Group pairs with property (T), from arithmetic lattices

Alain VALETTE

March 5, 2004

To the memory of Armand Borel

Abstract

Let Γ be an arithmetic lattice in an absolutely simple Lie group G with trivial centre. We prove that there exists an integer $N \geq 2$, a subgroup Λ of finite index in Γ, and an action of Λ on \mathbb{Z}^{N} such that the pair $\left(\Lambda \ltimes \mathbb{Z}^{N}, \mathbb{Z}^{N}\right)$ has property (T). If G has property (T), then so does $\Lambda \ltimes \mathbb{Z}^{N}$. If G is the adjoint group of $S p(n, 1)$, then $\Lambda \ltimes \mathbb{Z}^{N}$ is a property (T) group satisfying the Baum-Connes conjecture. If Λ_{n} is an arithmetic lattice in $S O(2 n, 1)$, then the associated von Neumann algebras $\left(L\left(\Lambda_{n} \ltimes \mathbb{Z}^{N_{n}}\right)\right)_{n \geq 1}$ are a family of pairwise non-isomorphic group $I I_{1}$-factors, all with trivial fundamental groups.

1 Introduction and results

Let G be a locally compact group, and let H be a closed subgroup. The pair (G, H) has property (T) if every unitary representation of G almost having invariant vectors, has non-zero H-fixed vectors. The group G has Kazhdan's property (T) if and only if the pair (G, G) has property (T).

Suppose that G acts by automorphisms on a locally compact group N, and form the semi-direct product $G \ltimes N$. In this paper we shall be concerned with the property (T) for the pair $(G \ltimes N, N)$.

Property (T) for the pair $\left(S L_{2}(\mathbb{R}) \ltimes \mathbb{R}^{2}, \mathbb{R}^{2}\right)$ already plays a big rôle in Kazhdan's original paper [Kaz67], to establish property (T$)$ for $S L_{n}(\mathbb{R}), n \geq$ 3. Later, property (T) for the pair $\left(S L_{2}(\mathbb{Z}) \ltimes \mathbb{Z}^{2}, \mathbb{Z}^{2}\right)$ was exploited by Margulis [Mar73] to give the first explicit example of an infinite family of expanding graphs.

Observe that $S L_{2}(\mathbb{Z})$ is an arithmetic lattice in the simple Lie group $S L_{2}(\mathbb{R})$. Our main result states that semi-direct product pairs with property (T) can be obtained, at least virtually, from any arithmetic lattice. Before stating it precisely, we recall the relevant definitions; good references about lattices are [Bor69], [Zim84], [Mar91], [WM].

Definition 1 Let G be a real, semisimple Lie group with finite centre, and let Γ be a discrete subgroup in G.
a) Γ is a lattice in G if the homogeneous space G / Γ carries a finite, G-invariant measure.
b) A lattice Γ in G is uniform if G / Γ is compact.
c) A lattice Γ in G is arithmetic if there exists a semisimple algebraic \mathbb{Q} group H and a surjective continuous homomorphism $\phi: H(\mathbb{R})^{0} \rightarrow G$, with compact kernel, such that $\phi\left(H(\mathbb{Z}) \cap H(\mathbb{R})^{0}\right)$ is commensurable with Γ (here $H(\mathbb{R})^{0}$ is the connected component of identity in $H(\mathbb{R})$).

Definition 2 A real Lie group is absolutely simple if its complexified Lie algebra is simple.

A simple Lie group is absolutely simple if and only if it is not locally isomorphic (as a real Lie group) to a complex Lie group (see (10.10) in $[\mathrm{WM}]$). With this we can formulate our main result.

Theorem 1 Let G be a non-compact, absolutely simple Lie group with trivial centre. Let Γ be an arithmetic lattice in G. There exists an integer $N \geq 2$, a subgroup Λ of finite index in Γ, and an action of Λ on \mathbb{Z}^{N} such that:
i) the pair $\left(\Lambda \ltimes \mathbb{Z}^{N}, \mathbb{Z}^{N}\right)$ has property (T);
ii) $\Lambda \ltimes \mathbb{Z}^{N}$ is torsion-free and has infinite conjugacy classes.

Note that we have no idea whether Theorem 1 holds true for non-arithmetic lattices (which are known to exist in $S O(n, 1)$ for every $n \geq 2$ - see [GPS88], and in $S U(n, 1)$ for $1 \leq n \leq 3$ - see [DM86]). A partial generalization of Theorem 1 to the case where Γ is an irreducible, arithmetic lattice in a semisimple Lie group G, will be discussed as Theorem 4 in $\S 2$. An explicit value of the integer N in Theorem 1, will be given as part of Theorem 4.

It is known (see p. 26 in [dlHV89]) that $S L_{n}(\mathbb{Z}) \ltimes \mathbb{Z}^{n}$ has property (T) for $n \geq 3$. The following Corollary generalizes this fact and provides new examples of groups with property (T).

Corollary 1 Let G be a non-compact, absolutely simple Lie group with trivial centre, which is not locally isomorphic to $S O(n, 1)$ or $S U(m, 1)$. Let Γ be a lattice in G. There exists an integer $N \geq 2$, a subgroup Λ of finite index in Γ, and an action of Λ on \mathbb{Z}^{N} such that $\Lambda \ltimes \mathbb{Z}^{N}$ is torsion-free, has infinite conjugacy classes and property (T).

We conclude the paper by giving two applications of Theorem 1. The first one is about the Baum-Connes conjecture (see [BCH94]). It is known that, until the work of V. Lafforgue [Laf98], property (T) was a major stumbling block for proving the Baum-Connes conjecture (see [Jul98]). So it seems interesting to construct new examples of groups with property (T) which satisfy the Baum-Connes conjecture. Building on results of P. Julg [Jul02], who established the Baum-Connes conjecture for $S p(n, 1)$, we prove:

Theorem 2 Keep the notations and assumptions of Corollary 1. Assume moreover that G is the adjoint group of $S p(n, 1)(n \geq 2)$. Then the group $\Lambda \ltimes \mathbb{Z}^{N}$ is a property (T) group for which the Baum-Connes conjecture holds.

Our second application is about von Neumann factors of type $I I_{1}$. Let M be a $I I_{1}$-factor; for $t>0$, denote by M_{t} the compression of $M \bar{\otimes} \mathcal{B}(\mathcal{H})$ by any projection with trace t. The fundamental group of M is

$$
\mathcal{F}(M)=\left\{t \in \mathbb{R}_{+}^{\times}: M^{t} \simeq M\right\}
$$

a subgroup of the multiplicative group of positive real numbers. It was a problem asked by R.V. Kadison in 1967, whether there exists a $I I_{1}$-factor M such that $\mathcal{F}(M)=\{1\}$. This was solved by Popa in [Popa] (see also [Popb] for a shorter proof): building on Gaboriau's theory of L^{2}-Betti numbers for measurable equivalence relations [Gab02], Popa proved that, for $\Gamma=$ $S L_{2}(\mathbb{Z}) \ltimes \mathbb{Z}^{2}$, the corresponding factor $L(\Gamma)$ has trivial fundamental group. Using the same techniques, we prove:

Theorem 3 Set $\Gamma_{n}=S O(2 n, 1)(\mathbb{Z})$, a non-uniform arithmetic lattice in the simple Lie group $S O(2 n, 1)(n \geq 1)$. Set $N_{n}=n(2 n+1)=\operatorname{dim}_{\mathbf{R}} S O(2 n, 1)$, and let Γ_{n} act via the adjoint representation on $\mathbb{Z}^{N_{n}}$, viewed as the integral points in the Lie algebra of $S O(2 n, 1)$. Set finally $M_{n}=L\left(\Gamma_{n} \ltimes \mathbb{Z}^{N_{n}}\right)$. Then $\left(M_{n}\right)_{n \geq 1}$ is a sequence of pairwise non-isomorphic group $I I_{1}$-factors, all with trivial fundamental group.

We emphasize here the fact that the M_{n} 's are group factors: indeed, if $\mathcal{F}(M)=\{1\}$, then the M^{t} 's, for $t>0$, provide uncountably many pairwise non-isomorphic factors, all with trivial fundamental group.

Acknowledgements: We thank Y. Benoist and Y. Shalom for useful conversations and correspondence around representations of algebraic groups. In particular, Y. Benoist provided lemma 1, allowing to pass from a number field to its Galois closure.

2 Proofs of Theorem 1 and Corollary 1

We first recall a useful sufficient condition for property (T) of semi-direct product pairs; see Proposition 2.3 in [Val94] for a proof.

Proposition 1 Let V be a finite-dimensional, real vector space; let $H \subset$ $G L(V)$ be a semisimple subgroup. If the product of the non-compact simple factors of H has no non-zero fixed vector in V, then the pair $(H \ltimes V, V)$ has property (T).

We will need some material about algebraic groups. Let k be a number field, i.e a finite extension of \mathbb{Q}, and let X be the set of field embeddings of k into \mathbb{C}. As usual, we say that two distinct embeddings $\sigma, \tau: k \rightarrow \mathbb{C}$ are equivalent if $\sigma(x)=\overline{\tau(x)}$ for all $x \in k$; an archimedean place of k is an equivalence class of embeddings, and we denote by \bar{X} the set of archimedean places of k.

If G is a linear algebraic group defined over k, set $R_{k / \phi}(G)=\prod_{\tau \in X} G^{\tau}$, where G^{τ} is obtained from G by applying τ to the polynomials defining G. This is the restriction of G to \mathbb{Q}, of which we recall the main properties (for all this, see [Zim84], Proposition 6.1.3).

- For $g \in G(k)$, set $\Delta(g)=(\tau(g))_{\tau \in X}$. Then $R_{k / Q}(G)$ is an algebraic group over \mathbb{Q}, such that

$$
\left(R_{k / \phi}(G)\right)(\mathbb{Q})=\Delta(G(k))
$$

- Let \mathcal{O} be the ring of integers of k. Then

$$
\left(R_{k / \phi}(G)\right)(\mathbb{Z})=\Delta(G(\mathcal{O})) .
$$

- Let τ_{0} be the identity of k. The projection $p: R_{k / Q}(G) \rightarrow G^{\tau_{0}}=$ G is defined over k, and yields bijections $\left(R_{k / \mathbb{Q}}(G)\right)(\mathbb{Q}) \rightarrow G(k)$ and $\left(R_{k / \mathbb{Q}}(G)\right)(\mathbb{Z}) \rightarrow G(\mathcal{O})$.
- For every subfield F of \mathbb{C} such that $\tau(k) \subset F$ for every $\tau \in X$, each G^{τ} is defined over F and

$$
\left(R_{k / \downarrow}(G)\right)(F)=\prod_{\tau \in X} G^{\tau}(F)
$$

Let K be the normal closure of k, and let $\operatorname{Gal}(K / \mathbb{Q})$ be its Galois group over \mathbb{Q}. Let $W=\bigotimes_{\tau \in X} K^{n}$ be the tensor product over K of $|X|$ copies of K^{n} (so that $\operatorname{dim}_{K} W=n^{|X|}$). Let $G L_{n}(k)$ act on W by

$$
\rho(g)=\bigotimes_{\tau \in X} \tau(g)
$$

$\left(g \in G L_{n}(k)\right)$. If $H=R_{k / \boldsymbol{\phi}}\left(G L_{n}\right)$, then ρ is a representation of H defined over K. Since $H(K)=\prod_{\tau \in X} G L_{n}(K)$, we have $\rho\left(\left(g_{\tau}\right)_{\tau \in X}\right)=\bigotimes_{\tau \in X} g_{\tau}$ for $\left(g_{\tau}\right)_{\tau \in X} \in H(K)$. The following lemma was kindly provided by Y. Benoist.

Lemma 1 With notations as above, the representation ρ is defined over \mathbb{Q}, and there exists a $G L_{n}(k)$-invariant \mathbb{Q}-subspace U of W which is a \mathbb{Q}-form of ρ, i.e. the map $K \otimes_{\boldsymbol{\alpha}} U \rightarrow W$ is a $G L_{n}(k)$-equivariant isomorphism.

Proof: Let I be the set of maps $X \rightarrow\{1, \ldots, n\}$, so that we may denote by $\left(e_{i}\right)_{i \in I}$ the standard basis of W associated with the standard basis of K^{n}. Let $\operatorname{Gal}(K / \mathbb{Q})$ act on I by $\gamma \cdot i(\tau)=i\left(\gamma^{-1} \circ \tau\right)$, for $\tau \in X, i \in I$. Consider the semi-linear representation of $\operatorname{Gal}(K / \mathbb{Q})$ on W given by

$$
\gamma\left(\sum_{i \in I} \lambda_{i} e_{i}\right)=\sum_{i \in I} \gamma\left(\lambda_{i}\right) e_{\gamma \cdot i}
$$

$\left(\lambda_{i} \in K\right)$. Observe that, for $v_{\tau} \in K^{n}(\tau \in X)$:

$$
\gamma\left(\bigotimes_{\tau \in X} v_{\tau}\right)=\bigotimes_{\tau \in X} \gamma\left(v_{\gamma^{-1} \circ \tau}\right) .
$$

This shows that the action of $\operatorname{Gal}(k / \mathbb{Q})$ on W commutes with the representation ρ of $G L_{n}(k)$.

Recall that the group $\operatorname{Gal}(K / \mathbb{Q})$ acts on representations $\pi: H \rightarrow G L(W)$ defined over K, by $\gamma \cdot \pi=\gamma \circ \pi \circ \gamma^{-1}$ (where $\gamma \in \operatorname{Gal}(K / \mathbb{Q})$). Here, since $\gamma \cdot \rho=\rho$ for every $\gamma \in \operatorname{Gal}(K / \mathbb{Q})$, the representation ρ is defined over \mathbb{Q}, by [Bor91], AG 14.3.

Finally, let U be the space of points in W which are fixed under $\operatorname{Gal}(K / \mathbb{Q})$: by [Bor91], AG 14.2, this is a \mathbb{Q}-form for W. Since ρ commutes with the action of $G a l(K / \mathbb{Q})$ on W, the space U is $G L_{n}(k)$-invariant.

Let G be a real, semisimple Lie group with trivial centre and no compact factor. Recall that a lattice Γ in G is irreducible if, for any non-central, closed, normal subgroup N in G, the projection of Γ in G / N is dense.

Assume that Γ is an irreducible, arithmetic lattice in G. By definition $1(\mathrm{c})$, there is a semisimple algebraic Q -group H and $\phi: H(\mathbb{R})^{0} \rightarrow G$ a surjective homomorphism, with compact kernel, such that $\phi\left(H(\mathbb{Z}) \cap H(\mathbb{R})^{0}\right)$ is commensurable with Γ.

Such an H is obtained as follows: by Corollary 6.54 in [WM], there exists a number field k and a simple algebraic k-group L such that $H=\prod_{\tau \in \bar{X}} L^{\tau}$ and ϕ can be identified with the projection of $H(\mathbb{R})^{0}$ onto the product of its non-compact simple factors. If Γ is not uniform in G, then by Corollary 6.1.10 in [Zim84] we may assume that $H(\mathbb{R})^{0}$ has no compact factor.

Theorem 4 Let Γ be an arithmetic, irreducible lattice in a real, semisimple Lie group G with trivial centre and no compact factor. Let H, ϕ, k, L be as above, and let X be the set of embeddings of k into \mathbb{C}. Assume that k is totally real (so that $X=\bar{X}$). Set $N=\left(\operatorname{dim}_{\mathbb{R}} L(\mathbb{R})\right)^{|X|}$. The exists a subgroup Λ of finite index in Γ, and an action of Λ on \mathbb{Z}^{N} such that:
i) the pair $\left(\Lambda \ltimes \mathbb{Z}^{N}, \mathbb{Z}^{N}\right)$ has property (T);
ii) $\Lambda \ltimes \mathbb{Z}^{N}$ is torsion-free and has infinite conjugacy classes.

If G is absolutely simple, then k is totally real, by [Mar91], (1.5) in Chapter 9; this shows that Theorem 4 implies Theorem 1.

Proof of Theorem 4: The idea of the proof is to construct a representation of $H(\mathbb{R})^{0}$ on a finite-dimensional space V, satisfying simultaneously the following two conditions:

- the pair $\left(H(\mathbb{R})^{0} \ltimes V, V\right)$ has property (T);
- some finite index subgroup in $H(\mathbb{Z}) \cap H(\mathbb{R})^{0}$ stabilizes some lattice in V.

The proof is in 3 steps.

1. Construction of a rational representation of H on \mathbb{Q}^{N}, such that the pair $\left(H(\mathbb{R})^{0} \ltimes \mathbb{R}^{N}, \mathbb{R}^{N}\right)$ has property (T) :
Since k is totally real, we have $H=R_{k / Q}(L)$. Let K be the normal closure of k. Let \mathfrak{l}^{τ} be the Lie algebra of L^{τ}, and $A d^{\tau}$ be the adjoint representation of L^{τ} on \mathfrak{l}^{τ}. Both L^{τ} and the representation $A d^{\tau}$ of L^{τ} are defined over K ([Bor91], I.3.13). Set $n=\operatorname{dim}_{k} \mathfrak{l}$. Choosing a basis in \mathfrak{l}, we get an identification of $K \otimes_{k} \mathfrak{l}^{\tau}$ with K^{n}, for every $\tau \in X$; set $W=\bigotimes_{\tau \in X} K^{n}$, and let ρ be the representation of $G L_{n}(k)$ on W defined before lemma 1. Define a representation of L on W by
$\pi=\rho \circ A d$, so that $\pi=\bigotimes_{\tau \in X} A d^{\tau}$ is a representation of H, which is defined over \mathbb{Q} by lemma 1 . Let U be the \mathbb{Q}-form of W given by lemma 1 and its proof. Since π is defined over \mathbb{Q}, it defines a rational representation of $H(\mathbb{R})$ over $\mathbb{R} \otimes_{\mathbb{Q}} U \simeq \mathbb{R}^{N}$.
Note that, as a representation of $H(\mathbb{R})$, this is exactly the external tensor product of the adjoint representations of the $L^{\tau}(\mathbb{R})$'s $(\tau \in X)$. Take τ such that $L^{\tau}(\mathbb{R})$ is non-compact; since $L^{\tau}(\mathbb{R})^{0}$ is simple, it has no non-zero fixed vector in its adjoint representation. So the product of these $L^{\tau}(\mathbb{R})^{0}$'s, i.e. the product of the non-compact simple factors of $H(\mathbb{R})^{0}$, has no non-zero fixed vector in $\bigotimes_{\tau \in X} \mathfrak{l}^{\tau}(\mathbb{R}) \simeq \mathbb{R}^{N}$. By Proposition 1 , the pair $\left(H(\mathbb{R})^{0} \ltimes \mathbb{R}^{N}, \mathbb{R}^{N}\right)$ has property (T).
2. Construction of the semi-direct product $\Lambda \ltimes \mathbb{Z}^{N}$: By lemma 1, the space U is invariant under $H(\mathbb{Q})=\{\Delta(g): g \in L(k)\}$; in particular, it is invariant under $H(\mathbb{Z})=\{\Delta(g): g \in L(\mathcal{O})\}$. Choose a \mathbb{Q}-basis of U, and let M be the \mathbb{Z}-module generated by that basis (so that $M \simeq \mathbb{Z}^{N}$). By Proposition 7.12 in [Bor69], there exists a congruence subgroup Λ_{1} in $H(\mathbb{Z}) \cap H(\mathbb{R})^{0}$ which leaves M invariant.
By Selberg's lemma (see [Alp87]), Λ_{1} admits a torsion-free, finite index subgroup Λ_{2}; of course $\phi\left(\Lambda_{2}\right)$ is commensurable with Γ. Replacing Λ_{2} by a finite-index subgroup if necessary, we may assume that $\phi\left(\Lambda_{2}\right) \subset \Gamma$. Notice that, since ker ϕ is compact and Λ_{2} is torsion-free, Λ_{2} intersects ker ϕ trivially. We then set $\Lambda=\phi\left(\Lambda_{2}\right)$, which acts on \mathbb{Z}^{N} via $\left(\pi \circ \phi^{-1}\right)_{\mid \Lambda}$. The desired semi-direct product is then $\Lambda \ltimes \mathbb{Z}^{N}$. It is torsion-free since Λ and \mathbb{Z}^{N} both are. Since $\Lambda \ltimes \mathbb{Z}^{N}$ is a lattice in $H(\mathbb{R})^{0} \ltimes \mathbb{R}^{N}$, the pair $\left(\Lambda \ltimes Z^{N}, Z^{N}\right)$ has property (T).
3. $\Lambda \ltimes \mathbb{Z}^{N}$ has infinite conjugacy classes: Indeed, it is a well-known fact that lattices in semisimple Lie groups with trivial centre have infinite conjugacy classes. This already shows that every element in $\Lambda \ltimes \mathbb{Z}^{N}$ which projects non-trivially to Λ, has infinite conjugacy class. It remains to prove the same for a non-zero element x in the normal subgroup \mathbb{Z}^{N}. Equivalently, we must show that the Λ-orbit of x in \mathbb{Z}^{N}, is infinite. So we take $x \in \mathbb{Z}^{N}$ with finite Λ-orbit, and show that $x=0$. Let Λ_{x} be the stabilizer of x in Λ : it is a finite-index subgroup of Λ. Set then $C=\{h \in H(\mathbb{R}): \pi(h)(x)=x\}$. Since π is a rational representation, C is a Zariski closed subgroup of $H(\mathbb{R})$, containing $\phi^{-1}\left(\Lambda_{x}\right)$. The latter is a lattice in $H(\mathbb{R})$, so it is Zariski dense, by the Borel density theorem [Bor60]. This means that x is fixed under $H(\mathbb{R})$. By our choice of π, this implies $x=0$.

Remark: If $G=H(\mathbb{R})^{0}$ and $\Gamma=H(\mathbb{Z}) \cap H(\mathbb{R})^{0}$, then we may take $\Lambda=\Gamma$ in Theorem 4 (provided we don't insist that Λ be torsion-free). In other words, in this situation there is no need to pass to a finite-index subgroup. To see it, let $M \subset U$ be the \mathbb{Z}-module appearing at the beginning of step 2 in the proof of Theorem 4. As M is invariant under the finite-index subgroup Λ_{1}, the orbit of M under Γ is finite. Then the sum of all the \mathbb{Z}-modules in the orbit, is a Γ-invariant free \mathbb{Z}-module of rank N.

We now re-visit some examples of arithmetic lattices, taken from [Mar91], $1.7(\mathrm{vi})$ in Chapter IX. Since Theorem 4 applies to each of them, we will in each case identify k, N and H.

Example 1 Let Φ be a quadratic form in $n+1$ variables, with signature $(n, 1)$, and coefficients in a number field $k \subset \mathbb{R}$. We denote by $S O_{\Phi}$ the special orthogonal group of Φ : this is a simple algebraic group defined over k. Set $\Gamma=S O_{\Phi}(\mathcal{O})$, where as usual \mathcal{O} is the ring of integers of k.
a) $\Phi=x_{1}^{2}+\ldots+x_{n}^{2}-x_{n+1}^{2}$; here $k=\mathbb{Q}$ and $H=S O_{\Phi}$, so that $\Gamma=$ $S O(n, 1)(\mathbb{Z})$ is a non-uniform arithmetic lattice in $S O_{\Phi}(\mathbb{R})=S O(n, 1)$, to which the previous remark applies. Here $N=\operatorname{dim}_{\mathbf{R}} S O(n, 1)=$ $\frac{n(n+1)}{2}$. Let J be the $(n+1) \times(n+1)$, diagonal matrix with diagonal values $(1, \ldots, 1,-1)$; the Lie algebra of $S O(n, 1)$ is

$$
\mathfrak{s o}(n, 1)=\left\{X \in M_{n+1}(\mathbb{R}): X^{t} J+J X=0\right\}
$$

The adjoint representation of $S O(n, 1)$ on $\mathfrak{s o}(n, 1)$ is given by $\operatorname{Ad}(g)(X)=$ $g X g^{-1}(g \in S O(n, 1), X \in \mathfrak{s o}(n, 1))$. So the restriction of Ad to Γ leaves invariant $\mathfrak{s o}(n, 1) \cap M_{n+1}(\mathbb{Z}) \simeq \mathbb{Z}^{N}$. This example will be used below in the proof of Theorem 3.
b) $\Phi=x_{1}^{2}+\ldots+x_{n}^{2}-\sqrt{2} x_{n+1}^{2}$; here $k=\mathbb{Q}(\sqrt{2})$ and $H=S O_{\Phi} \times S O_{\sigma(\Phi)}$, where σ is the non-trivial element of $\operatorname{Gal}(k / \mathbb{Q})$. Then $\Gamma=S O_{\Phi}(\mathbb{Z}[\sqrt{2}])$ is a uniform arithmetic lattice in $S O_{\Phi}(\mathbb{R}) \simeq S O(n, 1)$. Here $N=$ $\left(\frac{n(n+1)}{2}\right)^{2}$.
c) $\Phi=x_{1}^{2}+\ldots+x_{n}^{2}-\delta x_{n+1}^{2}$ where $\delta>0$ is a root of a cubic irreducible polynomial over \mathbb{Q}, having two positive roots δ, δ^{\prime} and one negative root $\delta^{\prime \prime}$. Here $k=\mathbb{Q}(\delta)$; let σ, τ be the embeddings of k into \mathbb{R} defined by $\sigma(\delta)=\delta^{\prime}$ and $\tau(\delta)=\delta^{\prime \prime}$. Then $H=S O_{\Phi} \times S O_{\sigma(\Phi)} \times S O_{\tau(\Phi)}$ and Γ is an irreducible, uniform, arithmetic lattice in $S O_{\Phi}(\mathbb{R}) \times S O_{\sigma(\Phi)}(\mathbb{R}) \simeq$ $S O(n, 1) \times S O(n, 1)$. Here $N=\left(\frac{n(n+1)}{2}\right)^{3}$.

Remark: Let k be a number field, with normal closure K. If k is not totally real, we do not know whether Theorem 4 is still valid. The reason is that, while the Galois group $\operatorname{Gal}(K / \mathbb{Q})$ acts on the set X of embeddings $k \rightarrow$ $\mathbb{C}($ by $\sigma \cdot \tau=\sigma \circ \tau)$, it does not act on the set \bar{X} of archimedean places, because of pairs of complex places. So if we start from $H=\prod_{\tau \in \bar{X}} L^{\tau}$ (this group is indeed defined over \mathbb{Q}, see $[\mathrm{WM}]$ ex. (6:30)), we will be unable to appeal to lemma 1, which appeals to the Galois-fixed point criterion for rationality over \mathbb{Q}. A concrete example to which this remark applies, is the following (see [Mar91], 1.7(vi)(6) in Chapter IX): set $\Phi=x_{1}^{2}+\ldots+x_{n}^{2}-x_{n+1}^{2}$ and $k=\mathbb{Q}(\sqrt[3]{2})$. Here k has one real place and one complex place; $\Gamma=S O_{\Phi}(\mathcal{O})$ is an irreducible, non-uniform arithmetic lattice in $S O(n, 1) \times S O(n+1, \mathbb{C})$, for which we do not know whether Theorem 4 holds.

Proof of Corollary 1: Under the assumptions of the Corollary, Γ is an arithmetic lattice in G : if $\operatorname{ran}_{\mathbf{R}} G \geq 2$, this is Margulis' famous arithmeticity theorem (see [Mar91], Thm (A) in Chapter IX; [Zim84], 6.1.2); if $\operatorname{rank}_{\mathbf{R}} G=$ 1 (i.e. G is locally isomorphic either to $S p(n, 1)(n \geq 2)$ or to $\left.F_{4(-20)}\right)$, this follows from the work of Corlette [Cor92] and Gromov-Schoen [GS92]. Theorem 1 then applies and provides $N \geq 2$ and a torsion-free Λ acting on \mathbb{Z}^{N}, in such a way that $\Lambda \ltimes \mathbb{Z}^{N}$ has infinite conjugacy classes and the pair $\left(\Lambda \ltimes \mathbb{Z}^{N}, \mathbb{Z}^{N}\right)$ has property (T). On the other hand, the assumptions also imply that G has property (T), and hence Λ too (see [dlHV89]). We conclude by using the following fact: let

$$
1 \rightarrow N \rightarrow H \rightarrow H / N \rightarrow 1
$$

be a short exact sequence of locally compact groups; if the pair (H, N) has property (T) and the group H / N has property (T), then the group H has property (T) (the easy proof can be left as an exercice).

3 Proof of Theorem 2

We recall that a locally compact group G satisfies the Baum-Connes conjecture if, for every C^{*}-algebra A endowed with an action of G, the Baum-Connes assembly map

$$
\mu_{A, G}: R K K_{*}^{G}(\underline{E} G, A) \rightarrow K_{*}\left(A \rtimes_{r} G\right)
$$

is an isomorphism. Here $\underline{E} G$ is the universal space for G-proper actions, $R K K_{*}^{G}(\underline{E} G, A)$ denotes the G-equivariant $K K$-theory with compact supports of $\underline{E} G$ and A, and $K_{*}\left(A \rtimes_{r} G\right)$ denotes the equivariant K-theory of the reduced crossed product $A \rtimes_{r} G$; see [BCH94] for details.

Let Γ be a lattice in the adjoint group of $\operatorname{Sp}(n, 1),(n \geq 2)$. Corollary 1 provides N, Λ and an action of Λ on \mathbb{Z}^{N} such that $\Lambda \ltimes \mathbb{Z}^{N}$ has property (T). The Baum-Connes conjecture for $\Lambda \ltimes \mathbb{Z}^{N}$ follows by combining the following facts:

- The Baum-Connes conjecture holds for \mathbb{Z}^{N} (see [Kas95]).
- The Baum-Connes conjecture holds for $S p(n, 1)$: this is a remarkable result of P. Julg [Jul02].
- The Baum-Connes conjecture is inherited by closed subgroups, as was proved by Chabert and Echterhoff [CE01]; in particular it is satisfied by the lattice Λ.
- Let $1 \rightarrow \Gamma_{0} \rightarrow \Gamma_{1} \rightarrow \Gamma_{2} \rightarrow 1$ be a short exact sequence of countable groups. If Γ_{0} and Γ_{2} satisfy the Baum-Connes conjecture, and Γ_{2} is torsion-free, then Γ_{1} satisfies the Baum-Connes conjecture. This is a result of Oyono-Oyono (Theorem 7.1 in [OO01]). We apply it to the short exact sequence $1 \rightarrow \mathbb{Z}^{N} \rightarrow \Lambda \ltimes \mathbb{Z}^{N} \rightarrow \Lambda \rightarrow 1$: since Λ is torsionfree, and \mathbb{Z}^{N} and Λ satisfy the Baum-Connes conjecture, then so does $\Lambda \ltimes \mathbb{Z}^{N}$.

4 Proof of Theorem 3

Recall that a locally compact group H is a-T-menable, or has the Haagerup property, if H admits a unitary representation almost having invariant vectors, whose coefficient functions vanish at infinity on H. We refer to [CCJ $\left.{ }^{+} 01\right]$ for an extensive study of this class of groups. We will use the fact that closed subgroups of $S O(k, 1)$ and $S U(m, 1)$ are a-T-menable.

We now recall the portions of Popa's theory [Popa] which are relevant for our proof. Let N be a finite von Neumann algebra and let B be a von Neumann subalgebra. In Definition 2.1 of [Popa], Popa defines property (H) for the inclusion $B \subset N$; in Proposition 3.1 of [Popa], he proves that, if a countable group Γ acts on the finite von Neumann algebra B (preserving some normal, faithful, tracial state), and $N=B \rtimes \Gamma$, the inclusion $B \subset N$ has property (H) if and only if Γ is a-T-menable.

In Definition 4.2 of [Popa], Popa also defines property (T) for the inclusion $B \subset N$. In Proposition 5.1 of [Popa], he proves that, if H is a subgroup of Γ, the inclusion $L(H) \subset L(\Gamma)$ has property (T) if and only if the pair (Γ, H) has property (T).

Now let M be a $I I_{1}$-factor, and let A be a Cartan subalgebra in M. Following Definitions 6.1 and 6.4 of [Popa], we say that A is a $H T_{s^{-}}$Cartan
subalgebra if the inclusion $A \subset M$ satisfies both property (H) and property (T). We denote by $\mathcal{H} \mathcal{T}_{s}$ the class of $I I_{1}$ factors with $H T_{s}$-Cartan subalgebras.

Example 2 Let Γ be an arithmetic group in the adjoint group of $\operatorname{SO}(k, 1)$ or $\operatorname{SU}(m, 1)$. Let N, Λ be provided by Theorem 1. Set $M=L\left(\Lambda \ltimes \mathbb{Z}^{N}\right)$. Let \mathbb{T}^{N} be the N-dimensional torus, viewed as the Pontryagin dual of \mathbb{Z}^{N}. Since $L\left(\mathbb{Z}^{N}\right) \simeq L^{\infty}\left(\mathbb{T}^{N}\right)$ in a Λ-equivariant way, we have

$$
M=L\left(\mathbb{Z}^{N}\right) \rtimes \Lambda \simeq L^{\infty}\left(\mathbb{T}^{N}\right) \rtimes \Lambda .
$$

Since $\Lambda \ltimes \mathbb{Z}^{N}$ has infinite conjugacy classes, M is a $I I_{1}$-factor; equivalently, the action of Λ on \mathbb{T}^{N} is ergodic.

Set $A=L\left(\mathbb{Z}^{N}\right)$; since Λ is a-T-menable and the pair $\left(\Lambda \ltimes \mathbb{Z}^{N}, \mathbb{Z}^{N}\right)$ has property (T), we see that A is an $H T_{s}$-Cartan subalgebra in M.

Popa's fundamental result (Theorem 6.2 in [Popa]) is that a factor M in the class $\mathcal{H} \mathcal{T}_{s}$ has a unique $H T_{s}$-Cartan subalgebra, up to conjugation by unitaries in M. In particular, there exists a unique (up to isomorphism) standard equivalence relation \mathcal{R}_{M} on the standard probability space, implemented by the normalizer of any $H T_{s}$-Cartan subalgebra of M. This means that any invariant of the equivalence relation \mathcal{R}_{M} becomes an isomorphism invariant of the factor M.

This brings us to Gaboriau's L^{2}-Betti numbers for measurable equivalence relations [Gab02]. If \mathcal{R} is a standard equivalence relation on the standard probability space (X, μ), Gaboriau defines, for $n=0,1,2 \ldots$ the L^{2}-Betti number $b_{n}^{(2)}(\mathcal{R}) \in[0,+\infty[$. We will use two properties of these numbers.

1) If B is a Borel subset of X, with $0<\mu(B)$, denote by \mathcal{R}^{B} the restriction of \mathcal{R} to B. Then $b_{n}^{(2)}\left(\mathcal{R}^{B}\right)=\frac{b_{n}^{(2)}(\mathcal{R})}{\mu(B)}$ for every $n \geq 0$.
2) If \mathcal{R} is induced by a measure preserving, essentially free action of a countable group Γ, then $b_{n}^{(2)}(\mathcal{R})=b_{n}^{(2)}(\Gamma)$ for every $n \geq 0$; here $b_{n}^{(2)}(\Gamma)$ denotes the n-th L^{2}-Betti number of Γ, as defined by Cheeger and Gromov [CG86].

Coming back to a factor M in the class $\mathcal{H} \mathcal{T}_{s}$, we define -after Popa- the n-th L^{2}-Betti number of M as $b_{n}^{(2)}(M)=b_{n}^{(2)}\left(\mathcal{R}_{M}\right)$. From property 1) above, if $0<b_{n}^{(2)}(M)<\infty$ for some $n \geq 0$, then $b_{n}^{(2)}\left(M^{t}\right)=\frac{b_{n}^{(2)}(M)}{t}$ which implies immediately that $\mathcal{F}(M)=\{1\}$.

Proof of Theorem 3: We know by example 1(a) that $\Gamma_{n}=S O(2 n, 1)(\mathbb{Z})$ is an arithmetic lattice in $S O(2 n, 1)$, and that the pair $\left(\Gamma_{n} \ltimes \mathbb{Z}^{N_{n}}, \mathbb{Z}^{N_{n}}\right)$ has
property (T). By example 2 , the von Neumann algebra $M_{n}=L\left(\Gamma_{n} \ltimes \mathbb{Z}^{N_{n}}\right)$ is a $I I_{1}$-factor in the class $\mathcal{H} \mathcal{T}_{s}$. Since the equivalence relation $\mathcal{R}_{M_{n}}$ is induced by the action of Γ_{n} on $\mathbb{T}^{N_{n}}$, by property 2) above we have for every $k \geq 0$

$$
b_{k}^{(2)}\left(M_{n}\right)=b_{k}^{(2)}\left(\Gamma_{n}\right)
$$

Now, for any lattice Λ in $S O(2 n, 1)$, the L^{2}-Betti number $b_{k}^{(2)}(\Lambda)$ was estimated by Borel [Bor85]: the result is

$$
b_{k}^{(2)}(\Lambda)=\left\{\begin{array}{ccc}
0 & \text { if } & k \neq n \\
>0 & \text { if } & k=n
\end{array}\right.
$$

So M_{n} has exactly one non-zero L^{2}-Betti number, namely the n-th one. This proves simultaneously that $\mathcal{F}\left(M_{n}\right)=\{1\}$ and that the M_{n} 's are pairwise non-isomorphic.

Remarks:

i) Theorem 3 also holds with $S O(2 n, 1)$ replaced by $S U(n, 1), N_{n}$ being replaced by $\operatorname{dim}_{\mathbf{R}} S U(n, 1)=n(n+2)$ and $S O(2 n, 1)(\mathbb{Z})$ being replaced by $S U(n, 1)(\mathbb{Z}[i])$ (the latter being a non-uniform, arithmetic lattice in $S U(n, 1)$. The reason is that, for any lattice Λ in $S U(n, 1)$, one has by [Bor85]:

$$
b_{k}^{(2)}(\Lambda)=\left\{\begin{array}{ccc}
0 & \text { if } & k \neq n \\
>0 & \text { if } & k=n
\end{array}\right.
$$

as in the case of $S O(2 n, 1)$. On the other hand, if Λ is a lattice in $S O(2 n+1,1)$, all its L^{2}-Betti numbers are zero, so the same holds for the corresponding $I I_{1}$-factors constructed in Example 2.
ii) For $n \geq 2$, let Γ_{n} be a lattice in the adjoint group of $S p(n, 1)$. Let N_{n}, Λ_{n} be provided by Corollary 1 ; set $M_{n}=L\left(\Lambda_{n} \ltimes \mathbb{Z}^{N}\right)$. Then M_{n} is a $I I_{1}$-factor with property (T) in the sense of Connes and Jones [CJ85]; so that $\mathcal{F}\left(M_{n}\right)$ is countable, by a result of Connes [Con80]. To the best of our knowledge, it is unknown whether the M_{n} 's are pairwise nonisomorphic. However, it is a result of Cowling and Zimmer [CZ89] that the inclusions $L\left(\mathbb{Z}^{N_{n}}\right) \subset M_{n}$ are pairwise non-isomorphic.

References

[Alp87] R.C. Alperin. An elementary account of Selberg's lemma. L'Enseignement Mathématique, 33:269-273, 1987.
[BCH94] P. Baum, A. Connes, and N. Higson. Classifying spaces for proper actions and K-theory of group C^{*}-algebras. In C^{*}-algebras 19431993: a fifty year celebration (Contemporary Mathematics 167, pp. 241-291), 1994.
[Bor60] A. Borel. Density properties for certain subgroups of semi-simple groups without compact components. Ann. Math., 72:62-74, 1960.
[Bor69] A. Borel. Introduction aux groupes arithmétiques. Hermann, Actu. sci. et industr. 1341, 1969.
[Bor85] A. Borel. The L^{2}-cohomology of negatively curved Riemannian symmetric spaces. Acad. Sci. Fenn. (ser. A, math.), 10:95-105, 1985.
[Bor91] A. Borel. Linear algebraic groups (2nd enlarged edition). SpringerVerlag, 1991.
[CCJ $\left.{ }^{+} 01\right]$ P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette. Groups with the Haagerup property (Gromov's a-T-menability). Progress in Math., Birkhäuser, 2001.
[CE01] J. Chabert and S. Echterhoff. Permanence properties of the BaumConnes conjecture. Doc. Math., 6:127-183, 2001.
[CG86] J. Cheeger and M. Gromov. L_{2}-cohomology and group cohomology. Topology, 25:189-215, 1986.
[CJ85] A. Connes and V.F.R. Jones. Property T for von Neumann algebras. Bull. London Math. Soc., 17:57-62, 1985.
[Con80] A. Connes. A factor of type $i i_{1}$ with countable fundamental group. J. Oper. Th., 4:151-153, 1980.
[Cor92] K. Corlette. Archimedean superrigidity and hyperbolic rigidity. Ann. of Math., 135:165-182, 1992.
[CZ89] M. Cowling and R.J. Zimmer. Actions of lattices in $\operatorname{Sp}(1, n)$. Ergodic Theory Dynam. Systems, 9:221-237, 1989.
[dlHV89] P. de la Harpe and A. Valette. La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque 175, Soc. Math. France, 1989.
[DM86] P. Deligne and G.D. Mostow. Monodromy of hypergeometric functions and non-lattice integral monodromy. Publ. Math. IHES, 63:5-89, 1986.
[Gab02] D. Gaboriau. Invariants ℓ^{2} de relations d'équivalence et de groupes. Publ.Math., Inst. Hautes Etudes Sci., 95:93-150, 2002.
[GPS88] M. Gromov and I. Piatetski-Shapiro. Nonarithmetic groups in Lobachevsky spaces. Publ. Math. IHES, 66:93-103, 1988.
[GS92] M. Gromov and R. Schoen. Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Inst. Hautes Etudes Sci. Publ. Math., 76:165-246, 1992.
[Jul98] P. Julg. Travaux de Higson et Kasparov sur la conjecture de BaumConnes. In Séminaire Bourbaki, Exposé 841, 1998.
[Jul02] P. Julg. La conjecture de Baum-Connes à coefficients pour le groupe $S p(n, 1)$. C.R.Acad.Sci. Paris, 334:533-538, 2002.
[Kas95] G.G. Kasparov. K-theory, group C*-algebras, and higher signatures (Conspectus, first distributed 1981). In Novikov conjectures, index theorems and rigidity (London Math. Soc. lecture notes ser. 226, pp. 101-146), 1995.
[Kaz67] D. Kazhdan. Connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. and its Appl., 1:6365, 1967.
[Laf98] V. Lafforgue. Une démonstration de la conjecture de BaumConnes pour les groupes réductifs sur un corps p-adiques et pour certains groupes discrets possédant la propriété (t). C.R. Acad. Sci. Paris, 327:439-444, 1998.
[Mar73] G.A. Margulis. Explicit construction of concentrators. Problems Inform. Transmission, 9:325-332, 1973.
[Mar91] G.A. Margulis. Discrete subgroups of semisimple Lie groups. Springer-Verlag, Ergeb. Math. Grenzgeb. 3 Folge, Bd. 17, 1991.
[OO01] H. Oyono-Oyono. Baum-Connes conjecture and extensions. J. reine angew. Math., 532:133-149, 2001.
[Popa] S. Popa. On a class of type $I I_{1}$ factors with Betti numbers invariants. Preprint, aug. 2002.
[Popb] S. Popa. On the fundamental group of type $I I_{1}$ factors. Preprint, 2003.
[Val94] A. Valette. Old and new about Kazhdan's property (T). In Representations of Lie groups and quantum groups, (V. Baldoni and M. Picardello eds.), Pitman Res. Notes in Math. Series, 271-333, 1994.
[WM] D. Witte-Morris. Introduction to arithmetic groups. Pre-book, february 2003.
[Zim84] R.J. Zimmer. Ergodic theory and semisimple groups. Birkhauser, 1984.

Author's address:
Institut de Mathématiques
Rue Emile Argand 11
CH-2007 Neuchâtel - SWITZERLAND
alain.valette@unine.ch

