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Alain VALETTE†

Institut de Mathématiques, Université de Neuchâtel, SWITZERLAND

The 4 Fields medals of 2014 have been awarded on August 13, 2014 during
the Opening Ceremony of ICM 2014 in Seoul, by Mrs Park Geun-hye, the
President of the Republic of Korea.

1 Ladies first: Maryam MIRZAKHANI

Citation: For her outstanding contributions to the dynamics and geometry of
Riemann surfaces and their moduli spaces.

An iranian citizen, Maryam Mirzakhani was born in Tehran in 1977. She
was one of the two first female students in the iranian team at International
Mathematical Olympiads, with marks of 41/42 in 1994 and 42/42 in 1995. She
appears in the center of the picture below, taken at IMO 1995.

After studying mathematics at Sharif University in Tehran (1999), she got
her thesis in 2004 from Harvard, under the supervision of C. McMULLEN

⇤This is a translation of a presentation given on Aug. 25, 2014, at the annual congress of
the Société Belge des Professeurs de Mathématique

†alain.valette@unine.ch
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(himself a Fields medallist in 1998). From 2004 to 2008, she was assistant-
professor at Princeton, and since 2008 she is full professor at Stanford.

She is the first female laureate of the Fields medal.

The work of Maryam Mirzakhani concerns surfaces of curvature -1, and
their moduli spaces.

Let us consider closed, oriented surfaces: these are classified topologically
by their genus, i.e. the number of holes:

Endow a given surface with a Riemannian structure: you may intuitively
think of it as a way of measuring angles and curve length on the surface. In
particular, you have geodesic curves: these are curves on the surface that
locally minimize arc length; a more physical way of thinking about them, is
to say that geodesics are trajectories of light rays on the surface (examples:
straight lines in the plane; great circles on the sphere).

Curvature can be expressed locally in terms of divergence of geodesics:

• sub-linear divergence , positive curvature (example: the sphere);

• linear divergence , zero curvature (example: Euclidean plane);

• super-linear divergence , negative curvature (examples below)
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A torus can be endowed with a metric of zero curvature, by viewing it as the
quotient of a square in Euclidean plane by identifying opposite pairs of sides;
we speak of a flat torus.

Observe that, replacing a square by a parallelogram, i.e. varying the angles
and side lengths, we obtain a family of distinct flat metrics on the torus. This
is our first example of a moduli space: the space of flat metrics on the torus.
You may think of it as the space of parallelograms in Euclidean plane, up to
isometry.

Le us move to curvature -1: the prototype is the Poincaré disk, or hy-
perbolic plane, represented by the open disk in which:

• hyperbolic angles are Euclidean angles;

• geodesics are circle arcs orthogonal to the boundary of the disk, together
with diameters of the disk.
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This geometry gave inspiration to artists like M.C. ESCHER:

A result due to POINCARE and KOEBE, but finding its roots in work of
RIEMANN, states that every surface of genus g � 2 is the quotient of Poincaré
disk by some tessellation group; in particular every surfce of genus g � 2 can
be endowed with a metric of curvature -1. For example, the genus 2 surface
corresponds to the tessellation of Poincaré disk by octagons, with 8 octagons
at each vertex:
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where identification of sides of the fundamental octagon is made according
to:

Varying the parameters of the octagon (angles, side lengths) you get the
moduli space M2 of the surface of genus 2. More generally, for a surface
⌃
g

of genus g � 2,obtained by glueing from a 4g-gon, the moduli space M
g

is
the set of curvature -1 metrics on ⌃

g

; it is the set of tilings of Poincaré disk
by 4g-gons, where 4g faces meet at each vertex (up to isometries of the disk).
TEICHMUELLER has shown, at the end of the 1930’s, that M

g

is a space of
dimension 6g � 6.

For a given metric of curvature -1 on �
g

, geodesics can be non-closed:

or they can be closed:
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It was known since the 1940’s that the number of closed geodesics of length
 L on a surface, asymptotically behaves like e

L

L

. The problem of counting
simple closed geodesics (those which do not self-intersect, see the above figure)
is much more subtle, and was solved by Mirzakhani in 2004: she shows that
there exists a constant C > 0, depending on the given metric, such that the
number of simple closed geodesics of length  L on the surface, asymptotically
behaves as C.L6g�6. A remarkable feature of the proof is to consider not only
the given metric, but also neighboring metrics in M

g

.
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2 Artur AVILA

Citation: his profound contributions to dynamical systems theory have changed
the face of the field, using the powerful idea of renormalization as a unifying
principle.

Born in Brasil in 1979, Artur Avila is a Brasilian/French citizen. He got his
thesis in 2001 from Instituto Nacional de Matematica Pura e Aplicada (IMPA)
in Rio de Janeiro, under the supervision of Welington DE MELO. Since 2003,
he is on a research position of the French CNRS at Paris; he became Directeur
de Recherches in 2009. Since 2009 he shares his time between Paris and Rio.
In 2008 he got the prize of the European Mathematical Society.

2.1 Unimodal transformations

On a pocket calculator, enter x 2 [0, 1] and press several times the cos key
(in radians): the sequence x, cosx, cos(cosx), cos(cos(cosx)), ... converges fairly
quickly to 0.739085..., which is the unique solution of x = cosx:
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A discrete dynamical system is given by a function f : [0, 1] ! [0, 1],
and the sequence of iterates f(x), f � f(x), f � f � f(x), ...; the question is to
describe the behavior of the n-th iterate fn(x) = f � ... � f(x) for n � 0.

For given x, the sequence of iterates (fn(x))
n�0 is the orbit of x. For

f(x) = cosx, every orbit converges to a fixed point.
Consider now the function f

r

(x) = rx(1�x), where r 2 [1, 4] is a parameter.
For 1  r < 3, all orbits converge to a fixed point. When r reaches 3, a cycle
of length 2 appears. Then, approximately at r = 3.44949, the cycle of length
2 bifurcates into a cycle of length 4. At approximately r = 3.54409, that cycle
bifurcates into a cycle of length 8, and these period-doubling bifurcations occur
faster and faster, until approximately r = 3.56995, the onset of chaos: the
system becomes unpredictable,orbits being seemingly distributed in [0, 1] in a
completely random way: look at graphs (a), (b), (c), (d), (g) and (h) in the
picture below.
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Say that a map f : [0, 1] ! [0, 1] is unimodal if f(0) = f(1) = 0 and f 00 < 0
(so: f has a unique maximum).

Theorem 2.1 (Avila-Lyubich-de Melo 2003). In a real analytic family (f
r

)
r2I

of unimodal maps, for almost every r there is the following dichotomy:

• either f
r

is regular, i.e. almost every orbit converges to some periodic
orbit;

• or f
r

is stochastic: there exists a probability measure ⌫
r

on [0, 1], ab-
solutely continuous with respect to Lebesgue measure, which is invariant
under f

r

and almost all orbits of f
r

are equi-distributed according to ⌫
r

,
in the sense that for every continuous function � on [0, 1]:

lim
n!1

1

n

nX

k=1

�(fn

r

(x)) =

Z 1

0
�(x)d⌫

r

(x)

(the “time average” on the LHS is equal to the “space average” on the
RHS).
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“By now, we have reached a full probabilistic understanding of real analytic
unimodal dynamics, and Artur Avila has been the key player in the final stage
of the story.” (M. Lyubich, 2012).

2.2 The 10 Martini problem

Consider the following situation from physics: an electron is allowed to move
on a one-dimensional crystal lattice, submitted to an electro-magnetic potential
V . The electron may jump one step either to the left or to the right. In the
quantum-mechanics formulation of the situation, the state of the particle is
described by a function f on Z, such that |f(n)|2 is the probability that the
electron can be found at n 2 Z (so that

P
n2Z |f(n)|2 = 1). The evolution of

the system is described by the Hamiltonian operator H acting on the Hilbert
space `2(Z):

(Hf)(n) = f(n+ 1) + f(n� 1) + V (n)f(n).

The spectrum of H provides the possible energy levels for the moving par-
ticle.

One case much studied since the 1970’s, is the almost periodic potential
V (n) = 2� cos(2⇡n↵). The operator (H

�,↵

f)(n) = f(n + 1) + f(n � 1) +
2� cos(2⇡n↵)f(n) is then called the almost Mathieu operator, the constant
� 2 R being the coupling constant (� = 0 correspondds to the free electron).

The first numerical study of the spectrum of H
�,↵

was made by Douglas
HOFSTADTER in the 1970’s, for � = 1. He obtained this incredibly fractal
image, nowadays known as Hofstadter’s butterfly (where ↵ 2 [0, 1] is on the
vertical axis, and the spectrum of H1,↵ is plotted horizontally:
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Analogous images are obtained for � 6= 0. It was rather quickly shown
that, for rational values of ↵, there is band spectrum, i.e. the spectrum of
H

�,↵

is a finite union of intervals. This led the famous a american probabilist
Marc KAC, in 1981, to o↵er 10 Martinis for a proof that, for irrational ↵, the
spectrum of H

�,↵

is a Cantor set, i.e. a closed bounded subset of R, totally
disconnected, without isolated points. At about the same time, the physicists
ANDRE and AUBRY conjectured that the Lebesgue measure (i.e. the “length”)
of the spectrum of H

�,↵

is 4|1� �| for ↵ irrational.
In 2004, various methods of mathematical physics allowed to establish the

10 Martini conjecture for a set of parameters (�,↵) of measure 1 in the square
[0, 1] ⇥ [0, 1]; it became clear that new ideas were needed for further progress.
Introducing ideas coming from dynamical systems, Avila obtained:

Theorem 2.2. • (Avila-Krikorian 2006) The Audré-Aubry conjecture is
true;

• (Avila-Jitomirskaya 2009) The 10 Martini conjecture is true.

Sadly Kac passed in 1984, so he couldn’t share the 10 Martinis with Avila...

3 Manjul BHARGAVA

Citation: for developing powerful new methods in the geometry of numbers and
applying them to count rings of small rank and to bound the average rank of
elliptic curves.

Born in 1974 in Canada, Bhargava grew up in India and the US. He got
his PhD in 2001 from Princeton University under the supervision of Andrew
WILES1. He became professor in Princeton in 2003, and was elected at the US
Academy of Sciences in 2013. He has 6 papers in Annals of Mathematics.

1Of Fermat’s last theorem fame... remember?
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Bhargava’s mathematics are rooted in classical number theory - he is said
to be the person in the world who best understood C.F. GAUSS’ Disquisitiones
Arithmeticae.

3.1 The 15 theorem, and the 290 theorem

In the 17th century, FERMAT claimed that an integer n is a sum of two squares,
i.e. n = x2 + y2 with x, y 2 Z, if and only every prime number congruent to
3 modulo 4 appears with even exponent in the prime number factorization of
n. He also claimed that every positive integer is a sum of 4 squares. These
claims where proved one century later, the former by EULER, the latter by
LAGRANGE.

One common feature between these two statements is the appearance of
positive definite quadratic forms with integer coe�cients:

Quadratic form in k variables: Q(x)=
P

1ijk

a
ij

x
i

x
j

, where x = (x1, ..., x
k

);
With integer coe�cients: a

ij

2 Z;
Positive definite: 8x 2 Rk : Q(x) � 0, with equality if and only if x = 0.

Definition 3.1. The quadratic form Q represents the integer n if there
exists x 2 Zk such that Q(x) = n, i.e. the equation Q(x) = n admits integer
solutions.

A classical problem is then: which integers are represented by a given
quadratic form? For binary forms (k = 2), the problem goes back to LA-
GRANGE, LEGENDRE and GAUSS.

In 1993, J.H. CONWAY and W. SCHNEEBERGER prove: let Q be a
positive definite quadratic form, with a

ij

even2 for i < j: if Q represents every
integer in {1, 2, ..., 15}, then Q represents every positive integer. They do not
publish the proof (apparently there were too many cases to consider). In 2000
Bhargava enters the game and provides a 6 page proof of a more precise result:

Theorem 3.2. Let Q be a positive definite quadratic form with a
ij

even for i <
j. If Q represents every integer in {1, 2, 3, 5, 6, 7, 10, 14, 15}, then Q represents
every positive integer. Moreover, for every integer t in that list, there exists
a form in 4 variables not representing t but representing every other positive
integer.

Exemple 3.3. The form x2 + 2y2 + 5z2 + 5t2 represents every positive integer..

In 2005, in collaboration with J. HANKE, Bhargava strikes back by remov-
ing the evenness assumption on a

ij

, and proves the 290 theorem, conjectured
by Conway:

Theorem 3.4. Let Q be a positive definite quadratic form with integer coe�-
cients. If Q represents the 29 integers 1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23,
26, 29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290, then Q represents all posi-
tive integers. Moreover, for every integer t in that list, there exists a form not
representing t, but representing every other positive integer.

2This condition means that the bilinear form associated with Q has integer coe�cients.
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3.1.1 Rational points on algebraic curves

Bhargava devoted much attention to the question: let P (x) be a polynomial
with integer coe�cients, of degree n: does P take square values on some in-
tegers? Or: does the equation y2 = P (x) admit integer solutions? Or, more
geometrically: does the plane algebraic curve with equation y2 = P (x) have
integer points? More generally, does the same curve have rational points? Here
some assumptions are needed to avoid trivialities; e.g. if P vanishes at ↵ 2 Q,
clearly the point (↵, 0) is a rational point on the curve. So we assume that P
is irreducible over Q.

For n = 3, 4 we get an elliptic curve:

For n � 5 we get a hyperelliptic curve:

It was previously known that:

• For n = 1, 2 the set of rational points is either empty or infinite;
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• For n � 5, the number of rational points is finite3.

Bhargava had the idea of getting statistical results on curves. For this,
he orders curves according to the height of the polynomial P : if P (x) =
a
n

xn + a
n�1x

n�1 + ...+ a1x+ a0, the height of P is h(P ) = max0in

|a
i

|. For
a given degree n, the density of curves of degree n without rational point is

d
n

= lim inf
h!1

Number of curves of height  h without rational point

Number of curves of height  h
.

Theorem 3.5 (Bhargava 2013). Most hyperelliptic curves have no rational
point: for n > 5, one has d

n

> 1
2 . Moreover, for n ! 1, the density d

n

converges to 1 exponentially fast.

For n = 3, 4 (elliptic curves):

Theorem 3.6 (Bhargava-Shankar-Skinner). A positive proportion of elliptic
curves has no rational point. A positive proportion of elliptic curves has in-
finitely many rational points.

4 Martin HAIRER

Citation: for his outstanding contributions to the theory of stochastic partial
di↵erential equations; in particular he created a theory of regularity structures
for such equations.

3This was proved in 1983 by G. FALTINGS, who got the Fields medal in 1986.
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An austrian citizen, Martin Hairer was born in Geneva in 19754. He got
his thesis in 2001 from University Geneva, under the supervision of Jean-Pierre
ECKMANN, a renowned mathematical physicist. As a PhD student, he made
himself famous for creating and marketing the software Amadeus for sound
processing, “the swiss army knife of sound editing”, used in particular for digi-
talizing vinyl records by eliminating cracks. Hairer is full professor at Warwick
University (England).

In physics, time-dependent phenomena are described by di↵erential equa-
tions:

y0(t) = f(y(t))

(where y(t) is the unknown function). If the function f is not precisely known,
one can be led to add an error term, describing some uncertainty in the model:

y0(t) = f(y(t)) + �(y(t))n(t),

else:

y(t) = y(0) +

Z
t

0
(f(y(s)) + �(y(s))n(s)) ds.

If f,�, n are smooth enough, you will probably find in your toolkit a fixed point
theorem that will apply to guarantee existence and uniqueness of a solution
(even if this solution cannot be written explicitly).

If n is very irregular, one idea is to approximate n by smooth approximations
n
k

, look at the family of integral equations

y(t) = y(0) +

Z
t

0
(f(y(s)) + �(y(s))n

k

(s)) ds,

and pray that everything goes well, i.e. the solution y
k

of the approximate
equation converges for k ! 1 towards the solution y of the starting equation.

4His father, Ernst Hairer, is an emeritus professor in numerical analysis at University
Geneva.
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Ideally the limit function y should not depend on the approximations n
k

chosen
for n (universality property).

If n(t) is a noise, i.e a realization of a stochastic process, the di↵erential
equation becomes a stochastic di↵erential equation.

A well-studied model is the white noise: E(n(t)) = 0, E(n(s)n(t)) = 0 for
s 6= t (non-correlated in time). If n(t) is a white noise, then W (t) =

R
t

0 n(s) ds
is a brownian motion - first observed by biologist R. BROWN in 1827, for-
malized by G. BACHELIER in 1900 (the birth of financial mathematics) then
A. EINSTEIN in 1905 (kinetic theory of gases), then put on rigorous mathe-
matical grounds by N. WIENER (1930) and P. LEVY (1948)... A di�culty is
that it is proved that (almost) every brownian trajectory is everywhere non-
di↵erentiable, so the “derivative” n(t) does not make sense as a function, but
only as a distribution in the sense of Laurent SCHWARTZ. A rigorous theory
for stochastic di↵erential equations was developed by ITO since 1948:

Y (t) = Y (0) +

Z
t

0
(f(Y (s)) ds+ “

Z
t

0
�(Y (s)) dW (s)00

(where the term in quotation marks is Ito’s stochastic integral.)
Physical phenomena depending both on space and time are described by

partial di↵erential equations (PDE’s): e.g. the behavior of heat in a thin
bar is governed by:

@u(x, t)

@t
=

@2u(x, t)

@x2
,

where u(x, t) is temperature at time t at the point with abscissa x. If a noise
term is added, one gets a stochastic partial di↵erential equation (SPDE).

Martin Hairer has been especially interested in the KPZ equation (from
the physicists KHARDAR, PARISI and ZHANG who devised it in 1986), that
models rough interface phenomena and growth phenomena:

@h(x, t)

@t
=

@2h(x, t)

@x2
+ (

@h(x, t)

@x
)2 + n(t)

where n(t) is a white noise. One serious di�culty is that partial derivatives
of h(x, t) must be taken in the distributional sense... and that squaring a
distribution has no a priori meaning!

Martin Hairer developed a theory of regularity structures (incorpo-
rating as a particular case the theory of “rough paths” of T. LYONS, 1998),
allowing him to give rigorous meaning to the solutions of some very singular
SPDE’s from mathematical physics. He proves that considering a family of
equations:

@
t

h
"

= @2
x

h
"

+ (@
x

h
"

)2 � C
"

+ n
"

where n
"

is smooth and converges in some appropriate sense to the white
noise n, and C

"

is a well-chosen constant, then the solution h
"

converges to
some universal limit.
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According to experts, Hairer’s regularity structures can be applied well be-
yond the 1-dimensional KPZ equation, and o↵ers a new set of tools to explic-
itly construct good approximations to singular equations. It is apparently a
revolutionary approach that provides a new viewpoint on several fundamental
equations of mathematical physics, for which it was long believed that there
were impossible to handle in a mathematically rigorous way.

Photographic credits: photographs of the laureates taken by the author; other

pictures borrowed from Wikipedia.
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