Performance

Ordinal						
Cowell, Flachaire		α	-1	0	0.5	0.99
Flachane	Asymptotic B	n = 20	0.0606	0.0417	0.0598	0.0491
Motivation Basic Problem		n = 500	0.0523	0.0492	0.0521	0.0523
Previous work		n = 1000	0.0485	0.0540	0.0552	0.0549
Approach	Percentile B	n = 20	0.0384	0.0981	0.0912	0.1023
Basic structure		n = 500	0.0509	0.0513	0.0552	0.0554
Characterisation Inequality		n = 1000	0.0482	0.0556	0.0547	0.0551
Measures	Studentized B	n = 20	0.1275	0.0843	0.1041	0.1377
Transfer principle Reference point		n = 500	0.0518	0.0478	0.0429	0.0465
Sensitivity Normalisation		n = 1000	0.0473	0.0522	0.0493	0.0503
Empirical aspects	 Asymptotic 					
Implementation						

- Percentile bootstrap performs well for n > 50
 - Studentized bootstrap does not do well for small samples
- Reliable results for $\alpha = 0.99$ (index'is tindefined for $\alpha = 1 \mathcal{P}^{\alpha}$

Inequality:

Performance

Ordinal						
Cowell,		α	-1	0	0.5	0.99
Flachaire	Asymptotic B	n = 20	0.0606	0.0417	0.0598	0.0491
Iotivation Basic Problem		n = 500	0.0523	0.0492	0.0521	0.0523
Previous work		n = 1000	0.0485	0.0540	0.0552	0.0549
pproach	Percentile B	n = 20	0.0384	0.0981	0.0912	0.1023
Basic structure		n = 500	0.0509	0.0513	0.0552	0.0554
Characterisation		n = 1000	0.0482	0.0556	0.0547	0.0551
leasures	Studentized B	n = 20	0.1275	0.0843	0.1041	0.1377
Fransfer principle Reference point		n = 500	0.0518	0.0478	0.0429	0.0465
Sensitivity Normalisation		n = 1000	0.0473	0.0522	0.0493	0.0503
mpirical spects	• Asymptotic	Cla parform	o OK in fi	nita samn	10	

• Asymptotic CIs perform OK in finite sample

- Percentile bootstrap performs well for n > 50
- Studentized bootstrap does not do well for small samples
- Reliable results for $\alpha = 0.99$ (index'is tindefined for $\alpha = 1 \mathcal{P}^{\alpha}$

Inequality:

Performance

Ordinal						
Cowell, Flachaire		α	-1	0	0.5	0.99
Flachaire	Asymptotic B	n = 20	0.0606	0.0417	0.0598	0.0491
otivation		n = 500	0.0523	0.0492	0.0521	0.0523
evious work		n = 1000	0.0485	0.0540	0.0552	0.0549
proach	Percentile B	n = 20	0.0384	0.0981	0.0912	0.1023
odel sic structure		n = 500	0.0509	0.0513	0.0552	0.0554
aracterisation		n = 1000	0.0482	0.0556	0.0547	0.0551
equality easures	Studentized B	n = 20	0.1275	0.0843	0.1041	0.1377
ansfer principle ference point		n = 500	0.0518	0.0478	0.0429	0.0465
nsitivity ormalisation		n = 1000	0.0473	0.0522	0.0493	0.0503
npirical				·····		

• Asymptotic CIs perform OK in finite sample

- Percentile bootstrap performs well for n > 50
- Studentized bootstrap does not do well for small samples
- Reliable results for $\alpha = 0.99$ (index is the fined for $\alpha = 1 \mathcal{P}^{\alpha}$

Inequality:

Performance

Ordinal						
Cowell, Flachaire		α	-1	0	0.5	0.99
Flachane	Asymptotic B	n = 20	0.0606	0.0417	0.0598	0.0491
tivation ic Problem		n = 500	0.0523	0.0492	0.0521	0.0523
rious work		n = 1000	0.0485	0.0540	0.0552	0.0549
proach	Percentile B	n = 20	0.0384	0.0981	0.0912	0.1023
ic structure		n = 500	0.0509	0.0513	0.0552	0.0554
racterisation quality		n = 1000	0.0482	0.0556	0.0547	0.0551
asures	Studentized B	n = 20	0.1275	0.0843	0.1041	0.1377
isfer principle erence point		n = 500	0.0518	0.0478	0.0429	0.0465
sitivity malisation		n = 1000	0.0473	0.0522	0.0493	0.0503
pirical						

- Asymptotic CIs perform OK in finite sample
- Percentile bootstrap performs well for n > 50
- Studentized bootstrap does not do well for small samples
- Reliable results for $\alpha = 0.99$ (index is undefined for $\alpha = 1$)

Outline

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure

Inequality Measures Transfer principl Reference point Sensitivity Normalisation

Empirical aspects Implementation

Application

Summary

- Motivation
 - Basics
 - Previous work
- Approach
 - Model
 - Basic structure
 - Characterisation
- 3 Inequality Measures
 - Transfer principle
 - Reference point
 - Sensitivity
 - Normalisation

• Implementation

э

Sac

- Performance
- Application
- Summarv

World values survey

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem Previous work
- Approach Model Basic structure Characterisation
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation Performance Application
- Summary

• Life satisfaction question:

All things considered, how satisfied are you with your life as a whole these days? Using this card on which 1 means you are "completely dissatisfied" and 10 means you are "completely atisfied" where would you put your satisfaction with your life as a whole? (code one number): Completely dissatisfied – 1 2 8 4 5 6 7 8 9 10 – Completely satisfied

• Health question:

All in all, how would you describe your state of health these days? Would you say it is (read out): 1 Very good, 2 Good, 3 Fair, 4 Poor.

World values survey

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

• Life satisfaction question:

All things considered, how satisfied are you with your life as a whole these days? Using this card on which 1 means you are "completely dissatisfied" and 10 means you are "completely satisfied" where would you put your satisfaction with your life as a whole? (code one number): Completely dissatisfied – 1 2 3 4 5 6 7 8 9 10 – Completely satisfied

• Health question:

All in all, how would you describe your state of health these days? Would you say it is (read out): 1 Very good, 2 Good, 3 Fair, 4 Poor.

World values survey

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance Application

Summary

• Life satisfaction question:

All things considered, how satisfied are you with your life as a whole these days? Using this card on which 1 means you are "completely dissatisfied" and 10 means you are "completely satisfied" where would you put your satisfaction with your life as a whole? (code one number): Completely dissatisfied – 1 2 3 4 5 6 7 8 9 10 – Completely satisfied

• Health question:

All in all, how would you describe your state of health these days? Would you say it is (read out): 1 Very good, 2 Good, 3 Fair, 4 Poor.

GDP and Life satisfaction

Inequality: Ordinal Cowell, Flachaire

Motivation

Previous work

Approach Model Basic structure

Inequality Measures Transfer principi Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Application

Summary

• Cross-country comparison of life satisfaction and GDP/head

- Easterlin or happiness-income paradox
- Weak relation internationally?

• How should we quantify life satisfaction?

- simple linearity of Likert scale from coding?
- exponential scale
- Ng (1997), Ferrer-i-Carbonell and Frijters (2004)
- Is inequality of life satisfaction related to GDP/head?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Use I_0 and other members of the same family

GDP and Life satisfaction

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Previous work

Approach Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Application

Summary

• Cross-country comparison of life satisfaction and GDP/head

- Easterlin or happiness-income paradox
- Weak relation internationally?
- How should we quantify life satisfaction?
 - simple linearity of Likert scale from coding?
 - exponential scale?
 - Ng (1997), Ferrer-i-Carbonell and Frijters (2004)

Is inequality of life satisfaction related to GDP/head?
Use *I*₀ and other members of the same family

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

GDP and Life satisfaction

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

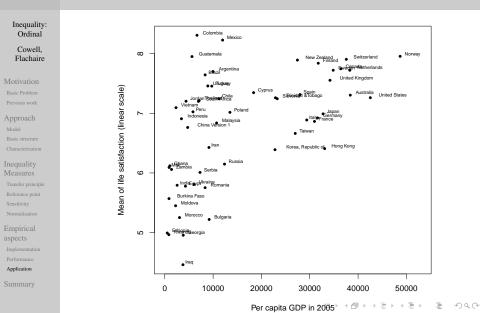
Approach Model Basic structure

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

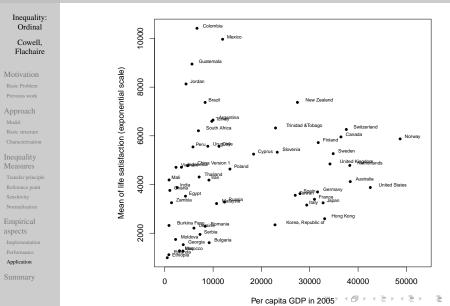
Empirical aspects Implementation

Application

Summary

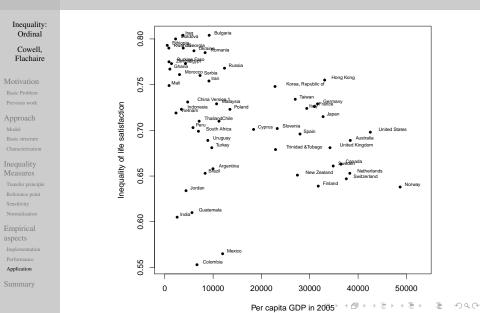

• Cross-country comparison of life satisfaction and GDP/head

- Easterlin or happiness-income paradox
- Weak relation internationally?
- How should we quantify life satisfaction?
 - simple linearity of Likert scale from coding?
 - exponential scale?
 - Ng (1997), Ferrer-i-Carbonell and Frijters (2004)
- Is inequality of life satisfaction related to GDP/head?


▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• Use I_0 and other members of the same family

GDP and Life satisfaction (Linear)



GDP and Life satisfaction (Exponential)

990

GDP and Inequality of Life satisfaction

Health status

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure Characterisatio

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation

Application

reprictation

Summary

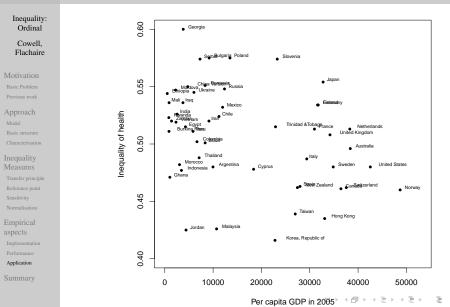
• Comparison of inequality of health and the fraction of population satisfied with their health

• Cross-country comparison of inequality of health and Inequality of life satisfaction

• use same inequality index as for life satisfaction

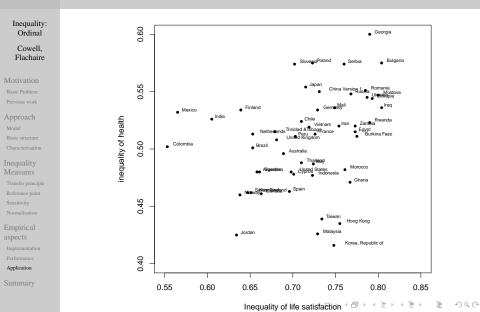
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Health status


Inequality: Ordinal
Cowell, Flachaire

- Motivation Basic Problem
- Approach Model Basic structure Characterisation
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation Performance
- Application
- Summary

- Comparison of inequality of health and the fraction of population satisfied with their health
- Cross-country comparison of inequality of health and Inequality of life satisfaction
 - use same inequality index as for life satisfaction


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inequality of health and GDP

900

Inequality of health

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Application

Summary

• Satisfaction / GDP results sensitive to the cardinal interpretation of the answers

linear: get a positive relation below \$15 000, flat after thatexponential: no relation

• OLS estimate of I_0 (life satisfaction) on the GDP per capita small and negative

• happiness-income relationship is weak in cross-country comparisons

• No clear relationship between I_0 (health) on GDP per capita

• OLS estimate of I_0 (health) on I_0 (life satisfaction) produces a slope coefficient not significantly different from zero

= 900

• health-life satisfaction relationship is not significant

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structure Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Application

Summary

• Satisfaction / GDP results sensitive to the cardinal interpretation of the answers

linear: get a positive relation below \$15 000, flat after that
exponential: no relation

• OLS estimate of I_0 (life satisfaction) on the GDP per capita small and negative

• happiness-income relationship is weak in cross-country comparisons

- No clear relationship between I_0 (health) on GDP per capita
- OLS estimate of I_0 (health) on I_0 (life satisfaction) produces a slope coefficient not significantly different from zero
 - health-life satisfaction relationship is not significant

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem Previous work
- Approach Model Basic structure Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Application

Summary

- Satisfaction / GDP results sensitive to the cardinal interpretation of the answers
 - linear: get a positive relation below \$15 000, flat after that
 - exponential: no relation
- OLS estimate of *I*₀(life satisfaction) on the GDP per capita small and negative
 - happiness-income relationship is weak in cross-country comparisons
- No clear relationship between I_0 (health) on GDP per capita
- OLS estimate of I_0 (health) on I_0 (life satisfaction) produces a slope coefficient not significantly different from zero
 - health-life satisfaction relationship is not significant

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem Previous work
- Approach Model Basic structure Characterisation

Inequality Measures Transfer principle Reference point Sensitivity Normalisation

Empirical aspects Implementation Performance

Application

Summary

- Satisfaction / GDP results sensitive to the cardinal interpretation of the answers
 - linear: get a positive relation below \$15 000, flat after that
 - exponential: no relation
- OLS estimate of I_0 (life satisfaction) on the GDP per capita small and negative
 - happiness-income relationship is weak in cross-country comparisons
- No clear relationship between I_0 (health) on GDP per capita
- OLS estimate of I_0 (health) on I_0 (life satisfaction) produces a slope coefficient not significantly different from zero
 - health-life satisfaction relationship is not significant

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem Previous work
- Approach Model Basic structure Characterisation
- Inequality Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation Performance
- Application
- Summary

- Satisfaction / GDP results sensitive to the cardinal interpretation of the answers
 - linear: get a positive relation below \$15 000, flat after that
 - exponential: no relation
- OLS estimate of *I*₀(life satisfaction) on the GDP per capita small and negative
 - happiness-income relationship is weak in cross-country comparisons
- No clear relationship between I_0 (health) on GDP per capita
- OLS estimate of I_0 (health) on I_0 (life satisfaction) produces a slope coefficient not significantly different from zero
 - health-life satisfaction relationship is not significant $(\Box) + (\Box) + (\Box) + (\Xi) = (\Xi$

Inequality: Ordinal Cowell. Flachaire Summary

イロト イ理ト イヨト イヨト

Э

Dac

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem Previous work

Approach Model Basic structur

Inequality Measures Transfer principl Reference point Sensitivity

Empirical aspects Implementation

Performance

Summary

Theoretical tweaks

- alternatives concepts of status
- alternatives to scale invariance
- Interpretation in terms of inequality of opportunity

イロト イ理ト イヨト イヨト

= 900

- Further empirical applications
 - Health status
 - Education

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem Previous work
- Approach Model Basic structure
- Characterisation
- Measures Transfer principle Reference point Sensitivity
- Empirical aspects Implementation
- Ampliantian

Summary

Theoretical tweaks

- alternatives concepts of status
- alternatives to scale invariance

• Interpretation in terms of inequality of opportunity

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Further empirical applications

- Health status
- Education

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem Previous work
- Approach Model Basic structure
- Characterisation
- Measures Transfer principle Reference point Sensitivity Normalisation
- Empirical aspects Implementation
- Application

Summary

Theoretical tweaks

- alternatives concepts of status
- alternatives to scale invariance
- Interpretation in terms of inequality of opportunity

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Further empirical applications
 - Health status
 - Education

Inequality: Ordinal Cowell, Flachaire

Motivation

Previous work

Approach Model Basic structure

Characterisation

Inequality Measures Transfer princip Reference point Sensitivity

Empirical aspects Implementation

Performance

Summary

• Inequality with ordinal data is a widespread phenomenon

• Conventional I-measures may make no sense

• Our approach:

- separates out the issue of status from that of inequality-aggregation
- allows you to choose "reference status"
- gives a family of measures
- Nice properties empirically

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Previous work

Approach Model Basic structure

Characterisation

Inequality Measures Transfer princip Reference point Sensitivity Normalisation

Empirical aspects Implementatio

Performance

Summary

• Inequality with ordinal data is a widespread phenomenon

• Conventional I-measures may make no sense

• Our approach:

- separates out the issue of status from that of inequality-aggregation
- allows you to choose "reference status"
- gives a family of measures
- Nice properties empirically

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inequality: Ordinal Cowell, Flachaire

Motivation Basic Problem

Approach Model Basic structure

Inequality Measures Transfer princip Reference point Sensitivity Normalisation

Empirical aspects Implementatio

Performance

Summary

- Inequality with ordinal data is a widespread phenomenon
- Conventional I-measures may make no sense

• Our approach:

- separates out the issue of status from that of inequality-aggregation
- allows you to choose "reference status"
- gives a family of measures

Nice properties empirically

Inequality: Ordinal Cowell, Flachaire

- Motivation Basic Problem
- Approach Model Basic structure
- Inequality Measures Transfer principl Reference point Sensitivity Normalisation
- Empirical aspects Implementation
- Application

Summary

• Inequality with ordinal data is a widespread phenomenon

<□▶ < @▶ < E▶ < E▶ = E - のへぐ

- Conventional I-measures may make no sense
- Our approach:
 - separates out the issue of status from that of inequality-aggregation
 - allows you to choose "reference status"
 - gives a family of measures
- Nice properties empirically