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Abstract

Let I' be an arithmetic lattice in an absolutely simple Lie group
G with trivial centre. We prove that there exists an integer N > 2, a
subgroup A of finite index in T, and an action of A on Z" such that
the pair (A x ZV,Z") has property (T). If G has property (T), then
so does A x ZN. If G is the adjoint group of Sp(n,1), then A x ZV is
a property (T) group satisfying the Baum-Connes conjecture. If A,, is
an arithmetic lattice in SO(2n, 1), then the associated von Neumann
algebras (L(A,, x ZV")),>1 are a family of pairwise non-isomorphic
group II;-factors, all with trivial fundamental groups.

1 Introduction and results

Let G be a locally compact group, and let H be a closed subgroup. The pair
(G, H) has property (T) if every unitary representation of G' almost having
invariant vectors, has non-zero H-fixed vectors. The group G has Kazhdan’s
property (T) if and only if the pair (G, G) has property (T).

Suppose that G acts by automorphisms on a locally compact group IV,
and form the semi-direct product G x N. In this paper we shall be concerned
with the property (T) for the pair (G x N, N).

Property (T) for the pair (SLy(IR) x IR? IR?) already plays a big role in
Kazhdan’s original paper [Kaz67], to establish property (T) for SL,(IR), n >
3. Later, property (T) for the pair (SLy(Z) x Z*, Z*) was exploited by Mar-
gulis [Mar73] to give the first explicit example of an infinite family of ex-
panding graphs.



Observe that SLo(Z) is an arithmetic lattice in the simple Lie group
SLy(R). Our main result states that semi-direct product pairs with property
(T) can be obtained, at least virtually, from any arithmetic lattice. Before
stating it precisely, we recall the relevant definitions; good references about
lattices are [Bor69], [Zim84], [Mar91], [WM].

Definition 1 Let G be a real, semisimple Lie group with finite centre, and
let T be a discrete subgroup in G.

a) I' is a lattice in G if the homogeneous space G/U carries a finite,
G-invariant measure.

b) A lattice I' in G is uniform if G/T" is compact.

c) A lattice T in G is arithmetic if there exists a semisimple algebraic Q-
group H and a surjective continuous homomorphism ¢ : HR)? — G,
with compact kernel, such that $(H(Z)NH(IR)®) is commensurable with
[ (here H(R)? is the connected component of identity in H(R)).

Definition 2 A real Lie group is absolutely simple if its complexified Lie
algebra is simple.

A simple Lie group is absolutely simple if and only if it is not locally
isomorphic (as a real Lie group) to a complex Lie group (see (10.10) in
[WM]). With this we can formulate our main result.

Theorem 1 Let G be a non-compact, absolutely simple Lie group with trivial
centre. Let I be an arithmetic lattice in G. There exists an integer N > 2,
a subgroup A of finite index in T, and an action of A on ZV such that:

i) the pair (A x ZV,Z") has property (T);
i) A x ZV is torsion-free and has infinite conjugacy classes.

Note that we have no idea whether Theorem 1 holds true for non-arithmetic
lattices (which are known to exist in SO(n, 1) for every n > 2 - see [GPS88],
and in SU(n,1) for 1 < n < 3 - see [DMS86]). A partial generalization
of Theorem 1 to the case where I' is an irreducible, arithmetic lattice in a
semisimple Lie group G, will be discussed as Theorem 4 in §2. An explicit
value of the integer N in Theorem 1, will be given as part of Theorem 4.

It is known (see p. 26 in [dIHV89]) that SL,(Z) x Z" has property (T)
for n > 3. The following Corollary generalizes this fact and provides new
examples of groups with property (T).
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Corollary 1 Let G be a non-compact, absolutely simple Lie group with triv-
ial centre, which is not locally isomorphic to SO(n,1) or SU(m,1). LetT" be
a lattice in G. There exists an integer N > 2, a subgroup A of finite index
in T, and an action of A on Z% such that A x ZV is torsion-free, has infinite
conjugacy classes and property (T).

We conclude the paper by giving two applications of Theorem 1. The first
one is about the Baum-Connes conjecture (see [BCH94]). It is known that,
until the work of V. Lafforgue [Laf98], property (T) was a major stumbling
block for proving the Baum-Connes conjecture (see [Jul98]). So it seems
interesting to construct new examples of groups with property (T) which
satisfy the Baum-Connes conjecture. Building on results of P. Julg [Jul02],
who established the Baum-Connes conjecture for Sp(n, 1), we prove:

Theorem 2 Keep the notations and assumptions of Corollary 1. Assume
moreover that G is the adjoint group of Sp(n,1)(n > 2). Then the group
Ax ZN is a property (T) group for which the Baum-Connes conjecture holds.

Our second application is about von Neumann factors of type ;. Let
M be a II;-factor; for t > 0, denote by M, the compression of M®@B(H) by
any projection with trace t. The fundamental group of M is

F(M)={t e R : M' ~ M},

a subgroup of the multiplicative group of positive real numbers. It was a
problem asked by R.V. Kadison in 1967, whether there exists a II;-factor M
such that F(M) = {1}. This was solved by Popa in [Popa] (see also [Popb]
for a shorter proof): building on Gaboriau’s theory of L?-Betti numbers
for measurable equivalence relations [Gab02], Popa proved that, for I' =
SLy(Z) x Z?, the corresponding factor L(I') has trivial fundamental group.
Using the same techniques, we prove:

Theorem 3 SetI',, = SO(2n,1)(Z), a non-uniform arithmetic lattice in the
simple Lie group SO(2n,1) (n > 1). Set N,, = n(2n + 1) = dimg SO(2n, 1),
and let T, act via the adjoint representation on ZN", viewed as the integral
points in the Lie algebra of SO(2n,1). Set finally M, = L(T',, x Z"*). Then
(M,,)n>1 18 a sequence of pairwise non-isomorphic group I1,-factors, all with
trivial fundamental group.

We emphasize here the fact that the M,,’s are group factors: indeed, if
F(M) = {1}, then the M"’s, for ¢t > 0, provide uncountably many pairwise
non-isomorphic factors, all with trivial fundamental group.
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2 Proofs of Theorem 1 and Corollary 1

We first recall a useful sufficient condition for property (T) of semi-direct
product pairs; see Proposition 2.3 in [Val94] for a proof.

Proposition 1 Let V be a finite-dimensional, real vector space; let H C
GL(V) be a semisimple subgroup. If the product of the non-compact simple
factors of H has no non-zero fixed vector in V', then the pair (H x V, V') has
property (T). O

We will need some material about algebraic groups. Let k be a number
field, i.e a finite extension of Q, and let X be the set of field embeddings
of k into C. As usual, we say that two distinct embeddings o,7 : k — C
are equivalent if o(x) = 7(x) for all x € k; an archimedean place of k is an
equivalence class of embeddings, and we denote by X the set of archimedean
places of k.

If G is a linear algebraic group defined over k, set Ry (G) = [[,ex G7,
where GG7 is obtained from G by applying 7 to the polynomials defining G.
This is the restriction of G to Q, of which we recall the main properties (for
all this, see [Zim84], Proposition 6.1.3).

e For g € G(k), set A(g) = (7(g9))rex. Then R, ((G) is an algebraic
group over Q, such that

(Biyq(G))(Q) = A(G(k)).
e Let O be the ring of integers of k. Then
(Ry)o(G))(Z) = A(G(O)).

e Let 75 be the identity of k. The projection p : R; o(G) — G™ =
G is defined over k, and yields bijections (R, (G))(Q) — G(k) and
(Ry,(G))(Z) — G(O).

e For every subfield F' of C such that 7(k) C F for every 7 € X, each G7
is defined over F' and

(Riyo(@)(F) =[] ¢7(F).
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Let K be the normal closure of k, and let Gal(K/Q) be its Galois group
over Q. Let W = &), .y K" be the tensor product over K of |X| copies of
K™ (so that dimg W = nlXl). Let GL, (k) act on W by

TeX

(9 € GLa(K)). If H = Ry o(GLy), then p is a representation of H defined
over K. Since H(K) = [].cx GLn(K), we have p((g-)rex) = &@,cx g- for
(9-)rex € H(K). The following lemma was kindly provided by Y. Benoist.

Lemma 1 With notations as above, the representation p is defined over Q,
and there exists a G L, (k)-invariant Q-subspace U of W which is a Q-form
of p, i.e. the map K ®q U — W is a GLy(k)-equivariant isomorphism.

Proof: Let I be the set of maps X — {1,...,n}, so that we may denote
by (€;)ier the standard basis of W associated with the standard basis of K.
Let Gal(K/Q) act on I by v-i(7) =i(y torT), for 7 € X, i € I. Consider
the semi-linear representation of Gal(K/Q) on W given by

7(2 Ai€i) = Z Y(Ai)ey.i

i€l 1€l

(A € K). Observe that, for v, € K" (1 € X):

Q) vr) = Q) v(vy-107)-

TeX TeX

This shows that the action of Gal(k/Q) on W commutes with the represen-
tation p of GL, (k).

Recall that the group Gal(K/Q) acts on representations 7 : H — GL(W)
defined over K, by v-m = yomo~~! (where v € Gal(K/Q)). Here, since

v+ p = p for every v € Gal(K/Q), the representation p is defined over Q, by
[Bor91], AG 14.3.

Finally, let U be the space of points in W which are fixed under Gal(K/Q):
by [Bor91], AG 14.2, this is a Q-form for W. Since p commutes with the ac-
tion of Gal(K/Q) on W, the space U is G L, (k)-invariant. O

Let G be a real, semisimple Lie group with trivial centre and no compact
factor. Recall that a lattice I' in G is irreducible if, for any non-central,
closed, normal subgroup N in G, the projection of I' in G/N is dense.
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Assume that I' is an irreducible, arithmetic lattice in G. By definition
1(c), there is a semisimple algebraic Q-group H and ¢ : H(R)? — G a
surjective homomorphism, with compact kernel, such that ¢(H (Z) N H(IR)?)
is commensurable with I'.

Such an H is obtained as follows: by Corollary 6.54 in [WM], there exists
a number field k£ and a simple algebraic k-group L such that H =[] x L”
and ¢ can be identified with the projection of H(IR)? onto the product of
its non-compact simple factors. If I' is not uniform in G, then by Corollary
6.1.10 in [Zim84] we may assume that H(IR)? has no compact factor.

Theorem 4 Let I' be an arithmetic, irreducible lattice in a real, semisimple
Lie group G with trivial centre and no compact factor. Let H, ¢, k, L be as
above, and let X be the set of embeddings of k into C. Assume that k is totally
real (so that X = X ). Set N = (dimg L(R))X!. The exists a subgroup A of
finite index in T, and an action of A on ZV such that:

i) the pair (A x ZV,Z") has property (T);
i) A ZV is torsion-free and has infinite conjugacy classes.

If G is absolutely simple, then & is totally real, by [Mar91], (1.5) in
Chapter 9; this shows that Theorem 4 implies Theorem 1.

Proof of Theorem 4: The idea of the proof is to construct a represen-
tation of H(IR)" on a finite-dimensional space V', satisfying simultaneously
the following two conditions:

e the pair (H(IR)" x V, V) has property (T);

e some finite index subgroup in H(Z) N H(IR)" stabilizes some lattice in
V.

The proof is in 3 steps.

1. Construction of a rational representation of H on QY , such that the
pair (H(R)? x RN, RY) has property (T):

Since k is totally real, we have H = R ,(L). Let K be the normal
closure of k. Let [ be the Lie algebra of L™, and Ad™ be the adjoint
representation of L™ on [7. Both L7 and the representation Ad"™ of
L™ are defined over K ([Bor91], 1.3.13). Set n = dim[. Choosing
a basis in [, we get an identification of K ®; [T with K", for every
7€ X;set W =@, . K" and let p be the representation of G L, (k)
on W defined before lemma 1. Define a representation of L on W by



m = po Ad, so that 7 = Q.. Ad™ is a representation of H, which
is defined over QQ by lemma 1. Let U be the Q-form of W given by
lemma 1 and its proof. Since 7 is defined over Q, it defines a rational
representation of H(IR) over R ®q U =~ RY.

Note that, as a representation of H(IR), this is exactly the external
tensor product of the adjoint representations of the L™(R)’s (7 € X).
Take 7 such that L™(IR) is non-compact; since L™(IR)? is simple, it has
no non-zero fixed vector in its adjoint representation. So the product
of these L™(IR)"’s, i.e. the product of the non-compact simple factors
of H(IR)", has no non-zero fixed vector in @ .y ["(R) ~ RY. By
Proposition 1, the pair (H(R)? x R™,RY) has property (T).

. Construction of the semi-direct product A x Z" : By lemma 1, the space
U is invariant under H(Q) = {A(g) : g € L(k)}; in particular, it is
invariant under H(Z) = {A(g) : g € L(O)}. Choose a Q-basis of U,
and let M be the Z-module generated by that basis (so that M ~ Z").
By Proposition 7.12 in [Bor69], there exists a congruence subgroup A;
in H(Z) N H(R)? which leaves M invariant.

By Selberg’s lemma (see [Alp87]), A; admits a torsion-free, finite index
subgroup As; of course ¢(Ay) is commensurable with I'. Replacing A
by a finite-index subgroup if necessary, we may assume that ¢(Ag) C T
Notice that, since ker ¢ is compact and A is torsion-free, Ay intersects
ker ¢ trivially. We then set A = ¢(As), which acts on Z" via (mod™")a-
The desired semi-direct product is then A x Z. It is torsion-free since
A and Z" both are. Since A x Z" is a lattice in H(IR)? x R™, the pair
(A x ZV, ZN) has property (T).

. A ZN has infinite conjugacy classes: Indeed, it is a well-known fact
that lattices in semisimple Lie groups with trivial centre have infinite
conjugacy classes. This already shows that every element in A x ZV
which projects non-trivially to A, has infinite conjugacy class. It re-
mains to prove the same for a non-zero element x in the normal sub-
group ZV. Equivalently, we must show that the A-orbit of z in Z", is
infinite. So we take x € ZY with finite A-orbit, and show that = = 0.
Let A, be the stabilizer of x in A: it is a finite-index subgroup of A.
Set then C' = {h € H(R) : w(h)(z) = x}. Since 7 is a rational repre-
sentation, C is a Zariski closed subgroup of H(IR), containing ¢~1(A,).
The latter is a lattice in H(IR), so it is Zariski dense, by the Borel
density theorem [Bor60]. This means that z is fixed under H(IR). By
our choice of 7, this implies x = 0.



O

Remark: If G = H(R)? and T’ = H(Z)NH(R)°, then we may take A =T
in Theorem 4 (provided we don’t insist that A be torsion-free). In other
words, in this situation there is no need to pass to a finite-index subgroup.
To see it, let M C U be the Z-module appearing at the beginning of step 2 in
the proof of Theorem 4. As M is invariant under the finite-index subgroup
A1, the orbit of M under I' is finite. Then the sum of all the Z-modules in
the orbit, is a I'-invariant free Z-module of rank N.

We now re-visit some examples of arithmetic lattices, taken from [Mar91],
1.7(vi) in Chapter IX. Since Theorem 4 applies to each of them, we will in
each case identify k, N and H.

Example 1 Let ® be a quadratic form in n + 1 variables, with signature
(n,1), and coefficients in a number field k C R. We denote by SOg the
special orthogonal group of ®: this is a simple algebraic group defined over
k. Set T'= S04 (0O), where as usual O is the ring of integers of k.

a) ® =af+...+ax—aly; herek = Q and H = SOg, so that I =
SO(n,1)(Z) is a non-uniform arithmetic lattice in SOg(R) = SO(n, 1),
to which the previous remark applies. Here N = dimg SO(n,1) =
@. Let J be the (n+ 1) x (n + 1), diagonal matriz with diagonal
values (1,...,1,—1); the Lie algebra of SO(n,1) is

so(n,1) = {X € M,1(R): X'J +JX =0}.

The adjoint representation of SO(n, 1) on so(n, 1) is given by Ad(g)(X) =
gXg™' (g € SO(n,1),X € so(n,1)). So the restriction of Ad to T
leaves invariant so(n,1) N M, 41(Z) ~ ZV. This example will be used
below in the proof of Theorem 3.

b) ®=at+...+22 V222, ; here k = Q(v2) and H = SOg x SO, @),
where o is the non-trivial element of Gal(k/Q). ThenT = SOg(Z[v/2))

is a uniform arithmetic lattice in SOgp(R) ~ SO(n,1). Here N =
(5.

c) ®=xt+...+a22— 22, whered >0 is a root of a cubic irreducible
polynomial over @, having two positive roots 9,6 and one negative root
0". Here k = Q(0); let 0,7 be the embeddings of k into R defined by
o(6) =0 and 7(6) = 0". Then H = SOg x SOu0) X SOr@) and I is
an irreducible, uniform, arithmetic lattice in SOp(R) X SOqq)(R) =~
SO(n,1) x SO(n,1). Here N = (“Zt1)3,



Remark: Let k be a number field, with normal closure K. If k is not
totally real, we do not know whether Theorem 4 is still valid. The reason is
that, while the Galois group Gal(K/Q) acts on the set X of embeddings k —
C (by o7 = 0o7), it does not act on the set X of archimedean places, because
of pairs of complex places. So if we start from H = [[ . L™ (this group
is indeed defined over @, see [WM] ex. (6:30)), we will be unable to appeal
to lemma 1, which appeals to the Galois-fixed point criterion for rationality
over Q. A concrete example to which this remark applies, is the following
(see [Mar91], 1.7(vi)(6) in Chapter IX): set ® = 27 + ... + 22 — 22, and
k = Q(+/2). Here k has one real place and one complex place; I' = SOg(O)
is an irreducible, non-uniform arithmetic lattice in SO(n, 1) x SO(n+ 1, C),
for which we do not know whether Theorem 4 holds.

Proof of Corollary 1: Under the assumptions of the Corollary, I' is an
arithmetic lattice in G: if rankgG' > 2, this is Margulis’ famous arithmeticity
theorem (see [Mar91], Thm (A) in Chapter IX; [Zim84], 6.1.2); if rankrG =
1 (i.e. @ is locally isomorphic either to Sp(n,1)(n > 2) or to Fy_a)),
this follows from the work of Corlette [Cor92] and Gromov-Schoen [GS92].
Theorem 1 then applies and provides N > 2 and a torsion-free A acting
on ZV, in such a way that A x ZV has infinite conjugacy classes and the
pair (A x ZV Z™) has property (T). On the other hand, the assumptions
also imply that G has property (T), and hence A too (see [dIHV89]). We
conclude by using the following fact: let

1-N—H-—H/N—1

be a short exact sequence of locally compact groups; if the pair (H, N) has
property (T) and the group H/N has property (T), then the group H has
property (T) (the easy proof can be left as an exercice). O

3 Proof of Theorem 2

We recall that a locally compact group G satisfies the Baum-Connes conjec-
ture if, for every C*-algebra A endowed with an action of G, the Baum-Connes
assembly map

pac: RKKG(EG,A) — K. (A%, G)

is an isomorphism. Here EG is the universal space for G-proper actions,
RKKSY(EG,A) denotes the G-equivariant K K-theory with compact sup-
ports of EG and A, and K, (A x,.G) denotes the equivariant K-theory of the
reduced crossed product A %, G; see [BCH94] for details.



Let I' be a lattice in the adjoint group of Sp(n,1), (n > 2). Corollary 1
provides N, A and an action of A on Z" such that A x Z" has property (T).
The Baum-Connes conjecture for A x Z" follows by combining the following
facts:

e The Baum-Connes conjecture holds for Z" (see [Kas95)).

e The Baum-Connes conjecture holds for Sp(n,1): this is a remarkable
result of P. Julg [Jul02].

e The Baum-Connes conjecture is inherited by closed subgroups, as was
proved by Chabert and Echterhoff [CEO1]; in particular it is satisfied
by the lattice A.

e Let 1 =Ty —I't — I's — 1 be a short exact sequence of countable
groups. If I'y and T’y satisfy the Baum-Connes conjecture, and I'sy is
torsion-free, then I'y satisfies the Baum-Connes conjecture. This is a
result of Oyono-Oyono (Theorem 7.1 in [OO01]). We apply it to the
short exact sequence 1 — ZV — A x Z¥ — A — 1: since A is torsion-
free, and Z" and A satisfy the Baum-Connes conjecture, then so does
Ax ZN. O

4 Proof of Theorem 3

Recall that a locally compact group H is a-T-menable, or has the Haagerup
property, if H admits a unitary representation almost having invariant vec-
tors, whose coefficient functions vanish at infinity on H. We refer to [CCJT01]
for an extensive study of this class of groups. We will use the fact that closed
subgroups of SO(k, 1) and SU(m, 1) are a-T-menable.

We now recall the portions of Popa’s theory [Popa| which are relevant
for our proof. Let N be a finite von Neumann algebra and let B be a von
Neumann subalgebra. In Definition 2.1 of [Popa|, Popa defines property (H)
for the inclusion B C N; in Proposition 3.1 of [Popal, he proves that, if a
countable group I' acts on the finite von Neumann algebra B (preserving
some normal, faithful, tracial state), and N = B x I, the inclusion B C N
has property (H) if and only if ' is a-T-menable.

In Definition 4.2 of [Popa|, Popa also defines property (T) for the inclusion
B C N. In Proposition 5.1 of [Popa|, he proves that, if H is a subgroup of
', the inclusion L(H) C L(I") has property (T) if and only if the pair (I', H)
has property (T).

Now let M be a IIi-factor, and let A be a Cartan subalgebra in M.
Following Definitions 6.1 and 6.4 of [Popal, we say that A is a HT-Cartan
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subalgebra if the inclusion A C M satisfies both property (H) and property
(T). We denote by HT  the class of 11 factors with HTs-Cartan subalgebras.

Example 2 Let I' be an arithmetic group in the adjoint group of SO(k,1)
or SU(m,1). Let N, A be provided by Theorem 1. Set M = L(A x ZV). Let
TV be the N-dimensional torus, viewed as the Pontryagin dual of ZV. Since
L(ZN) ~ L=(T™) in a A-equivariant way, we have

M = L(ZV) x A ~ L=(TY) x A.

Since A x ZV has infinite conjugacy classes, M is a I1,-factor; equivalently,
the action of A on TV is ergodic.

Set A = L(ZN); since A is a-T-menable and the pair (A x ZV,ZN) has
property (T), we see that A is an HT,-Cartan subalgebra in M.

Popa’s fundamental result (Theorem 6.2 in [Popal) is that a factor M
in the class H7 s has a unique H7Ts-Cartan subalgebra, up to conjugation
by unitaries in M. In particular, there exists a unique (up to isomorphism)
standard equivalence relation Rj; on the standard probability space, imple-
mented by the normalizer of any HT,-Cartan subalgebra of M. This means
that any invariant of the equivalence relation Rj; becomes an isomorphism
invariant of the factor M.

This brings us to Gaboriau’s L2-Betti numbers for measurable equivalence
relations [Gab02]. If R is a standard equivalence relation on the standard
probability space (X, ), Gaboriau defines, for n = 0,1,2... the L>-Betti

number b\’ (R) € [0, +o0[. We will use two properties of these numbers.

1) If B is a Borel subset of X, with 0 < u(B), denote by R the restriction

(2)
of R to B. Then b (RP) = 8 for every n > 0.

2) If R is induced by a measure preserving, essentially free action of a
countable group T', then b (R) = b,(f)(F) for every n > 0; here bf)(F)
denotes the n-th L2-Betti number of I, as defined by Cheeger and
Gromov [CG86].

Coming back to a factor M in the class H7 ,, we define -after Popa- the
n-th L2-Betti number of M as bg)(M) =P (Rar). From property 1) above,

if 0 < b (M) < oo for some n > 0, then b (M?) = m which implies
immediately that F(M) = {1}.

Proof of Theorem 3: We know by example 1(a) that I';, = SO(2n, 1)(Z)
is an arithmetic lattice in SO(2n, 1), and that the pair (T, x Z"*, Z") has
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property (T). By example 2, the von Neumann algebra M, = L(T,, x Z") is
a [ I -factor in the class H7 ;. Since the equivalence relation Ry, is induced
by the action of T,, on T, by property 2) above we have for every k > 0

b (M) = b2 (T,).

Now, for any lattice A in SO(2n,1), the L?*Betti number b,(f) (A) was esti-
mated by Borel [Bor85]: the result is

2) _ 0 of k#n
b (A)_{>O if k=n

So M, has exactly one non-zero L?-Betti number, namely the n-th one. This
proves simultaneously that F(M,) = {1} and that the M,’s are pairwise
non-isomorphic. O

Remarks:

i) Theorem 3 also holds with SO(2n, 1) replaced by SU(n, 1), N, being
replaced by dimg SU(n, 1) = n(n+2) and SO(2n, 1)(Z) being replaced
by SU(n,1)(Z[i]) (the latter being a non-uniform, arithmetic lattice in
SU(n,1). The reason is that, for any lattice A in SU(n, 1), one has by

[Bor85:
2) _ 0 of k#n
b () = { >0 if k=n
as in the case of SO(2n,1). On the other hand, if A is a lattice in
SO(2n +1,1), all its L>-Betti numbers are zero, so the same holds for
the corresponding I1;-factors constructed in Example 2.

ii) For n > 2, let T',, be a lattice in the adjoint group of Sp(n,1). Let
N,, A, be provided by Corollary 1; set M,, = L(A,, x ZV). Then M, is
a I -factor with property (T) in the sense of Connes and Jones [CJ85];
so that F(M,,) is countable, by a result of Connes [Con80]. To the best
of our knowledge, it is unknown whether the M, ’s are pairwise non-
isomorphic. However, it is a result of Cowling and Zimmer [CZ89] that
the inclusions L(Z™") C M,, are pairwise non-isomorphic.
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