Group pairs with property (T), from arithmetic lattices

Alain VALETTE

March 5, 2004

To the memory of Armand Borel

Abstract

Let Γ be an arithmetic lattice in an absolutely simple Lie group G with trivial centre. We prove that there exists an integer $N \geq 2$, a subgroup Λ of finite index in Γ , and an action of Λ on \mathbb{Z}^N such that the pair $(\Lambda \ltimes \mathbb{Z}^N, \mathbb{Z}^N)$ has property (T). If G has property (T), then so does $\Lambda \ltimes \mathbb{Z}^N$. If G is the adjoint group of Sp(n, 1), then $\Lambda \ltimes \mathbb{Z}^N$ is a property (T) group satisfying the Baum-Connes conjecture. If Λ_n is an arithmetic lattice in SO(2n, 1), then the associated von Neumann algebras $(L(\Lambda_n \ltimes \mathbb{Z}^{N_n}))_{n\geq 1}$ are a family of pairwise non-isomorphic group II_1 -factors, all with trivial fundamental groups.

1 Introduction and results

Let G be a locally compact group, and let H be a closed subgroup. The pair (G, H) has property (T) if every unitary representation of G almost having invariant vectors, has non-zero H-fixed vectors. The group G has Kazhdan's property (T) if and only if the pair (G, G) has property (T).

Suppose that G acts by automorphisms on a locally compact group N, and form the semi-direct product $G \ltimes N$. In this paper we shall be concerned with the property (T) for the pair $(G \ltimes N, N)$.

Property (T) for the pair $(SL_2(\mathbb{R}) \ltimes \mathbb{R}^2, \mathbb{R}^2)$ already plays a big rôle in Kazhdan's original paper [Kaz67], to establish property (T) for $SL_n(\mathbb{R})$, $n \ge$ 3. Later, property (T) for the pair $(SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2, \mathbb{Z}^2)$ was exploited by Margulis [Mar73] to give the first explicit example of an infinite family of expanding graphs. Observe that $SL_2(\mathbb{Z})$ is an arithmetic lattice in the simple Lie group $SL_2(\mathbb{R})$. Our main result states that semi-direct product pairs with property (T) can be obtained, at least virtually, from any arithmetic lattice. Before stating it precisely, we recall the relevant definitions; good references about lattices are [Bor69], [Zim84], [Mar91], [WM].

Definition 1 Let G be a real, semisimple Lie group with finite centre, and let Γ be a discrete subgroup in G.

- a) Γ is a lattice in G if the homogeneous space G/Γ carries a finite, G-invariant measure.
- b) A lattice Γ in G is uniform if G/Γ is compact.
- c) A lattice Γ in G is **arithmetic** if there exists a semisimple algebraic \mathbb{Q} group H and a surjective continuous homomorphism $\phi : H(\mathbb{R})^0 \to G$, with compact kernel, such that $\phi(H(\mathbb{Z}) \cap H(\mathbb{R})^0)$ is commensurable with Γ (here $H(\mathbb{R})^0$ is the connected component of identity in $H(\mathbb{R})$).

Definition 2 A real Lie group is absolutely simple if its complexified Lie algebra is simple.

A simple Lie group is absolutely simple if and only if it is not locally isomorphic (as a real Lie group) to a complex Lie group (see (10.10) in [WM]). With this we can formulate our main result.

Theorem 1 Let G be a non-compact, absolutely simple Lie group with trivial centre. Let Γ be an arithmetic lattice in G. There exists an integer $N \geq 2$, a subgroup Λ of finite index in Γ , and an action of Λ on \mathbb{Z}^N such that:

- i) the pair $(\Lambda \ltimes \mathbb{Z}^N, \mathbb{Z}^N)$ has property (T);
- ii) $\Lambda \ltimes \mathbb{Z}^N$ is torsion-free and has infinite conjugacy classes.

Note that we have no idea whether Theorem 1 holds true for non-arithmetic lattices (which are known to exist in SO(n, 1) for every $n \ge 2$ - see [GPS88], and in SU(n, 1) for $1 \le n \le 3$ - see [DM86]). A partial generalization of Theorem 1 to the case where Γ is an irreducible, arithmetic lattice in a semisimple Lie group G, will be discussed as Theorem 4 in §2. An explicit value of the integer N in Theorem 1, will be given as part of Theorem 4.

It is known (see p. 26 in [dlHV89]) that $SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n$ has property (T) for $n \geq 3$. The following Corollary generalizes this fact and provides new examples of groups with property (T).

Corollary 1 Let G be a non-compact, absolutely simple Lie group with trivial centre, which is not locally isomorphic to SO(n, 1) or SU(m, 1). Let Γ be a lattice in G. There exists an integer $N \geq 2$, a subgroup Λ of finite index in Γ , and an action of Λ on \mathbb{Z}^N such that $\Lambda \ltimes \mathbb{Z}^N$ is torsion-free, has infinite conjugacy classes and property (T).

We conclude the paper by giving two applications of Theorem 1. The first one is about the Baum-Connes conjecture (see [BCH94]). It is known that, until the work of V. Lafforgue [Laf98], property (T) was a major stumbling block for proving the Baum-Connes conjecture (see [Jul98]). So it seems interesting to construct new examples of groups with property (T) which satisfy the Baum-Connes conjecture. Building on results of P. Julg [Jul02], who established the Baum-Connes conjecture for Sp(n, 1), we prove:

Theorem 2 Keep the notations and assumptions of Corollary 1. Assume moreover that G is the adjoint group of Sp(n, 1) $(n \ge 2)$. Then the group $\Lambda \ltimes \mathbb{Z}^N$ is a property (T) group for which the Baum-Connes conjecture holds.

Our second application is about von Neumann factors of type II_1 . Let M be a II_1 -factor; for t > 0, denote by M_t the compression of $M \otimes \mathcal{B}(\mathcal{H})$ by any projection with trace t. The fundamental group of M is

$$\mathcal{F}(M) = \{ t \in \mathbb{R}_+^\times : M^t \simeq M \},\$$

a subgroup of the multiplicative group of positive real numbers. It was a problem asked by R.V. Kadison in 1967, whether there exists a II_1 -factor Msuch that $\mathcal{F}(M) = \{1\}$. This was solved by Popa in [Popa] (see also [Popb] for a shorter proof): building on Gaboriau's theory of L^2 -Betti numbers for measurable equivalence relations [Gab02], Popa proved that, for $\Gamma =$ $SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$, the corresponding factor $L(\Gamma)$ has trivial fundamental group. Using the same techniques, we prove:

Theorem 3 Set $\Gamma_n = SO(2n, 1)(\mathbb{Z})$, a non-uniform arithmetic lattice in the simple Lie group SO(2n, 1) $(n \ge 1)$. Set $N_n = n(2n + 1) = \dim_{\mathbb{R}} SO(2n, 1)$, and let Γ_n act via the adjoint representation on \mathbb{Z}^{N_n} , viewed as the integral points in the Lie algebra of SO(2n, 1). Set finally $M_n = L(\Gamma_n \ltimes \mathbb{Z}^{N_n})$. Then $(M_n)_{n\ge 1}$ is a sequence of pairwise non-isomorphic group II_1-factors, all with trivial fundamental group.

We emphasize here the fact that the M_n 's are group factors: indeed, if $\mathcal{F}(M) = \{1\}$, then the M^t 's, for t > 0, provide uncountably many pairwise non-isomorphic factors, all with trivial fundamental group.

Acknowledgements: We thank Y. Benoist and Y. Shalom for useful conversations and correspondence around representations of algebraic groups. In particular, Y. Benoist provided lemma 1, allowing to pass from a number field to its Galois closure.

2 Proofs of Theorem 1 and Corollary 1

We first recall a useful sufficient condition for property (T) of semi-direct product pairs; see Proposition 2.3 in [Val94] for a proof.

Proposition 1 Let V be a finite-dimensional, real vector space; let $H \subset GL(V)$ be a semisimple subgroup. If the product of the non-compact simple factors of H has no non-zero fixed vector in V, then the pair $(H \ltimes V, V)$ has property (T).

We will need some material about algebraic groups. Let k be a number field, i.e a finite extension of \mathbb{Q} , and let X be the set of field embeddings of k into \mathbb{C} . As usual, we say that two distinct embeddings $\sigma, \tau : k \to \mathbb{C}$ are *equivalent* if $\sigma(x) = \overline{\tau(x)}$ for all $x \in k$; an *archimedean place* of k is an equivalence class of embeddings, and we denote by \overline{X} the set of archimedean places of k.

If G is a linear algebraic group defined over k, set $R_{k/\Phi}(G) = \prod_{\tau \in X} G^{\tau}$, where G^{τ} is obtained from G by applying τ to the polynomials defining G. This is the *restriction of* G to Q, of which we recall the main properties (for all this, see [Zim84], Proposition 6.1.3).

• For $g \in G(k)$, set $\Delta(g) = (\tau(g))_{\tau \in X}$. Then $R_{k/\mathbb{Q}}(G)$ is an algebraic group over \mathbb{Q} , such that

$$(R_{k/\mathbb{Q}}(G))(\mathbb{Q}) = \Delta(G(k)).$$

• Let \mathcal{O} be the ring of integers of k. Then

$$(R_{k/\mathbb{Q}}(G))(\mathbb{Z}) = \Delta(G(\mathcal{O})).$$

- Let τ_0 be the identity of k. The projection $p : R_{k/\mathbb{Q}}(G) \to G^{\tau_0} = G$ is defined over k, and yields bijections $(R_{k/\mathbb{Q}}(G))(\mathbb{Q}) \to G(k)$ and $(R_{k/\mathbb{Q}}(G))(\mathbb{Z}) \to G(\mathcal{O}).$
- For every subfield F of \mathbb{C} such that $\tau(k) \subset F$ for every $\tau \in X$, each G^{τ} is defined over F and

$$(R_{k/\Phi}(G))(F) = \prod_{\tau \in X} G^{\tau}(F).$$

Let K be the normal closure of k, and let $Gal(K/\mathbb{Q})$ be its Galois group over \mathbb{Q} . Let $W = \bigotimes_{\tau \in X} K^n$ be the tensor product over K of |X| copies of K^n (so that $\dim_K W = n^{|X|}$). Let $GL_n(k)$ act on W by

$$\rho(g) = \bigotimes_{\tau \in X} \tau(g)$$

 $(g \in GL_n(k))$. If $H = R_{k/\Phi}(GL_n)$, then ρ is a representation of H defined over K. Since $H(K) = \prod_{\tau \in X} GL_n(K)$, we have $\rho((g_{\tau})_{\tau \in X}) = \bigotimes_{\tau \in X} g_{\tau}$ for $(g_{\tau})_{\tau \in X} \in H(K)$. The following lemma was kindly provided by Y. Benoist.

Lemma 1 With notations as above, the representation ρ is defined over \mathbb{Q} , and there exists a $GL_n(k)$ -invariant \mathbb{Q} -subspace U of W which is a \mathbb{Q} -form of ρ , i.e. the map $K \otimes_{\Phi} U \to W$ is a $GL_n(k)$ -equivariant isomorphism.

Proof: Let *I* be the set of maps $X \to \{1, \ldots, n\}$, so that we may denote by $(e_i)_{i \in I}$ the standard basis of *W* associated with the standard basis of K^n . Let $Gal(K/\mathbb{Q})$ act on *I* by $\gamma \cdot i(\tau) = i(\gamma^{-1} \circ \tau)$, for $\tau \in X$, $i \in I$. Consider the semi-linear representation of $Gal(K/\mathbb{Q})$ on *W* given by

$$\gamma(\sum_{i\in I}\lambda_i e_i) = \sum_{i\in I}\gamma(\lambda_i)e_{\gamma\cdot i}$$

 $(\lambda_i \in K)$. Observe that, for $v_{\tau} \in K^n (\tau \in X)$:

$$\gamma(\bigotimes_{\tau\in X} v_{\tau}) = \bigotimes_{\tau\in X} \gamma(v_{\gamma^{-1}\circ\tau}).$$

This shows that the action of $Gal(k/\mathbb{Q})$ on W commutes with the representation ρ of $GL_n(k)$.

Recall that the group $Gal(K/\mathbb{Q})$ acts on representations $\pi : H \to GL(W)$ defined over K, by $\gamma \cdot \pi = \gamma \circ \pi \circ \gamma^{-1}$ (where $\gamma \in Gal(K/\mathbb{Q})$). Here, since $\gamma \cdot \rho = \rho$ for every $\gamma \in Gal(K/\mathbb{Q})$, the representation ρ is defined over \mathbb{Q} , by [Bor91], AG 14.3.

Finally, let U be the space of points in W which are fixed under $Gal(K/\mathbb{Q})$: by [Bor91], AG 14.2, this is a Q-form for W. Since ρ commutes with the action of $Gal(K/\mathbb{Q})$ on W, the space U is $GL_n(k)$ -invariant.

Let G be a real, semisimple Lie group with trivial centre and no compact factor. Recall that a lattice Γ in G is *irreducible* if, for any non-central, closed, normal subgroup N in G, the projection of Γ in G/N is dense. Assume that Γ is an irreducible, arithmetic lattice in G. By definition 1(c), there is a semisimple algebraic Q-group H and $\phi : H(\mathbb{R})^0 \to G$ a surjective homomorphism, with compact kernel, such that $\phi(H(\mathbb{Z}) \cap H(\mathbb{R})^0)$ is commensurable with Γ .

Such an H is obtained as follows: by Corollary 6.54 in [WM], there exists a number field k and a *simple* algebraic k-group L such that $H = \prod_{\tau \in \overline{X}} L^{\tau}$ and ϕ can be identified with the projection of $H(\mathbb{R})^0$ onto the product of its non-compact simple factors. If Γ is not uniform in G, then by Corollary 6.1.10 in [Zim84] we may assume that $H(\mathbb{R})^0$ has no compact factor.

Theorem 4 Let Γ be an arithmetic, irreducible lattice in a real, semisimple Lie group G with trivial centre and no compact factor. Let H, ϕ, k, L be as above, and let X be the set of embeddings of k into \mathbb{C} . Assume that k is totally real (so that $X = \overline{X}$). Set $N = (\dim_{\mathbb{R}} L(\mathbb{R}))^{|X|}$. The exists a subgroup Λ of finite index in Γ , and an action of Λ on \mathbb{Z}^N such that:

- i) the pair $(\Lambda \ltimes \mathbb{Z}^N, \mathbb{Z}^N)$ has property (T);
- ii) $\Lambda \ltimes \mathbb{Z}^N$ is torsion-free and has infinite conjugacy classes.

If G is absolutely simple, then k is totally real, by [Mar91], (1.5) in Chapter 9; this shows that Theorem 4 implies Theorem 1.

Proof of Theorem 4: The idea of the proof is to construct a representation of $H(\mathbb{R})^0$ on a finite-dimensional space V, satisfying *simultaneously* the following two conditions:

- the pair $(H(\mathbb{R})^0 \ltimes V, V)$ has property (T);
- some finite index subgroup in $H(\mathbb{Z}) \cap H(\mathbb{R})^0$ stabilizes some lattice in V.

The proof is in 3 steps.

1. Construction of a rational representation of H on \mathbb{Q}^N , such that the pair $(H(\mathbb{R})^0 \ltimes \mathbb{R}^N, \mathbb{R}^N)$ has property (T):

Since k is totally real, we have $H = R_{k/\Phi}(L)$. Let K be the normal closure of k. Let \mathfrak{l}^{τ} be the Lie algebra of L^{τ} , and Ad^{τ} be the adjoint representation of L^{τ} on \mathfrak{l}^{τ} . Both L^{τ} and the representation Ad^{τ} of L^{τ} are defined over K ([Bor91], I.3.13). Set $n = \dim_k \mathfrak{l}$. Choosing a basis in \mathfrak{l} , we get an identification of $K \otimes_k \mathfrak{l}^{\tau}$ with K^n , for every $\tau \in X$; set $W = \bigotimes_{\tau \in X} K^n$, and let ρ be the representation of $GL_n(k)$ on W defined before lemma 1. Define a representation of L on W by $\pi = \rho \circ Ad$, so that $\pi = \bigotimes_{\tau \in X} Ad^{\tau}$ is a representation of H, which is defined over \mathbb{Q} by lemma 1. Let U be the \mathbb{Q} -form of W given by lemma 1 and its proof. Since π is defined over \mathbb{Q} , it defines a rational representation of $H(\mathbb{R})$ over $\mathbb{R} \otimes_{\Phi} U \simeq \mathbb{R}^{N}$.

Note that, as a representation of $H(\mathbb{R})$, this is exactly the external tensor product of the adjoint representations of the $L^{\tau}(\mathbb{R})$'s $(\tau \in X)$. Take τ such that $L^{\tau}(\mathbb{R})$ is non-compact; since $L^{\tau}(\mathbb{R})^{0}$ is simple, it has no non-zero fixed vector in its adjoint representation. So the product of these $L^{\tau}(\mathbb{R})^{0}$'s, i.e. the product of the non-compact simple factors of $H(\mathbb{R})^{0}$, has no non-zero fixed vector in $\bigotimes_{\tau \in X} \mathfrak{l}^{\tau}(\mathbb{R}) \simeq \mathbb{R}^{N}$. By Proposition 1, the pair $(H(\mathbb{R})^{0} \ltimes \mathbb{R}^{N}, \mathbb{R}^{N})$ has property (T).

2. Construction of the semi-direct product $\Lambda \ltimes \mathbb{Z}^N$: By lemma 1, the space U is invariant under $H(\mathbb{Q}) = \{\Delta(g) : g \in L(k)\}$; in particular, it is invariant under $H(\mathbb{Z}) = \{\Delta(g) : g \in L(\mathcal{O})\}$. Choose a \mathbb{Q} -basis of U, and let M be the \mathbb{Z} -module generated by that basis (so that $M \simeq \mathbb{Z}^N$). By Proposition 7.12 in [Bor69], there exists a congruence subgroup Λ_1 in $H(\mathbb{Z}) \cap H(\mathbb{R})^0$ which leaves M invariant.

By Selberg's lemma (see [Alp87]), Λ_1 admits a torsion-free, finite index subgroup Λ_2 ; of course $\phi(\Lambda_2)$ is commensurable with Γ . Replacing Λ_2 by a finite-index subgroup if necessary, we may assume that $\phi(\Lambda_2) \subset \Gamma$. Notice that, since ker ϕ is compact and Λ_2 is torsion-free, Λ_2 intersects ker ϕ trivially. We then set $\Lambda = \phi(\Lambda_2)$, which acts on \mathbb{Z}^N via $(\pi \circ \phi^{-1})_{|\Lambda}$. The desired semi-direct product is then $\Lambda \ltimes \mathbb{Z}^N$. It is torsion-free since Λ and \mathbb{Z}^N both are. Since $\Lambda \ltimes \mathbb{Z}^N$ is a lattice in $H(\mathbb{R})^0 \ltimes \mathbb{R}^N$, the pair $(\Lambda \ltimes \mathbb{Z}^N, \mathbb{Z}^N)$ has property (T).

3. $\Lambda \ltimes \mathbb{Z}^N$ has infinite conjugacy classes: Indeed, it is a well-known fact that lattices in semisimple Lie groups with trivial centre have infinite conjugacy classes. This already shows that every element in $\Lambda \ltimes \mathbb{Z}^N$ which projects non-trivially to Λ , has infinite conjugacy class. It remains to prove the same for a non-zero element x in the normal subgroup \mathbb{Z}^N . Equivalently, we must show that the Λ -orbit of x in \mathbb{Z}^N , is infinite. So we take $x \in \mathbb{Z}^N$ with finite Λ -orbit, and show that x = 0. Let Λ_x be the stabilizer of x in Λ : it is a finite-index subgroup of Λ . Set then $C = \{h \in H(\mathbb{R}) : \pi(h)(x) = x\}$. Since π is a rational representation, C is a Zariski closed subgroup of $H(\mathbb{R})$, containing $\phi^{-1}(\Lambda_x)$. The latter is a lattice in $H(\mathbb{R})$, so it is Zariski dense, by the Borel density theorem [Bor60]. This means that x is fixed under $H(\mathbb{R})$. By our choice of π , this implies x = 0. **Remark:** If $G = H(\mathbb{R})^0$ and $\Gamma = H(\mathbb{Z}) \cap H(\mathbb{R})^0$, then we may take $\Lambda = \Gamma$ in Theorem 4 (provided we don't insist that Λ be torsion-free). In other words, in this situation there is no need to pass to a finite-index subgroup. To see it, let $M \subset U$ be the Z-module appearing at the beginning of step 2 in the proof of Theorem 4. As M is invariant under the finite-index subgroup Λ_1 , the orbit of M under Γ is finite. Then the sum of all the Z-modules in the orbit, is a Γ -invariant free Z-module of rank N.

We now re-visit some examples of arithmetic lattices, taken from [Mar91], 1.7(vi) in Chapter IX. Since Theorem 4 applies to each of them, we will in each case identify k, N and H.

Example 1 Let Φ be a quadratic form in n + 1 variables, with signature (n, 1), and coefficients in a number field $k \subset \mathbb{R}$. We denote by SO_{Φ} the special orthogonal group of Φ : this is a simple algebraic group defined over k. Set $\Gamma = SO_{\Phi}(\mathcal{O})$, where as usual \mathcal{O} is the ring of integers of k.

a) $\Phi = x_1^2 + \ldots + x_n^2 - x_{n+1}^2$; here $k = \mathbb{Q}$ and $H = SO_{\Phi}$, so that $\Gamma = SO(n, 1)(\mathbb{Z})$ is a non-uniform arithmetic lattice in $SO_{\Phi}(\mathbb{R}) = SO(n, 1)$, to which the previous remark applies. Here $N = \dim_{\mathbb{R}} SO(n, 1) = \frac{n(n+1)}{2}$. Let J be the $(n+1) \times (n+1)$, diagonal matrix with diagonal values $(1, \ldots, 1, -1)$; the Lie algebra of SO(n, 1) is

$$\mathfrak{so}(n,1) = \{ X \in M_{n+1}(\mathbb{R}) : X^t J + J X = 0 \}.$$

The adjoint representation of SO(n, 1) on $\mathfrak{so}(n, 1)$ is given by $Ad(g)(X) = gXg^{-1}$ $(g \in SO(n, 1), X \in \mathfrak{so}(n, 1))$. So the restriction of Ad to Γ leaves invariant $\mathfrak{so}(n, 1) \cap M_{n+1}(\mathbb{Z}) \simeq \mathbb{Z}^N$. This example will be used below in the proof of Theorem 3.

- b) $\Phi = x_1^2 + \ldots + x_n^2 \sqrt{2}x_{n+1}^2$; here $k = \mathbb{Q}(\sqrt{2})$ and $H = SO_{\Phi} \times SO_{\sigma(\Phi)}$, where σ is the non-trivial element of $Gal(k/\mathbb{Q})$. Then $\Gamma = SO_{\Phi}(\mathbb{Z}[\sqrt{2}])$ is a uniform arithmetic lattice in $SO_{\Phi}(\mathbb{R}) \simeq SO(n,1)$. Here $N = (\frac{n(n+1)}{2})^2$.
- c) $\Phi = x_1^2 + \ldots + x_n^2 \delta x_{n+1}^2$ where $\delta > 0$ is a root of a cubic irreducible polynomial over \mathbb{Q} , having two positive roots δ , δ' and one negative root δ'' . Here $k = \mathbb{Q}(\delta)$; let σ, τ be the embeddings of k into \mathbb{R} defined by $\sigma(\delta) = \delta'$ and $\tau(\delta) = \delta''$. Then $H = SO_{\Phi} \times SO_{\sigma(\Phi)} \times SO_{\tau(\Phi)}$ and Γ is an irreducible, uniform, arithmetic lattice in $SO_{\Phi}(\mathbb{R}) \times SO_{\sigma(\Phi)}(\mathbb{R}) \simeq$ $SO(n,1) \times SO(n,1)$. Here $N = (\frac{n(n+1)}{2})^3$.

Remark: Let k be a number field, with normal closure K. If k is not totally real, we do not know whether Theorem 4 is still valid. The reason is that, while the Galois group $Gal(K/\mathbb{Q})$ acts on the set X of embeddings $k \to \mathbb{C}$ (by $\sigma \cdot \tau = \sigma \circ \tau$), it does not act on the set \overline{X} of archimedean places, because of pairs of complex places. So if we start from $H = \prod_{\tau \in \overline{X}} L^{\tau}$ (this group is indeed defined over \mathbb{Q} , see [WM] ex. (6:30)), we will be unable to appeal to lemma 1, which appeals to the Galois-fixed point criterion for rationality over \mathbb{Q} . A concrete example to which this remark applies, is the following (see [Mar91], 1.7(vi)(6) in Chapter IX): set $\Phi = x_1^2 + \ldots + x_n^2 - x_{n+1}^2$ and $k = \mathbb{Q}(\sqrt[3]{2})$. Here k has one real place and one complex place; $\Gamma = SO_{\Phi}(\mathcal{O})$ is an irreducible, non-uniform arithmetic lattice in $SO(n, 1) \times SO(n+1, \mathbb{C})$, for which we do not know whether Theorem 4 holds.

Proof of Corollary 1: Under the assumptions of the Corollary, Γ is an arithmetic lattice in G: if $rank_{\mathbb{R}}G \geq 2$, this is Margulis' famous arithmeticity theorem (see [Mar91], Thm (A) in Chapter IX; [Zim84], 6.1.2); if $rank_{\mathbb{R}}G = 1$ (i.e. G is locally isomorphic either to Sp(n, 1) ($n \geq 2$) or to $F_{4(-20)}$), this follows from the work of Corlette [Cor92] and Gromov-Schoen [GS92]. Theorem 1 then applies and provides $N \geq 2$ and a torsion-free Λ acting on \mathbb{Z}^N , in such a way that $\Lambda \ltimes \mathbb{Z}^N$ has infinite conjugacy classes and the pair ($\Lambda \ltimes \mathbb{Z}^N, \mathbb{Z}^N$) has property (T). On the other hand, the assumptions also imply that G has property (T), and hence Λ too (see [dlHV89]). We conclude by using the following fact: let

$$1 \rightarrow N \rightarrow H \rightarrow H/N \rightarrow 1$$

be a short exact sequence of locally compact groups; if the pair (H, N) has property (T) and the group H/N has property (T), then the group H has property (T) (the easy proof can be left as an exercise).

3 Proof of Theorem 2

We recall that a locally compact group G satisfies the Baum-Connes conjecture if, for every C^* -algebra A endowed with an action of G, the Baum-Connes assembly map

$$\mu_{A,G}: RKK^G_*(\underline{E}G, A) \to K_*(A \rtimes_r G)$$

is an isomorphism. Here $\underline{E}G$ is the universal space for *G*-proper actions, $RKK^G_*(\underline{E}G, A)$ denotes the *G*-equivariant *KK*-theory with compact supports of $\underline{E}G$ and *A*, and $K_*(A \rtimes_r G)$ denotes the equivariant *K*-theory of the reduced crossed product $A \rtimes_r G$; see [BCH94] for details. Let Γ be a lattice in the adjoint group of Sp(n, 1), $(n \ge 2)$. Corollary 1 provides N, Λ and an action of Λ on \mathbb{Z}^N such that $\Lambda \ltimes \mathbb{Z}^N$ has property (T). The Baum-Connes conjecture for $\Lambda \ltimes \mathbb{Z}^N$ follows by combining the following facts:

- The Baum-Connes conjecture holds for \mathbb{Z}^N (see [Kas95]).
- The Baum-Connes conjecture holds for Sp(n, 1): this is a remarkable result of P. Julg [Jul02].
- The Baum-Connes conjecture is inherited by closed subgroups, as was proved by Chabert and Echterhoff [CE01]; in particular it is satisfied by the lattice Λ .
- Let $1 \to \Gamma_0 \to \Gamma_1 \to \Gamma_2 \to 1$ be a short exact sequence of countable groups. If Γ_0 and Γ_2 satisfy the Baum-Connes conjecture, and Γ_2 is torsion-free, then Γ_1 satisfies the Baum-Connes conjecture. This is a result of Oyono-Oyono (Theorem 7.1 in [OO01]). We apply it to the short exact sequence $1 \to \mathbb{Z}^N \to \Lambda \ltimes \mathbb{Z}^N \to \Lambda \to 1$: since Λ is torsionfree, and \mathbb{Z}^N and Λ satisfy the Baum-Connes conjecture, then so does $\Lambda \ltimes \mathbb{Z}^N$.

4 Proof of Theorem 3

Recall that a locally compact group H is *a*-*T*-menable, or has the Haagerup property, if H admits a unitary representation almost having invariant vectors, whose coefficient functions vanish at infinity on H. We refer to [CCJ+01] for an extensive study of this class of groups. We will use the fact that closed subgroups of SO(k, 1) and SU(m, 1) are a-T-menable.

We now recall the portions of Popa's theory [Popa] which are relevant for our proof. Let N be a finite von Neumann algebra and let B be a von Neumann subalgebra. In Definition 2.1 of [Popa], Popa defines property (H) for the inclusion $B \subset N$; in Proposition 3.1 of [Popa], he proves that, if a countable group Γ acts on the finite von Neumann algebra B (preserving some normal, faithful, tracial state), and $N = B \rtimes \Gamma$, the inclusion $B \subset N$ has property (H) if and only if Γ is a-T-menable.

In Definition 4.2 of [Popa], Popa also defines property (T) for the inclusion $B \subset N$. In Proposition 5.1 of [Popa], he proves that, if H is a subgroup of Γ , the inclusion $L(H) \subset L(\Gamma)$ has property (T) if and only if the pair (Γ, H) has property (T).

Now let M be a II_1 -factor, and let A be a Cartan subalgebra in M. Following Definitions 6.1 and 6.4 of [Popa], we say that A is a HT_s -Cartan subalgebra if the inclusion $A \subset M$ satisfies both property (H) and property (T). We denote by \mathcal{HT}_s the class of II_1 factors with HT_s -Cartan subalgebras.

Example 2 Let Γ be an arithmetic group in the adjoint group of SO(k, 1)or SU(m, 1). Let N, Λ be provided by Theorem 1. Set $M = L(\Lambda \ltimes \mathbb{Z}^N)$. Let \mathbb{T}^N be the N-dimensional torus, viewed as the Pontryagin dual of \mathbb{Z}^N . Since $L(\mathbb{Z}^N) \simeq L^{\infty}(\mathbb{T}^N)$ in a Λ -equivariant way, we have

$$M = L(\mathbb{Z}^N) \rtimes \Lambda \simeq L^{\infty}(\mathbb{T}^N) \rtimes \Lambda.$$

Since $\Lambda \ltimes \mathbb{Z}^N$ has infinite conjugacy classes, M is a II_1 -factor; equivalently, the action of Λ on \mathbb{T}^N is ergodic.

Set $A = L(\mathbb{Z}^N)$; since Λ is a-T-menable and the pair $(\Lambda \ltimes \mathbb{Z}^N, \mathbb{Z}^N)$ has property (T), we see that A is an HT_s -Cartan subalgebra in M.

Popa's fundamental result (Theorem 6.2 in [Popa]) is that a factor Min the class \mathcal{HT}_s has a unique HT_s -Cartan subalgebra, up to conjugation by unitaries in M. In particular, there exists a unique (up to isomorphism) standard equivalence relation \mathcal{R}_M on the standard probability space, implemented by the normalizer of any HT_s -Cartan subalgebra of M. This means that any invariant of the equivalence relation \mathcal{R}_M becomes an isomorphism invariant of the factor M.

This brings us to Gaboriau's L^2 -Betti numbers for measurable equivalence relations [Gab02]. If \mathcal{R} is a standard equivalence relation on the standard probability space (X, μ) , Gaboriau defines, for n = 0, 1, 2... the L^2 -Betti number $b_n^{(2)}(\mathcal{R}) \in [0, +\infty[$. We will use two properties of these numbers.

- 1) If B is a Borel subset of X, with $0 < \mu(B)$, denote by \mathcal{R}^B the restriction of \mathcal{R} to B. Then $b_n^{(2)}(\mathcal{R}^B) = \frac{b_n^{(2)}(\mathcal{R})}{\mu(B)}$ for every $n \ge 0$.
- 2) If \mathcal{R} is induced by a measure preserving, essentially free action of a countable group Γ , then $b_n^{(2)}(\mathcal{R}) = b_n^{(2)}(\Gamma)$ for every $n \geq 0$; here $b_n^{(2)}(\Gamma)$ denotes the *n*-th L^2 -Betti number of Γ , as defined by Cheeger and Gromov [CG86].

Coming back to a factor M in the class \mathcal{HT}_s , we define -after Popa- the n-th L^2 -Betti number of M as $b_n^{(2)}(M) = b_n^{(2)}(\mathcal{R}_M)$. From property 1) above, if $0 < b_n^{(2)}(M) < \infty$ for some $n \ge 0$, then $b_n^{(2)}(M^t) = \frac{b_n^{(2)}(M)}{t}$ which implies immediately that $\mathcal{F}(M) = \{1\}$.

Proof of Theorem 3: We know by example 1(a) that $\Gamma_n = SO(2n, 1)(\mathbb{Z})$ is an arithmetic lattice in SO(2n, 1), and that the pair $(\Gamma_n \ltimes \mathbb{Z}^{N_n}, \mathbb{Z}^{N_n})$ has

property (T). By example 2, the von Neumann algebra $M_n = L(\Gamma_n \ltimes \mathbb{Z}^{N_n})$ is a II_1 -factor in the class \mathcal{HT}_s . Since the equivalence relation \mathcal{R}_{M_n} is induced by the action of Γ_n on \mathbb{T}^{N_n} , by property 2) above we have for every $k \geq 0$

$$b_k^{(2)}(M_n) = b_k^{(2)}(\Gamma_n).$$

Now, for any lattice Λ in SO(2n, 1), the L^2 -Betti number $b_k^{(2)}(\Lambda)$ was estimated by Borel [Bor85]: the result is

$$b_k^{(2)}(\Lambda) = \begin{cases} 0 & if \quad k \neq n \\ > 0 & if \quad k = n \end{cases}$$

So M_n has exactly one non-zero L^2 -Betti number, namely the *n*-th one. This proves simultaneously that $\mathcal{F}(M_n) = \{1\}$ and that the M_n 's are pairwise non-isomorphic.

Remarks:

i) Theorem 3 also holds with SO(2n, 1) replaced by SU(n, 1), N_n being replaced by dim_R SU(n, 1) = n(n+2) and $SO(2n, 1)(\mathbb{Z})$ being replaced by $SU(n, 1)(\mathbb{Z}[i])$ (the latter being a non-uniform, arithmetic lattice in SU(n, 1). The reason is that, for any lattice Λ in SU(n, 1), one has by [Bor85]:

$$b_k^{(2)}(\Lambda) \ = \ \left\{ \begin{array}{cc} 0 & if \quad k \neq n \\ > 0 & if \quad k = n \end{array} \right.$$

as in the case of SO(2n, 1). On the other hand, if Λ is a lattice in SO(2n + 1, 1), all its L^2 -Betti numbers are zero, so the same holds for the corresponding II_1 -factors constructed in Example 2.

ii) For $n \geq 2$, let Γ_n be a lattice in the adjoint group of Sp(n, 1). Let N_n, Λ_n be provided by Corollary 1; set $M_n = L(\Lambda_n \ltimes \mathbb{Z}^N)$. Then M_n is a II_1 -factor with property (T) in the sense of Connes and Jones [CJ85]; so that $\mathcal{F}(M_n)$ is countable, by a result of Connes [Con80]. To the best of our knowledge, it is unknown whether the M_n 's are pairwise non-isomorphic. However, it is a result of Cowling and Zimmer [CZ89] that the inclusions $L(\mathbb{Z}^{N_n}) \subset M_n$ are pairwise non-isomorphic.

References

[Alp87] R.C. Alperin. An elementary account of Selberg's lemma. L'Enseignement Mathématique, 33:269–273, 1987.

- [BCH94] P. Baum, A. Connes, and N. Higson. Classifying spaces for proper actions and K-theory of group C*-algebras. In C*-algebras 1943-1993: a fifty year celebration (Contemporary Mathematics 167, pp. 241-291), 1994.
- [Bor60] A. Borel. Density properties for certain subgroups of semi-simple groups without compact components. *Ann. Math.*, 72:62–74, 1960.
- [Bor69] A. Borel. Introduction aux groupes arithmétiques. Hermann, Actu. sci. et industr. 1341, 1969.
- [Bor85] A. Borel. The L²-cohomology of negatively curved Riemannian symmetric spaces. Acad. Sci. Fenn. (ser. A, math.), 10:95–105, 1985.
- [Bor91] A. Borel. Linear algebraic groups (2nd enlarged edition). Springer-Verlag, 1991.
- [CCJ⁺01] P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette. Groups with the Haagerup property (Gromov's a-T-menability). Progress in Math., Birkhäuser, 2001.
- [CE01] J. Chabert and S. Echterhoff. Permanence properties of the Baum-Connes conjecture. *Doc. Math.*, 6:127–183, 2001.
- [CG86] J. Cheeger and M. Gromov. L₂-cohomology and group cohomology. *Topology*, 25:189–215, 1986.
- [CJ85] A. Connes and V.F.R. Jones. Property T for von Neumann algebras. Bull. London Math. Soc., 17:57–62, 1985.
- [Con80] A. Connes. A factor of type ii_1 with countable fundamental group. J. Oper. Th., 4:151–153, 1980.
- [Cor92] K. Corlette. Archimedean superrigidity and hyperbolic rigidity. Ann. of Math., 135:165–182, 1992.
- [CZ89] M. Cowling and R.J. Zimmer. Actions of lattices in Sp(1, n). Ergodic Theory Dynam. Systems, 9:221–237, 1989.
- [dlHV89] P. de la Harpe and A. Valette. La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque 175, Soc. Math. France, 1989.

- [DM86] P. Deligne and G.D. Mostow. Monodromy of hypergeometric functions and non-lattice integral monodromy. *Publ. Math. IHES*, 63:5–89, 1986.
- [Gab02] D. Gaboriau. Invariants ℓ^2 de relations d'équivalence et de groupes. *Publ.Math., Inst. Hautes Etudes Sci.*, 95:93–150, 2002.
- [GPS88] M. Gromov and I. Piatetski-Shapiro. Nonarithmetic groups in Lobachevsky spaces. *Publ. Math. IHES*, 66:93–103, 1988.
- [GS92] M. Gromov and R. Schoen. Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Inst. Hautes Etudes Sci. Publ. Math., 76:165–246, 1992.
- [Jul98] P. Julg. Travaux de Higson et Kasparov sur la conjecture de Baum-Connes. In *Séminaire Bourbaki, Exposé 841*, 1998.
- [Jul02] P. Julg. La conjecture de Baum-Connes à coefficients pour le groupe Sp(n, 1). C.R. Acad. Sci. Paris, 334:533–538, 2002.
- [Kas95] G.G. Kasparov. K-theory, group C*-algebras, and higher signatures (Conspectus, first distributed 1981). In Novikov conjectures, index theorems and rigidity (London Math. Soc. lecture notes ser. 226, pp. 101-146), 1995.
- [Kaz67] D. Kazhdan. Connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. and its Appl., 1:63– 65, 1967.
- [Laf98] V. Lafforgue. Une démonstration de la conjecture de Baum-Connes pour les groupes réductifs sur un corps p-adiques et pour certains groupes discrets possédant la propriété (t). C.R. Acad. Sci. Paris, 327:439–444, 1998.
- [Mar73] G.A. Margulis. Explicit construction of concentrators. Problems Inform. Transmission, 9:325–332, 1973.
- [Mar91] G.A. Margulis. Discrete subgroups of semisimple Lie groups. Springer-Verlag, Ergeb. Math. Grenzgeb. 3 Folge, Bd. 17, 1991.
- [OO01] H. Oyono-Oyono. Baum-Connes conjecture and extensions. J. reine angew. Math., 532:133–149, 2001.
- [Popa] S. Popa. On a class of type II_1 factors with Betti numbers invariants. Preprint, aug. 2002.

- [Popb] S. Popa. On the fundamental group of type II_1 factors. Preprint, 2003.
- [Val94] A. Valette. Old and new about Kazhdan's property (T). In Representations of Lie groups and quantum groups, (V. Baldoni and M. Picardello eds.), Pitman Res. Notes in Math. Series, 271-333, 1994.
- [WM] D. Witte-Morris. Introduction to arithmetic groups. Pre-book, february 2003.
- [Zim84] R.J. Zimmer. Ergodic theory and semisimple groups. Birkhauser, 1984.

Author's address: Institut de Mathématiques Rue Emile Argand 11 CH-2007 Neuchâtel - SWITZERLAND alain.valette@unine.ch