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Abstract: In these notes, we study the Baum-Connes analytical assembly maps
(or index maps) u! : RK} (ET) — K;(C;T) and fii : RK; (ET') — K;(C*T), for
a countable group I'. Here RKZ-F (ET) denotes the I'-equivariant K-homology with
I'-compact supports of the universal space ET for proper I'-actions, while K;(C;T")
(resp. K;(C*T')) denotes the analytical K-theory of the reduced (resp. full) C*-
algebra of T. As it is simple and direct, we use the definitiop sfiggested by
Baum, Connes and Higson in section 3 of [BCH94]. The Baum-Connes conjecture
asserts that, for any group T, the map ! is an isomorphism (i = 0,1). The
contents of this paper are as follows:

1. We make the necessary changes for constructing fi}, and give a detailed proof
tha ahd jilprovide K-theory elements of the corresponding C*-algebras.

2. We carefully describe the behaviour of the left-hand side of the assembly
maps under group homomorphisms, and we prove that /j{ is natural with
respect to arbitrary group homomorphisms. As a consequence, we get a new
proof of the fact that, if I' acts freely on the space X, then the equivariant
K-homology K. (X) is isomorphic to the K-homology K, (I'\X) of the orbit
space.

3. To illustrate the non-triviality of the assembly map, we give a direct proof
of the Baum-Connes conjecture for the group Z of integers, not appealing
to equivariant KK-theory.

4. Denote by Fr : I' = K;(C;T') the homomorphism induced by the canonical
inclusion of T' in the unitary group of C;I'. We show that there exists a
homomorphism Bt :T — RK (E _T') such that &p = M{ o Bt; this extends a
result of Natsume [Nat88] for I' torsion-free.

The Appendix, by Dan Kucerovsky, discusses the assembly map in terms of un-
bounded K-homology elements.
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Chapter 1

Introduction

1.1 The Baum-Connes conjecture

Let ' be a countable, discrete group. The Baum-Connes conjecture is a
tantalizing programme that identifies two objects associated with I', one
analytical and one geometrical or topological.

The analytical side involves the K-theory of the reduced C*-algebra C;T,
which is the C*-algebra generated by T in its left regular representation on
the Hilbert space ¢2(T"). The K-theory used here, K;(C:T) for i = 0, 1, is
the usual K-theory for Banach algebras, as described e.g. in [Tay75].

On the opposite side, one finds the K-homology (with compact supports)
of a certain classifying space. More precisely, consider the universal space
ET for proper I'-actions (as described in (1.6) of [BCH94], see also Chapter 2
below; such a space is unique up to I'-equivariant homotopy). A I-invariant
subset Y C ET is I'-compact if the orbit space I'\Y is compact. The ge-
ometric group is the I' -equivariant K-homology with ['-compact supports
RK](ET) of ET, i.e. the inductive limit of the ['-equivariant K-homology '
groups K (Y), where Y runs along I'-compact subsets of ET.

The link between both sides of the conjecture is provided by the analytic
assembly map, or index map

pi + RK; (EL) — K;(C;T)

!The groups K,F (Y) can be defined as the equivariant Kasparov groups
KKF(Cy(Y),C), where Co(Y) denotes the abelian C*-algebra of continuous functions
vanishing at infinity on Y for equivariant Kasparov theory, we refer to [Kas95], [Kas88].
We shall give more details on that definition in section 2.2. As in Chapter 5 of [Roe96], it
is also possible to define K[ (V') as the K-theory of the algebra of pseudo-local operators
modulo locally compact operators on Y, in a suitable covariant representation of Co(Y).
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(1 = 0,1). The definition of the assembly map can be traced back to a
result of Kasparov [Kas83|: suppose that Z is a proper I'-compact manifold
endowed with a ['-invariant elliptic differential operator D on some I'-vector
bundle over Z. Then, in spite of the non-compactness of the manifold Z, the
indezx of D has a well-defined meaning as an element of the K-theory K;(CT).
On the other hand, using the universal property of ET', the manifold Z maps
continuously I'-equivariantly to ET, and the pair (Z, D) defines an element
of the equivariant K-homology with compact supports RK} (ET). Then, one
sets

ws (Z, D) = Index(D).

Elaborating on this, and using the concept of abstract elliptic operator (or
Kasparov triple), one defines the assembly map p}, which is a group homo-
morphism.

Conjecture 1 (the Baum-Connes conjecture) For i = 0, 1, the assembly
map
p : RK] (ET) — K;(C;T)

1 an isomorphism.

This conjecture is part of a more general conjecture (discussed in [BCH94])
where discrete groups are replaced by arbitrary locally compact groups 2.
The reason for restricting to discrete groups is that, in a sense, this case is
both interesting and difficult. The main difficulty comes from the analytical
side: e.g., there is no general structure result for the reduced C*-algebra of a
discrete group, so that its K-theory is usually quite hard to compute (recall
that, in many important cases, e.g. lattices in semi-simple Lie group, C;T'
is actually simple, see [BCAIH94]). The interest of Conjecture 1 is that it
implies several other famous conjectures in topology, geometry, algebra and
functional analysis.

Conjecture 2 (the Novikov conjecture) For closed oriented manifolds with
fundamental group T, the higher signatures coming from H*(T',Q) are ori-
ented homotopy invariants.

2Not to mention an even more general conjecture, that we deliberately ignore here,
concerning either locally compact groups acting on locally compact spaces or foliated
manifolds, and with coefficients in an arbitrary auxiliary C*-algebra.
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The Novikov conjecture follows from the rational injectivity of ul (see
[BCH94|, Theorem 7.11; [FRR95], section 6).

Conjecture 3 (one direction of the Gromov-Lawson-Rosenberg conjecture)
If M is a closed spin manifold with fundamental group I", and if M is endowed
with a metric of positive scalar curvature, then all higher fl—genem (coming
from H*(I',Q)) do vanish.

Conjecture 3 is also a consequence of the rational injectivity of p; (see
Theorem 7.11 in [BCH94]).

Let us also mention the conjecture of idempotents for C;T'; since C;T" is
a completion of the complex group algebra CI', this conjecture is stronger
than the classical conjecture of idempotents, discussed e.g. in [Pas85].

Conjecture 4 (the conjecture of idempotents, or Kaplansky-Kadison con-
jecture) Let T be a torsion-free group. Then CT' has no idempotent other
than 0 or 1.

This conjecture would follow from the surjectivity of uj (see Proposition
7.16 in [BCH94]; Proposition 3 in [Val89]).

It has to be emphasized that Conjecture 1 makes K;(C;T") computable, at
least up to torsion. The reason is that RK (ET) is computable up to torsion.
Let us explain this briefly. Let FI' be the space of complex-valued functions
on I', whose support is finite and contained in the set of torsion elements of T".
Letting [' act by conjugation on torsion elements, F'I' becomes a I'-module;
denote by H,(I', FT') the j-th homology group of I' with coefficients in FT.
In section 6 of [BC88a], Baum and Connes define a Chern character

chr : RK] (ET) — @D Hison (T, FT),

n=0

and state in Proposition 15.2 of [BC88a] that the Chern character is an
isomorphism after tensoring by C, i.e.

chr ® 1: RK] (ET) ®;, C — @ Hiyon(T, FT)

n=0

is an isomorphism (another Chern character, having all the desired proper-
ties, has been constructed by Matthey in Theorem 1.4 of [Mat]; he conjectures
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that his Chern character coincides with Baum-Connes’, and proves this for
I' =G x Z/nZ, with BG a closed manifold).

As an example, consider the case when I is torsion-free. The I'-module
FT is just the trivial module C; on the other hand, let BI' be a classifying
space for ', i.e. a K(I',1)-space; let ET be its universal covering space.
Since I' is torsion-free, any proper action is automatically free, so we may
take ET' = ET'. Then there is a canonical isomorphism

RK] (ET) ~ RK,(BI),

where RK;(BT") denotes the K-homology with compact supports of BI'. This
identification is compatible with the usual Chern character in K-homology,
i.e. there is a commutative diagram

RK' (ET) ~ RK;(BT)
chr \ v ch
Do Hitan (T, C)

(see [BCHY94], p. 274; [Mat], Theorem 1.4).
As another example, take for I" a finite group. Then

RK; (EL) = K; (pt) ~ R(D),

where R(I") is the representation ring of I'. On the other hand,

é Hy,(T, FT) = Hy(T, FT)

n=0

is the complex vector space on the set of conjugacy classes of I'. In other
words, the fact that the Chern character is an isomorphism (after tensoring
with C) incorporates the classical but not quite obvious fact that, for a finite
group, the number of irreducible representations is equal to the number of
conjugacy classes.

1.2 What these Notes are about

The basic sources for the Baum-Connes conjecture are the original articles
[BCO0], [BC88al, [BC88b|, [BCHY4]; in textbooks, see various sections in
the books by Connes [Con94] and by Higson-Roe [HROOb]. For expository
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presentations entirely devoted to the Baum-Connes conjecture, see the Bour-
baki seminars by Julg [Jul98| and Skandalis [Ska99], and the pre-book by the
author [Val]. In particular, the last three references contain relevant infor-
mation about the status of the Baum-Connes conjecture, especially for which
classes of discrete groups surjectivity and/or injectivity of the assembly map
has been proved.

These Notes were begun in 1996-97, and have gone through many states
since then. At the origin, they were aimed at backing up some aspects of
the proof of the Baum-Connes conjecture for one-relator groups in [BBV99].
Publication was delayed, due to the feeling that the results contained in
these Notes were known to every expert. Part of the Notes was used as we
were working on [Val], which explains some overlap, for which we apologize.
Eventually I yielded to the friendly insistance of some colleagues and some
graduate students, who convinced me that these Notes, although not fully
original, could be of some interest for beginners. Let us discuss now the
content of these Notes.

It has been noticed by many authors (see e.g. [Con94| p.99, [FRR95] sec-
tion 6, [Jul98]) that the analytical assembly map u} : RK} (ET) — K;(C:T)
factors through the K-theory of the full C*-algebra C*T", which is the uni-
versal C*-completion of the group algebra CI'. More precisely, there is a
homomorphism

jif : RK] (ET) — K;(C'T)
such that
,u{ = ()‘F)* © /157

where Ap : C*I' — C;T" is the canonical epimorphism corresponding to the
left regular representation of I'. As we shall see, the assembly map /i enjoys
better naturality properties than p .

In Chapter 2, we give the definition of Baum-Connes-Higson [BCH94] for
pr and provide the necessary changes for fi} ; these definitions have the ad-
vantage of being direct and avoiding the use of Kasparov products. However,
it is not completely apparent from Definition (3.8) in [BCH94] that the map
pt is well-defined and actually provides K-theory elements of C*T'. There
is a number of checks to be made, for which we give the relevant details; in
particular, we pay due attention to positivity questions, often overlooked. In
the process, we also show that the two definitions of y}, given in sections 3
and 8 of [BCH94|, are truly the same: namely, for X a I'-compact subset of
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ET and z € KK} (Cy(X),C), then ul(z) can be defined by first applying
Kasparov’s descent homomorphism jr to z, and then taking the Kasparov
product of jr(z) by the canonical line bundle [Lx] over Co(X) x T.

Next we will prove that the analytic assembly map i} is natural, i.e.:

Theorem 1 Let o : 'y — 'y be a group homomorphism; then there is a
commutative diagram:

REKM(ET)) " K,(C'T))
a, | $

~T
RET(ET,) ™5 K,(C'Ty)

This result is of course known to experts (see [Con94], pp.96-97; [FRR95],
p.44; [Ros83]; [Lueb]). But a proof never appeared in the literature, as far
as we know. Most of Chapter 3 is devoted to the proof of Theorem 1: 3.1
deals with the case of group monomorphisms, 3.2 with group epimorphisms
(since any group homomorphism is the product of an epimorphism with a
monomorphism, this clearly implies the general case). Actually one difficulty
in the proof is to carefully describe the functoriality of the left-hand side, i.e
how RK} (ET) behaves under group homomorphisms. For an epimorphism
a : 'y — I'y with kernel N, the construction is inspired from Kasparov’s
descent homomorphism (Theorem 3.4 in [Kas88]): if I'; acts properly on a
space X, this provides a homomorphism «, : K;'(X) — K;2(N\X). In
particular, if I' acts freely on X, by considering the constant homomorphism
a from T to the trivial group, we get an explicit map «, : KT (X) — K;(['\X)
which, as shown in Corollary 4, coincides with the isomorphism constructed
classically using Morita equivalence (see [Gre77]).

The proof of Theorem 1 uses the fact that the full group C*-algebra
is functorial for arbitrary group homomorphisms. By way of contrast, the
reduced C*-algebra is functorial only for group monomorphisms. This purely
analytical reason is responsible for the limited naturality of y; , that we now
state precisely.

Let a: I'y = I's be a group monomorphism; then there is a commutative
diagram:

c'T, 3 C T,
/\Fl \L \L /\I‘2
C:Ty B Ol

As an immediate consequence, we have:
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Corollary 1 For a group monomorphism o : I'y — I'y, there is a commuta-
tive diagram:

N1
My

RK['(ET)) & K;(C:Ty)
o | e
Ly
RE*(ET5) = Ki(C]Ty)

It is however possible to restore full naturality by imposing conditions on
the source group. Recall that a group I' is amenable if A\p : C*I' — C;T" is
an isomorphism (this is one among lots of equivalent definitions, see [Ped79]
7.3). More generally, I is K-amenable in the sense of Cuntz [Cun83] if

A KY(CrT) — K°(C*TD)

is an isomorphism in K-homology; this is known to imply that the K-theory
map

is an isomorphism (see [Cun83], Theorem 2.1). Until Lafforgue’s remarkable
results [Laf98], all the groups for which Conjecture 1 was proved, belonged
to the class of K-amenable groups.

Corollary 2 Let a : I'y — 'y be a group homomorphism, where I'y is K-
amenable; then there is a commutative diagram:

RK;'(ET)) & K;(C:T))
oy 1 o,

RKI2(ET,) % Ki(C'Ty)

At this juncture, notice that, since the left-hand side of the Baum-Connes
conjecture (i.e. the geometric group RK] (ET)) is fully functorial with
respect to group homomorphisms, it would follow from the truth of the
Baum-Connes conjecture that the right-hand side is fully functorial, i.e.
for any group homomorphism « : I'y — I'y there should exist a functo-
rial «, : K;(CiT1) — K;(CiT); this functoriality, on which we elaborate in
Example 2 of Chapter 3, can be “explained” by a conjecture of J.-B. Bost
(see [Ska99]): the range of the Baum-Connes assembly map pl should be
the K-theory of ¢'T' rather than the one of C/T; and of course ¢'T" is fully
functorial with respect to group homomorphisms.
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To illustrate the construction of the analytical assembly map, we give in
Chapter 4 a direct proof of the fact that

ui : RKY(EZ) — K\ (C*Z)

is an isomorphism. Of course, it is well-known that the group Z satisfies the
Baum-Connes conjecture, and it might even be tempting to believe that this
result is obvious (this is essentially the opinion expressed in lemma 3.5 of
[BC88b]). I think that, although both groups involved are isomorphic to Z,
the definition of the assembly map is intricate enough, so that one really has
to check that % maps generator to generator. It is informative here to look
at Kasparov’s dual map

a: K'(C*T') — RK"(BI),

defined in [Kas75], section 8; [Kas95], section 9; [Kas88], section 6, and which
was considered prior to the Baum-Connes assembly map. Then

a: K'(C*Z) — K'(BZ)

is an isomorphism: the non-triviality of this fact is apparent from the proofs
in [Kas75], Theorem 1 of section 8; [Ros84], lemma 3.2. Coming back to
“u% is an isomorphism”, it is clear that this result is contained in Kasparov’s
conspectus [Kas95], but hidden in the wide generality of Theorem 1 of section
7. What is explicit there (and non-trivial) is the fact the Connes-Kasparov
conjecture holds for the 1-dimensional Lie group R ([Kas95], lemma 4 in
section 5). Then one appeals to the machinery of equivariant KK-theory,
whose powerful functorialities allow to descend from a Lie group to a discrete
subgroup. I thought that it was worthwhile to give a direct proof. Another
direct proof can be found in Example 12.5.9 of the recent book [HROOb].

In the final Chapter 5, we consider the canonical homomorphism
KT : I'— Kl(C:F)

obtained from the canonical embedding of I' into the unitary group of C;T".
Since K;(C;T) is abelian, &r factors through a homomorphism

kp : % — K, (C:T)

where I'® denotes the abelianization of I'. It is known (see [EN87], [BV96])
that kr is always rationally injective.
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Theorem 2 There exists a homomorphism
B; : T — RKT (ET)
such that, as homomorphisms ['* — K,(C:T), one has
Kr = iy © B

For T torsion-free, such a map 3; was previously constructed by Natsume
[Nat88] who, however, does not give the proof that 3; is a group homomor-
phism. The proof of Theorem 2 appeals to Theorem 1 together with the
fact (proved in Chapter 4) that conjecture 1 holds for the group of integers.
Recall that I'** = H, (T, Z), and that the inclusion C — FT associated with
the trivial conjugacy class in I', induces an inclusion

I’ ®, C = Hy(T,C) = @ Hzui1 (T, FT) ~ RK7 (ET) @, C.

n=0

Theorem 2 together with the rational injectivity of xr then imply that u! is
rationally injective on the image of (3;, i.e. on the lowest dimensional part of
RK{ (ET).

Deep generalizations of Theorem 2 have been proposed in Matthey’s PhD
thesis [Mat00], in the form of a “delocalized” version allowing him to treat
other conjugacy classes in I' than the trivial one. More precisely, for 0 <
j < 2, he constructs maps §; : Hy(T',FT') — RKj(ET) ®z; C and f, :
H;(T, FT) — K;(C;T) ®z C, commuting with p; ® 1.

The Appendix, by Dan Kucerovsky, presents the construction of the
Baum-Connes assembly map “in the unbounded picture”, i.e. when the
K-homology elements in RK! (ET') are given by unbounded Kasparov ele-
ments (as in [BJ83], [Kuc94]). The interest of this approach is that most
K-homology elements of geometric origin are given by unbounded opera-
tors: e.g. first order, elliptic, differential operators (like de Rham, Dirac,
or signature operators) define unbounded operators on the Hilbert space of
L?-sections of the corresponding vector bundles over the underlying manifold.

1.3 Other descriptions of assembly maps

Other approaches to the Baum-Connes assembly map have been proposed.
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e For an arbitrary metric space X, J. Roe and N. Higson (see [HR00a],
[Roe96]) define the coarse K-homology of X, denoted by KX, (X), the
C*-algebra C*X of operators with finite propagation on X, and the
coarse assembly map

As : KX, (X) = K, (C*X).

Note that KX,(X) = RK,(X) for X uniformly contractible with
bounded geometry ([HR00a], Proposition 3.8). The coarse Baum-Connes
congecture is the statement that, for X a complete path metric space
with bounded geometry, the map A, is an isomorphism. For I' a
finitely generated group, view a Cayley graph |I'| as a complete path
metric space. At least when I' admits a finite complex as a classify-
ing space, there is a “descent principle” allowing to deduce, from the
conjectured isomorphism Ay : KX, (|I'|) = K.(C*|I'|), the injectivity
of the Baum-Connes assembly map p! : RK,(BT) — K,(C:T) (see
[Roe96], Theorem 8.4). A comparison between this approach and the
“classical” one can be found in [Roe].

e J.F. Davis and W. Lueck [DL98] give a categorical definition of assem-
bly maps in algebraic K-theory, topological K-theory and L-theory, by
means of spectra over the orbit category of the group I'. The source of
the Baum-Connes assembly map is defined there by considering the “or-
bit category” Or(T, Fin) of quotients of I" by finite subgroups, applying
the functor K*? : Or(T', Fin) - SPECTRA constructed in section 2
of [DL98], considering the classifying space E(T', Fin) of Or(T', Fin),
forming the “tensor product” spectrum E(I', Fin) Qor(r,Fin) K P as in
section 1 of [DL98|, and finally applying homotopy groups. W. Lueck
has communicated to us a simple proof [Luea] of the naturality of the
source of the Baum-Connes assembly map under arbitrary group homo-
morphisms: when expressed in that language, it basically boils down
to the fact that the orbit category is natural, i.e. that group homomor-
phisms map finite subgroups to finite subgroups! In section 5 of [DL.98],
Davis and Lueck construct an “assembly map” to K,(C;T'): it was re-
cently proved by I. Hambleton and E.K. Pedersen (see [HP], Corollary
7.4), that this construction is equivalent to the one in [BCH94].



1.4. REMARKS ON BACKGROUND 15

1.4 Remarks on background

The reader of this paper is advised to have some background in C*-algebras.
The reason is not that the author has been educated in the C*-faith, but
rather that the difficulties encountered are analytical in nature - even to de-
scribe the functoriality of the left-hand side of the Baum-Connes conjecture!
I shall use freely those parts of C*-algebra theory relevant for Kasparov’s
KK-theory, namely positivity, representations, and multipliers; they can be
found either in Arveson’s book [Arv76] or in Pedersen’s book [Ped79]; for
group C*-algebras, Dixmier’s book [Dix77] is compulsory; for Hilbert C*-
modules, I recommand Lance’s lovely little book [Lan95]; for KK-theory
itself, I suggest the book [JT91] by Knudsen Jensen and Thomsen.
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Chapter 2

The analytical assembly map

2.1 Proper actions

Let X be a metrizable space on which the group I' acts by homeomorphisms.

Definition 1 The I'-space X 1is proper if every point in X admits a I'-
wmvariant open neighbourhood which maps I'-equivariantly continuously to an
homogeneous space I'/H, where H is a finite subgroup of T.

This definition is stronger than the usual definition of a proper action,
which requires that, for any compact subsets K, L of X, the set

{yveTl:vKNL# D}

is finite (or, equivalently, the action map ' x X — X X X : (v,z) — (7.2, )
is proper in the usual sense that the inverse image of a compact subset is
compact). For locally compact spaces, Definition 1 is actually equivalent to
the classical one (see [Pal61]).

According to our definition, a proper ['-space is locally of the form I'x 5z Y,
a space induced from the action of a finite subgroup H on a space Y. We
say that a proper I'-space X is I'-compact if '\ X is compact; note that a
proper, ['-compact space has to be locally compact.

Definition 2 A proper I'-space ET is universal if it satisfies the following
universal property: for every proper I'-space X, there exists a I'-equivariant
continuous map X — ET', and any two such maps are I'-equivariantly ho-
motopic.

17
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The I'-equivariant map X — ET is not proper in general, but it is proper
as soon as X is I'-compact (see Lemma 10 below). It is clear from Definition
2 that a universal proper I'-space is unique, up to ['-equivariant homotopy.
If T is torsion-free, any proper I'-action is free, so we may take for EI' the
universal covering space ET of the classifying space BT'. If ' is finite, we may
take EI' = pt, the one-point space. The non-classical definition of properness
in Definition 1 is required because there are natural examples where EI is
definitely not a locally compact space. For example, the following fairly
simple description of ET" (see section 2 in [BCH94)), valid for an arbitrary T',
is not locally compact as soon as I is infinite. The lemma below appears in
section 2 of [BCH94|; our proof is slightly more direct than the original one.

Lemma 1 Let ET be the space of finitely supported probability measures on
I', endowed with the metric

Il — V|loo = sup{|u(y) —v(v)| : v € T},

and with the action of I given by left multiplication. Then ET is a universal
proper I'-space.

Proof: We first check that the action of I' on ET is proper. Fix y € ET,
and let I';, be its stabilizer, a finite subgroup in I'. Set

R=inf{[lp -yl : v €T = Tu}
one sees easily that R > 0. For € > 0, define
U={veEl: Iyel:|v—v)lw <€k

it is an open, I'-invariant subset of ET". Moreover, for € < g, the open set U
is such that, for v € U, the element v € " with || — ()| < € is unique
modulo I',. Sending v to the coset yI',, then defines a I'-equivariant map
U —T/I',. So ET" is a proper I'-space.

Let X be a proper I'-space. We have to show that there exists a con-
tinuous I'-equivariant map, which is unique up to I'-equivariant homotopy.
Uniqueness is clear, since ET is a convex set on which I' acts affinely. For the
existence, denote by W the disjoint union of the I'/H’s, where H runs along
finite subgroups of I'. Define a ['-equivariant map ¢ : W — EI by sending
the coset vH to the uniform probability measure on yH. By the lemma in
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Appendix 1 of [BCH94], there exists a countable partition of unity (o )k>1
on X, consisting of I'-invariant functions and such that, for every k > 1,
there is a I'-equivariant continuous map 1y, : a;l]O, 1] = W. Then the map

U:X 5 ET:z0 > ag(z)(hoy) ()

is continuous and I'-equivariant. (Il

2.2 Equivariant K-homology

We now recall, following [BCH94|, the definition of the geometric group
RK; (ET) that appears in the left hand side of the Baum-Connes conjec-
ture.

Definition 3 The Baum-Connes geometric group is

RKL(ED) = lim  KI(X),

X CET
Xis'— compact

where K (X) is the I'-equivariant K-homology of X.

More generally, for Y a proper I-space, we define RK! (V) as the induc-
tive limit of the K} (X)’s, where X runs along ['-compact subsets of Y. If T
is the trivial group, we drop the superscript I'.

An element of K] (X) is represented by a Kasparov triple or abstract
elliptic operator (H,n, F'), where H is a Hilbert space endowed with a uni-
tary representation of I', where 7 is a covariant representation of Cp(X)
on H, and where F' is a bounded self-adjoint operator on A such that
[F,7(f)], m(f)(F? — 1) and 7 (f)[y, F] are compact operators on H for any
f € Cy(X) and any v € T'. For i = 0, we require moreover H to be a Z/2-
graded Hilbert space, the representations of I' and Cy(X) to be by degree 0
operators (i.e. they preserve the grading), and F' to be a degree 1 operator
(i.e. it reverses the grading).

Clearly, by compressing to the orthogonal of the null space of 7(Cy(X)),
we may assume that 7 is a non-degenerate representation. Because the action
of I' on X is proper and X is I'-compact, we shall see that we may actually
assume, in the definition of a Kasparov element (H, 7, F) € K; (X), that F
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is I'-equivariant (i.e. [y, F| = 0 for any v € T') and properly supported, i.e.
for any f € C.(X) there exists g € C,(X) with (7(g9) — 1)Fn(f) = 0. The
latter condition has to be understood as a locality condition.

It turns out that properness of the action and I'-compactness of X al-
low for the possibility of averaging over the group I', in order to make F'
equivariant. This is explained in the next lemma.

Lemma 2 Fiz a real-valued f € C.(X). ForT € L(H), set

Ap(T) =Yy ()T(f)v".

Then

1. The sum Z7€F yr(f)Tm(f)y~ converges in the strong operator topol-
ogy, and A;(T) is a bounded operator on H; more precisely, there exists
a constant C > 0, only depending on f, such that ||As(T)|| < C||T].

2. Af(T) is properly supported (and, in particular, it maps 7(C.(X))H
into itself).

3. As(T) is I'-equivariant, i.e. it commutes with I

Proof:

1. (inspired by the proof of Lemma 3.2 in [Kas88]). Separating the real
and imaginary parts of T, we may assume that 7' is self-adjoint. Then
one has the operator inequalities

=y ()TN < Ar(HTr(f)y™ < (2T
(for v € T'). Summing over 7, one gets

~Q_ (Y PIDITI < Af(T) < Y a(y(P)IT.

~er yel
Thus [|A(T)I] < I 2yer ()l - 1T

2. For g € C.(X), we have

Ap(T)m(g) = Y _w(v())vFr(fr gy

~ver
Consider the finiteset F =~y € ' : f.y~!(g) # 0, and choose h € C.(X)

equal to 1 on U, 7(supp(f)). Then m(h)Af(T)(g) = A;(T)(g),
which shows that A;(T') is properly supported.
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3. Obvious.

O

Proposition 1 Let X be a proper and I'-compact space. Any Kasparov triple
(H,m, F) in K} (X) is operatorially homotopic to a Kasparov triple (H, T, G),
where G is properly supported and I'-equivariant.

Proof: Since the space X is proper and I'-compact, there exists a non-
negative function ¢ € C.(X) such that Y _.c(yx) = 1 for every z € X.
Taking

ver

h=+/c, (2.1)

we form G = A, (F).

It already follows from lemma 2 that G is properly supported and I'-
equivariant. Let us check that, for any f € C.(X), the operator 7(f)(F —G)
is compact. But since

Yoyt =1 (2.2)

(as a consequence of the fact that 7 is non-degenerate), we have

F—G = Orh)y'F — yr(h)Fr(h)y ™)
= > erym(W)m(h)y~1, Fl
= YW ER) [y Fl + [x(h), FIv ™).

We remark that, in the last summation, all terms are compact, thanks to the
assumption on F. Then

T()F~G) =Y yrly  (N):-M)@B)y ™, F] + [x(h), Fly™).

vyerl

Since there are finitely many ~’s such that v~!(f).h is non-zero, we see that
7(f)(F — G) is compact, as a finite sum of compact operators. Therefore
G defines a Kasparov triple which is operatorially homotopic to F', via the
homotopy F; = (1 —t)G +tF (t € [0,1]). O

From now on, we shall assume that all operators defining Kasparov triples
are I'-equivariant and properly supported.
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It is clear that the direct sum of two Kasparov triples over X is again
a Kasparov triple over X. The equivalence relation which turns the set of
Kasparov triples over X into the group K} (X) is the one described in [Kas95];
actually K] (X) is the Kasparov group KK} (Cy(X), C).

2.3 Definition of the assembly maps

We proceed to define the analytic assembly map
f; : RK; (ET) — K;(C*T),

by suitably modifying the construction given in [BCH94], (3.8), for the map
uF - RET(ET) - Ki(CIT).

We begin with a locally compact, proper I'-space X and a Hilbert space H
endowed with a covariant representation 7 of Cy(X). Consider the I'-module
m(C.(X))H (since 7 is non-degenerate, this is a dense subspace of H); view
it as a right CI'-module by

E-y=7" (2.3)

define a CI'-valued scalar product on that module by
(&1l&2) () = (&1 - 7/&2) = (&lvé) (2.4)
(that v — (&1]&2)(7) has finite support in T' already uses properness of the

[-action) 1.

Since our aim is to complete 7(C.(X))H as a Hilbert C*-module, we have
to discuss positivity of the functions v — (£]|v€) (with £ € 7(C.(X))H) as
elements either in the reduced or the full C*-algebra of I". Recall that a
function ¢ on I' is positive-definite if it is of the form ¢(g) = (n|p(g)n) for
some unitary representation p of [' and some vector 7 in the Hilbert space of
p.

For the reduced C*-algebra CT', an element v — (£|7y€) as above, is pos-
itive for an abstract reason: any finitely supported, positive definite function
on I' defines a positive element in C*T", by [Dix77], 13.7.8. If I' is amenable,
then CT" = C*T', so that trivially the same elements are positive in C*I". But
this abstract argument fails in general for the full C*-algebra: it turns out
that, if every finitely supported, positive definite function on I' is a positive
element in C*T', then T is amenable (see [Val98]).

LOur convention for scalar products: linear on the right, anti-linear on the left
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Lemma 3 Let X be a locally compact, proper I'-space; let m be a I'-covariant
representation of Co(X) on a Hilbert space H. For any & € n(C.(X))H, the
function vy — (£|¥€) defines a positive element in C*T.

Before proving Lemma 3, we introduce some preliminaries that will be
important for the sequel.

Consider the space C.(I', H) of H-valued, finitely supported functions on
I'; it is viewed as a right CI'-module via ordinary convolution:

=> &(aly™

yer

(& € C(T',H), a € CI', 0 € T'; notice that this does not involve the left
action of I' on ). The module C.(I', H) carries a CI'-valued scalar product:

(&l (o) =D (M) nlyo)) (2.5)
ver
(&, n € C(T',H), o € T') which is positive, i.e. (£[€) is a positive element
in C*T'. To see the latter, choose a basis (e;);c; of H, and write {(o) =
Y icr &i(o)ei (so that & is in CI'). Then

Eleyo) = D> &M&i(re) = DD &M&(y o)

vyel' el i€l yer

ie. (£|€) = > ,cr& &, which is a positive element in C*I'. This also shows
that the completion of C.(I', /) as a C*I'-module is the standard module

HCT = {(&)ier : & € C'T, ng“& converges in C*I'}.
iel
Proof of Lemma 3: The proofs of this lemma and the following one,
use ideas from [Pie00], Proposition 2.3.2.
Let h € C.(X) be as in formula (2.1), i.e. h>0and }_ . vh? = 1. Let
/2T, H) be the Hilbert space of H-valued square-summable functions on T\

Define
g. { H — 62(F,H)

£ = (y=ar(y th)§)
Note that S¢ really belongs to £2(T, H), since

ISEN = > llyr(y ' W)EN® = > llm (v h)E|?

ver verl
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=) (m(yTh)*¢lE) = [I€]I*.

yer

It is clear that S maps 7(C.(X))H into C.(T', H), and it is easy to check that
S commutes with the right I'-actions on these two spaces.
Now define an operator

g . { Ce(IVH) — w(Co(X))H
L7 = Dert” m(R)(n(1))
(the notation S* will be justified in a minute). For the moment, notice
that S*S is the identity on 7(C.(X))H. Now for & € 7(C.(X))H, n €
C.(I',H), vy €T

€S () = (€lvS™m) = (Elvtm(h)(n(1))

=Y (s im(h)(n(s7)) = Y _(m(h)sIn(sy))
=) (sm(s 'h)EIn(s7)) = Y (SE(s)In(s7)) = (SEMY(Y)-

This proves that S and S* are really adjoint to each other, with respect to
the CI'-valued scalar products. In particular, for £ € 7(C.(X))H, we have:

(€le)() = (€l57SE() = (SEISE) ()

But we have seen, just before this proof, that (S&|SE)(-) is a positive element
in C*T. Therefore, so is (£[€)(+). O

By Lemma 3, we may form the completion of 7 (C.(X))H with respect
to the scalar product given by formula (2.4), and get a Hilbert C*-module &£
over C*I".

Lemma 4 Let T € L(H) be properly supported and such that T~y =~T for
any v € I'. Then T extends continuously to an operator T € Lo (E) .

Proof: Let S, S* be the operators appearing in the proof of Lemma 3,
such that S*S = 1. For n € C.(T',H), v € T, an easy computation shows

STS™n(y) = Y w(h)Tw(sh)sn(s™"7).

sel
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If we identify C.(I',’H) with % @ CT', this can be re-written

STS* = w(h)Tw(sh)s ® Ar(s)

sel’

where Ar denotes the left regular representation of I'. Since T is properly
supported, this sum is finite. It is then clear that ST'S* extends to a con-
tinuous C*I'-module map on H ® C*I'. So T = S*(STS*)S extends to a
continuous operator 7 € Lo (£). O

Lemmas 3 and 4 are much easier to prove when C*I' is replaced by C:T’
(see lemma 6.1.3 in [Val]).

Let then X be a I'-compact subset of ET', and let (#, 7, F') be an element
of KK} (Cy(X),C), where F is I'-equivariant and properly supported. As
above, let £ be the completion of 7(C.(X))H as a Hilbert C*-module over
C*I". The operator F satisfies the assumptions of Lemma 4, so it extends to
an operator F € Lg«p(€). Assume for a moment that the following result
(proved in section 2.4) is true.

Proposition 2 F2 — 1 is a compact operator on the C*-module &.
This proposition says that the pair (£, F) defines an element in
KK;(C,C'T) = K;(C*T).
In (3.10) of [BCH94], this element is called the I'-indez of F' and denoted by
Indexr(F). It is immediate that the homomorphism
KK; (Co(X),C) — K;(C'T)
extends to the direct limit RK] (ET) in Definition 3.

Definition 4 The homomorphism

_r [ RK](ET)— K;(C*T)
Hi ' (4,7, F) — Indexr(F)

1s the analytical assembly map.

We also define the analytical assembly map u : RK} (ET) — K;(C:T)
by pf = (Ar). o fii . We remark that the map fi! is denoted by 3 in [Kas75],
[Kas95], [Kas88], [Ros83]; and by A in [FRR95]. The map 4} is denoted by
A"in [FRR95]. The reader may also enjoy Gromov’s point of view in [Gro93],
where the analytical assembly map is denoted by K.
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Example 1

Let H be a finite subgroup of I'. Fix a finite-dimensional unitary represen-
tation p of H on a complex vector space V,. Let us describe an element (4 ,
of RK] (ET) as follows: take Xz = I'/H, with action of T’ by left transla-
tions; Xy is a proper, I'-compact space. In the picture of ET' by probability
measures on I, the space Xy identifies with the set of uniform probability
measures on left cosets of H (in particular, for H = 1, the space Xy iden-
tifies with the set of Dirac measures). Take now the induced vector bundle
E, =T xyu V, over Xy; denote by H the space of ¢£?>-sections of E,; this is
nothing but the space of the representation obtained by inducing up p from
H to I'. Consider the I'-covariant representation 7 of Cy(Xg) by pointwise
multiplication of sections; since Xy is discrete and the fibers of E, are of
finite dimension, the representation 7 acts by compact operators on #, so
the triple (H,m,0) defines an element 3y, of RKj(ET). To describe the
image u§ (Bm,,), we may clearly assume that p is irreducible. Then

m(Co(Xy))H =Cr Q) V,,

CH

the space of finitely supported sections of E,. Since p is irreducible, there
exists a minimal projection py, € CH such that the CH-modules V, and
CH * pg,, are isomorphic. It is worthwhile to spell this out explicitly. Let &
be a vector of norm 1 in V,. Then

deg p
Pry(s) = H| {p(s)€[E)

for s € H (it follows from the Schur orthogonality relations, see [Dix77]
14.3.3, that py , is indeed a projection in CH). This projection py , is char-
acterized by the fact that o(pm,,) = 0 for every irreducible representation
o of H which is not equivalent to p, the contragredient representation of p;
while p(pm,,) is the orthogonal projection on the one-dimensional subspace
C¢ of V. The map

CH *pu, =V, f = p(f)€

is an isomorphism intertwining the left regular representation Ay (restricted
to CH xpr,) and p. Then, for n € CT, set

n(y) =n(y")
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(v € T'). Recall that I" acts on the right on A by
n-y =771

while it acts on the right on CI' by right convolution by Dirac measures.
Using the fact that pu, = ply, = pPm,, it is easy to check that the map

U : CT' Q) (CH *Da,) —= pp*CT :a®b— bxa
CH
is a map of right CI'-modules, which moreover preserves the C*I'-valued
scalar products, i.e.

<CL1 X b1|a2 & bZ)C*F = (51 * dl)* * (62 *dg)

(a1,a9 € CI', by,b, € CH % py,). So ¥ extends to an isometry of Hilbert
C*TI'-modules, from the completion of CI' @y (CH *Pr,) to the right ideal
pu,,C*T in C*T. In more down-to-earth language, fi{ (Bm,,) is just the class
[pm,p| of the projection pg , in Ko(C*T).

In particular for H = 1 and p = 1 the trivial one-dimensional represen-
tation, we have [i§ (Bm1,) = [1], the K-theory class of the unit of C*I". This
element has infinite order in Ky(C*T'), since it maps to 1 under the trivial
one-dimensional representation of I'. Its image ug(Bm,1,) = [1] in Ko(C;T)
also has infinite order, since the canonical trace on C;I' maps [1] to 1. This
can be rephrased by saying that there is a commutative diagram

RKT(ET) "8 Ky(C:T)

T T
HT,Z) = Z

where vertical maps are monomorphisms.

Suppose that I is torsion-free; then RKy(El') = RK] (ET) = RKy(BI);
also, as mentioned in the Introduction, one has RK(BT) @, C = @, , Han (T, C).

So the preceding diagram shows that the Baum-Connes conjecture holds on
the O-dimensional part of RK{ (ET).

Suppose at the other extreme that I' is a finite group. In this case both
K} (pt) and Ky(C;T) are abstractly isomorphic to the additive group of the
representation ring R(I"), i.e. to the free abelian group on the set I of isomor-
phism classes of irreducible representations of I'. In the above construction,



28 CHAPTER 2. THE ANALYTICAL ASSEMBLY MAP

take H = I' and let p run along . Then the Br,,’s run along a set of genera-
tors of K} (pt) and the [pr,]’s run along a set of generators of Ky(C:T). On
the other hand:

RK] (ET) =0 = K,(C;T)

for I' finite. In other words, we have checked that the Baum-Connes conjec-
ture holds for finite groups.

2.4 Equivalence of two definitions

Here we shall simultaneously prove Proposition 2 and give an alternative
construction of the analytical assembly map. First, we take a closer look at
the situation described in Lemma 2, i.e. a proper I'-space X and a Hilbert
space ‘H endowed with a covariant representation 7 of Cy(X). Next lemma
complements Lemma 2.

Lemma 5 Fiz a real-valued f € C.(X). ForT € L(H), set
= r(/)Tr(f)y
vyel

as in Lemma 2. Then
1. As(T) extends continuously to an operator As(T) € Losr(E).

2. If T is a compact operator on H, then Af(T) is a compact operator on

€.

Proof:

1. Lemma 2 shows that A;(7T') is I'-equivariant and properly supported.
So Lemma 4 applies.

2. Consider again the function A of formula (2.1), and the operators S, S*
appearing in the proof of Lemma 3. In the proof of Lemma 4, we saw
that STS* = ) . 7(h)Tn(sh)s® Ar(s), provided T is I'-equivariant,
properly supported on H. So replacing T' by A;(T'), we get

SAHT)S* = Y Y wlhyfIWTr(fa sh)y s ® Ar(s).

sel’ yer
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This double sum is finite, as a consequence of properness of the I'-
action on X. If T is compact on H, then SA;(T)S* extends to an
operator on H ® C*I', which belongs to K(H) ® C*T' = K(H ® C*T).
So Af(T) = S*(SA;(T)S*)S extends to a compact operator As(T) on
€.

g

We observe now that, if X is a proper, I'-compact space, then there is a
canonical element [Lx] in the Ky-group of the crossed product Cy(X) x I
Recall from [Ped79], 7.6.5, that Cy(X) x I is the universal C*-completion of
C.(X x T'), with convolution product given by

fix folw,0) = filz, ) fo(v 2,77 "0)

vyel’

(f1, f2€ C(X xT'), 2z € X, 0 €T'), and involution given by
f(x,0) = flo7lw,071)

(feC(X xT),xz € X, 0 eTl). Let us give the construction of this element
[L£x] (reminiscent of the Mishchenko line bundle constructed in [Con94]). We
first view C.(X) as a right C.(X X I')-module via the formula

nf@) =Y n(yz)f(yz,7) (2:6)

ver

(n € Cu(X), f € C(X xT),z € X). Moreover the formula

{€ln) (@, 7) = E@)n(y 'a) (2.7)

(&, n € C(X),z € X,y €T) defines a C.(X x I')-valued scalar product
on C.(X), and the following lemma shows that this scalar product is indeed
positive-definite.

Lemma 6 Forne C.(X), the element (n|n) is positive in the crossed prod-
uct C*-algebra Co(X) x T.

Proof: Since the I'-action on X is proper, hence also amenable, by
[Ana87] the full crossed product Cp(X) x I' is isomorphic to the reduced
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crossed product Cy(X) %, I', which we now describe. Consider the triv-
ial field of Hilbert spaces X x £*(T') over X: its set of continuous sec-
tions is Cy(X, £%(T)), a Hilbert C*-module over Cy(X); we view sections in
Co(X, £2(T)) as functions on X xI'. We define a *-representation of C.(X xT")
on Cy(X,¢*(T)) by

= Z f(’Y-T, O).f(l', 0717)
o€l
(f € Co(X XT), £ € Cyp(X,¢4T)), r € X, v €T). It is a known fact (see e.g.
[Kas88|, 3.7) that this *-homomorphism extends to a faithful *-representation
of Cy(X) %, T on Cy(X, £3(T")). For n € C.(X), we then have to prove that
(n|n) is a positive element in the C*-algebra Lg,(x)(Co(X, £2(T'))). By lemma
4.1 in [Lan95], this amounts to proving that, for every £ € Cy(X, ¢*(I)), the
scalar product ((n|n)&[€) is a positive element in the C*-algebra Cy(X), i.e.
is a non-negative function on X. So, for z € X, we compute:

(nImél&) (@) =D (mmé) (=, 7)é(x,7)

y¥€r

= D er 2er (MM (T, 0)E(7, 07 1Y)E(T, )
= D er 2ger N(y2)E(@, V)n(0 ty2)é(z, 0 1Y)
= Y ern(@)é(z,7) - X ser n(ox)é(z, )

- S o n(rz)E(z,v)| > 0.

This concludes the proof of the lemma. O

Form the completion of C.(X) with respect to this scalar product, and
get a C*-module Lx over Cy(X) x T

Lemma 7 The identity of Lx is a rank 1 operator, in the sense of C*-
modules.

Proof: For &, ¢,9 € C.(X) and z € X, we get:

(85,6(6)) () = (1)) (2) = (Y _ $(72)¥(72)) £ ().

yer
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Let h € Cc(X) be defined as in equation (2.1); since >_ .. h*(yz) = 1 for
every x € X, we see that 0, is the identity on Lx. O

This lemma shows that Lx defines an element [Lx] of Ko(Co(X) x T').
Notice that since h{h|) = £ for any & € C.(X), we get (h|h) x (h|§) = (h|£)
and in particular (h|h)? = (h|h), so that p = (h|h) is a projector in C.(X xT).
The map px Co(X X T') = Co(X) : px f — h- f is then well-defined, and
identifies the right ideal p.(Cp(X) xT") of Cy(X) x I' with the C*-module Lx.

We shall need the descent homomorphism

jr : KK} (Cy(X),C) — KK;(Co(X) x T, C*T),

also known as induction to the crossed product, see [Kas95|, [Kas88]. For
r=(H,m,F) € KK!(Cy(X),C), the element jr(z) is described as follows.
Recall that we constructed the Hilbert C*I'-module # = H ® C*T as a
completion of C.(T',H) for the CI'-valued scalar product in formula (2.5).
There is an isometric left ['-action on C.(I", ) given by

(v-&)(0) =7(E(v"0))
(€ € C.(T',H); v,0 € I); there is also a I'-covariant left Cy(X)-action 7 on
C.(T',H) given by
(@ (f) - &)o) = 7(f)(&())
(& € C(I',H), f € Ci(X), o € T). In the identification of C,(I',H) with
H ® CI', this can be re-written 7(f) = 7(f) ® 1, so that it extends to a left

action of Cy(X) on H; being I'-covariant, this action extends to the crossed
product Cy(X) x I'; the “integrated” form of that action is:

FO_ £y (0) =D _w(f)r(E(v "))

vyer yerl’
(f, € Co(X), € € C(I,H), 0 € T'). Finally, define the operator F' on
Ce(I',H) by i
(F&)(v) = F(£(7))

(€ € C.(T',H), v € I'). The operator F extends to an operator on H, and the
triple (H, 7, F') defines the Kasparov element ji(z) € KK;(Co(X) xT,C*T).
Next we wish to perform the Kasparov product

[Lx] ®cyx)xr jr(z) € KK;(C,C*'T') = K;(C*T),



32 CHAPTER 2. THE ANALYTICAL ASSEMBLY MAP

As above, we take x = (H,m, F') with F' properly supported and I'-equivari-
ant; we denote by £ the C*-module completion of 7(C.(X))#, as in Lemma
1. We shall need the peculiar function A € C.(X) appearing in equation
(2.1).

Lemma 8 [Lx]| ®c,(x)xr jr(z) can be represented by the pair (€, A, (F)).

Proof: Since Lx can be described as the right ideal p.Co(X) % T, or
alternatively by the *-homomorphism

a:C—Cy(X)xT:1p,

the Kasparov product [Lx]@c,x)xrJr(®) = «(jr(z)) is represented by
the triple (7, 7#(p), F), where the action of C on H is via the projector 7(p).
Define then a map:

ﬁ.{ F(p)C(T, H) — 71'(0( ))H
' T(p)€ = Y ey 'w(h)(EM)).

For &, n € C.(T',H), one checks using equations (2.5), (2.4) and (2.2) that
the following relation holds in CI':

#®@)ElFP)n) = Oy ' m(h)(EM) D7 w(R)(n(7)))-

yel yerl

This shows that 3 is well-defined and extends to an isometric map of C*I'-
modules between 7(p)H and £. Let us check that § is onto. For f €
Ce(X), £ € C(I',H), 0 €T, we have:

(F(RLNE ) =D w(R)m(v())v(E(r o).

yer
So that

BEP)E((RIE) = Y o7 m(h?)yr(f)(E(v o))

v,0€T

=Y o7l (B)oyw (£ EW) = Y () (EN))

v,0€l’ ~yel

where the last equality again follows from (2). For n € H, define then a
function 7 € C.(I', H) by

it y=1
T=10 if v#1
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Then
B(#(p) (7 ((R[£))M) = 7(f)n

shows that 3 is onto. We then transfer F on & via 8, and find by a simple
computation

BEB™ = Ay(F).
O

Proof of Proposition 2: We have to show that F? — 1 is a compact
operator on the C*-module &; on the other hand, we know by lemma 8 that
(An(F))? — 1 is a compact operator on €. So, to prove Proposition 2, it is
enough to prove that F — Ap(F) is compact on €. We use the fact that F'
is properly supported; so we find g € C.(X) such that 7(g)Fr(h) = Fr(h).
Let f € C.(X) be real-valued and equal to 1 on supp(g) U supp(h), so that
f.g =g and f.h = h. Then, on 7(C.(X))H, one has, using (2.2):

In other words F — A, (F) = A¢([F, w(h)]n(h)); since [F, w (k)] (h) is a com-
pact operator by assumption, lemma 5(2) applies to give the result. O

Notice that the above proof really identifies two Kasparov elements, hence
gives an equivalent definition for the analytical assembly map:

Corollary 3 Let X be a I'-compact subset of EU; for x € KK; (Co(X),C),
one has:

fi; (z) = [Lx] ®cyxyxr Jr ().
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Chapter 3

Naturality of the assembly map

3.1 The case of monomorphisms

Let o : Ty — Ty be a group monomorphism. We first describe how the
Baum-Connes geometric group behaves under . Identifying I'; with «(I'y),
we may assume that I'y is a subgroup of I'; and that o denotes inclusion.

Let X be a I';-compact subset of ET'1, and let z = (H, 7, F') be an element
of KK zr 1(Cy(X),C), where F is I'1-equivariant and properly supported. Our
first aim is to describe o, (z) € RK, >(ET,). Set

X =Ty xp, X,
the quotient of I'y x X by the equivalence relation

(7271, 33) ~ (’Y% ’)/133)

(1 € T1,72 € Ty, € X); the I'y-space X is proper and I's-compact. We
denote by [7y2, z] the equivalence class of the pair (v, 2). Consider now the
Hilbert space

H={:To = H:E(m) =71 (€(72)) for every v € Ty, 72 € Iy,

and Y [IEA))? < oo},

Y€y /T
with ['y-action by left translations (this is nothing but the representation
induced from 'y to T's).
Notice now that, for 7, € I'y, the map

by 2 X = X 11 [0, 2]

35
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is proper and injective; so for f € Cy(X), the function f o, belongs to
Co(X). We then define an operator #(f) on H by

(@(S)E)(12) = 7(f 0 19,)(£(72))

(& € H,v € Ty). It is easy to check that f — 7(f) is a I's-covariant
representation of Co(X) on H. Define now a I'y-equivariant operator F on
#H by

(FE)(72) = F(&(72))-

Lemma 9 The triple (H, 7, F) defines an element & € KKZ.FQ(CO(X),(C),
with F properly supported.

Proof: We may consider A as the space of £2-sections of the Hilbert space
bundle I'y xp, H over I'y/T'1; the choice of a transversal for I'y/T'; allows us
to trivialize this bundle and to identify (in a non-I's-equivariant way!) H
with ¢2(T'y/T1) @ H; similarly, the same choice of a transversal identifies
topologically X with (I'y/T;) x X; under these identifications, F' is realized
as 1Q) F and, for f; € Co(T'y/T1), fo € Co(X), the operator 7(f1 Q) f2) is
realized as My, @ 7(f2), where My, is the operator of multiplication by f; on
¢%(Ty/Ty). Since My, is a compact operator, it is clear from this realization
that [#(f), F] and #(f)(EF? — 1) are compact operators for every f € Co(Y).
It is also clear in this realization that F is properly supported. O

Since X is a proper I's-space, by the universal property of ET', there
exists a ['g-equivariant continuous map ¢ : X — EI's. The following lemma
is perfectly general.

Lemma 10 Let X be a proper, Ty-compact T'y-space. Let ¢ : X — ETy be
a continuous, I's-equivariant map. Then ¢ is proper.

Proof: Let C be a compact subset of ET's: we have to show that ¢~ (C)
is compact in X. Since X is I';-compact, there exists a compact subset K
such that X =Ty - K. By properness of the I'y-action on ET'5, the set

F={yely:Cnyp(K) # 0}
is finite. Fix x € ¢~'(C); let v € T'y be such that y~'z € K; then

o(v'z) = v 'o(z) € $(K) Ny *C.



3.1. THE CASE OF MONOMORPHISMS 37

This implies v € F, i.e. x € F - K. We have proved ¢ *(C) C F - K, which
shows that ¢(C) is compact. O

Set Y = ¢(X). Since the map ¢ : X — Y is continuous, proper, I's-
equivariant, by functoriality in equivariant K-homology we have ¢,(%) =
(H,7o¢* F) € KK;(Cy(Y),C), and we set

0+(Z) = au ().

Remark By restricting the I';-action on ET's to I'y, we get a universal
proper I';-space (see [BCH94], (1.9)). So we could take ET'; = ETy; in this
case, we could take for Y the ['s-saturation of X in ET'9, and for ¢ the map:

¢: X =Y : [y, 2] = ez

However, we will not assume ET';y = ET', in order to get more flexibility (e.g.
in Chapter 4, we deal with the case I'y = Z, and we prefer to take ET; = R
rather than ET'; = ET').

To describe fi, 2 (av,(x)), we have to take the completion £ of 7 (¢*(CL(Y)))H
with respect to the CI'g-valued scalar product

(€1162) (72) = (€1]72€2)

(&1,& € 7(¢*(CL(Y)))H, 72 € Ty), and with the operator F that extends F
continuously (see Lemma 4).

On the other hand, to describe o, (fi; * (z)), we first consider (as in Lemma
3) the completion & of 7(C.(X))H with respect to the CI';-valued scalar
product

(mn2)(71) = (m|7ime)

(m,m € H, 1 € T'1). The element o, (ji; ' (z)) is then described by the
pair (€ Q@c.p, C*T2, F @ 1), where C*T'y is viewed as a left module over
C*T'y, and as a right module over itself. The C*I'y-valued scalar product on
& Qc-r, C*T is given by

(M @ bi|n2 ® ba)crry, = bi (M |M2)crr, b2

(m1,m2 € &, by, by € C*T'y; see [Lan95], 4.5).

Proof of Theorem 1, case of a monomorphism
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We have to show o, (i ' () = [i; (o (2)) in KK;(C,C*Ty) = K;(C*Ty).
Following a similar construction due to Rieffel ([Rie74], p. 228), we define a
map

U { m(Ce(X))H ®(cr1 Cr, — H
' n®b = (2= Xer, 6O

(n € m(Ce(X))H, b € CT'y, 5 € T'y). It follows from Theorem 5.12 in [Rie74]
that ¥ is well-defined, i.e., for v, € T'y:

U(ny ®b) = ¥(n® v.b).

It is readily checked that ¥ is a Cl'y-module map. Now, for v,y € I'y, one

has: 1,.-1 f r
Sy 1 Yg €
U(n®7)(72) ={ 2 3 ! ot}ZeZiuisel

It also follows from this that the range of ¥ is contained in 7 (¢*(C.(Y)))H;
to see it, suppose that n = w(f)¢ (with f € C.(X), £ € H), and choose
g € Ce(Y) such that g =1 on v *(é(¢1(supp f))). Then

U(n®7) =7(6"9)¥(n®7) € T(¢"(Ce(Y)))H
Let {s;}icr be a transversal for I's/T';. The inverse map
T 7 (9" (Co(Y)))H — 7(Ce(X))H ®cry CT'y

is given by:

L GEDIEOE (3.)

(€ € 7(¢*(Co(Y)))H); using the fact that there are finitely many s;’s such
that ¢, (X) meets a given compact subset of X, one sees that the sum in (8)
is actually a finite sum. Next, for n,n/ € 7(C.(X))H and ~y, 7/, v, € Ty, we
compute:

(T[T y)) (1) = (TN )P (e )
= Y serym (TN @[ @ 1) (75 '0))
= DY (o= o= yaymr)
S Fgérl
Yo €1,
vy to € Ty
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_ { (lyyayr"nn if vyt €Ty
0 otherwise
= (it c=r, (vreyr )
(v Ml cor, v (12)
= (n®[nr @ 1) cor, (12)-

This means that ¥ extends to a unitary isomorphism of C*I's-modules be-
tween £ ®c»r, C*I's and £. Moreover, an easy computation gives

V(FRT ' =F,

which concludes the proof. O

3.2 The case of epimorphisms

Let a : I’y — I's be a group epimorphism; set N = ker . By identifying
I’y /N with T'y, we may assume that « is the quotient-map. We also denote
by « the induced algebra homomorphisms CI'y — CI's and C*T'y — C*T's.
We first describe how the left-hand side of the assembly map behaves
under «,; we were inspired by Kasparov’s descent homomorphism in The-
orem 3.4 of [Kas88|. Let then X be a I';-compact subset of ET';, and
z = (H,n, F) be an element of KK, ' (Co(X),C), with F properly supported
and T';-equivariant. Set X = N \X: this is a proper, I';-compact I'y-space.
Consider on 7(C.(X))H the scalar product

< Ep>= " (&nn)

neN

(&,n € m(C.(X))H); it is non-negative, since by Lemma 3 the function
n — (£|n€) defines a positive element in C*N; so by applying the trivial
representation we get < &|€ > > 0. Let # be the separation-completion of
7(C.(X))H for this scalar product. The natural action of I'y on 7(C.(X))H is
isometric (because N is normal in I';); hence it extends to a unitary represen-
tation of I'; on A which is trivial on N, hence factors through a unitary rep-
resentation of I'y. Let T be a bounded operator on H, preserving m(C.(X))H
and N-equivariant; it follows from Lemma 4 that, for some K > 0 and every
& € m(C.(X))H, the element

K(E[6)() = (TETE)()
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is a positive element in C*N. Summing over N, this implies
K TETE> < K < €6,

so that T extends to a bounded operator T on H. In particular, F provides
a Dy-equivariant operator F' on H.

Any function on X can be lifted to an N-invariant function on X. Viewing
in this way Cy(X) as an algebra of multipliers of Cy(X), and extending the
representation 7 to multipliers, as in [Ped79] 3.12.10, we get an algebra of
operators on H that preserve 7(C.(X))H and commute with N, so that the
preceding observation provides a I's-covariant representation 7 of CO(X' ) on

H.

Lemma 11 The triple (H,#, F) defines an element & € KK, ?(Co(X),C),
with F properly supported.

Proof: We consider the C* N-module £ obtained by completing 7 (C.(X))H
with respect to the scalar product given by equation (2.4) (with I' replaced
by N); it is clear from the definitions that

7:[ =& ®c+n C,

where C is a left C* N-module via the augmentation map (i.e. the character
coming from the trivial representation of N). For T' € L(H) preserving
7(C.(X))H and N-equivariant, one has, using the notation from Lemma 4:

T=T]l.

We have to prove that, for every A € Co(X), the operators [7(h), F] and
7(h)(F? — 1) are compact. By linearity and density, we may assume that h
belongs to C.(X) and that h is real-valued. Find h € C.(X), real-valued,
such that

h="> n(h). (3.2)

neN

As in the proof of Proposition 2, let f € C.(X) be a plateau function such
that f.h = h and 7(f)Fn(h) = Fr(h). Then

[w(h), F] = > nln(h), Fln""

nenN

= Y _nr(f)l(h), Flr(f)n™!

neN

= As([r(h), F)
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(notation as in Lemma 5). It is a consequence of Lemma 5(2) that the
extension Ay([m(h), F]) of As([w(h), F]) to &, is a compact operator on £.
Since

[ (h), F] = Af([r(h), Fl) ® 1,

it follows from 4.7 in [Lan95], that [7(h), F] is compact on . A similar
argument works for compactness of 7 (h)(F? — 1).

It remains to prove that F' is properly supported. Thus, fix h e CC(X' ),
and choose h € C.(X) as in (3.2). Since F is properly supported, one finds
g € C.(X) such that n(g)Fn(h) = Frn(h) and g.h = h. As above, one
computes:

Fr(h) = A,(Fr(h)).

Let K be the image of suppg in X; let f € C,(X) be equal to 1 on K, so
that f.g = g (where f is now viewed as a multiplier of Cy(X)). Since 7(f)
is N-equivariant, one has

m(f)Ag(Fr(h)) = Ag(Fm(h)),

ie.
#(f)F#(h) = F7(h).
This concludes the proof of the lemma. O

Since X is a proper, ['s-compact ['s-space, there exists a ['s-equivariant
continuous map ¢ : X — ETl,, which is unique up to [s-equivariant ho-
motopy. By Lemma 10, this map ¢ is proper. Set Y = ¢(X); applying
functoriality in equivariant K-homology we get ¢,(Z) = (H,7 o ¢*,F) €
KK]*(Cy(Y),C), and we set

¢.(7) = o (x).

Remark: The assumption of I';-compactness was used in the proof of
Lemma 11 only to ensure that the space X is locally compact. So, if X is a lo-
cally compact, proper [';-space, what lemma 11 actually does is constructing
a homomorphism

o, KK '(Cy(X),C) = KK;?(Co(N\X), C).

We record this for future reference.
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Example 2

Let @ : T' — {1} be the only homomorphism to the trivial group; then
«a : C*I' — C is the augmentation map, i.e. the character of the trivial
representation. It follows from the proof of lemma 11 that the “geometric”
map ., : RK} (ET) — Ko(pt) = Z is actually given by

_ ~T
a*ig - a*aa © /’LO’

where ., @ Ko(C*T') — Ko(C) = Z is the “analytical” map. This means
that, in this case, Theorem 1 is essentially built in the definition of a 4.
Assume that the Baum-Connes conjecture is true for the group I'. Then
Ar @ Ko(C*T) — Ko(C!T) is onto, with a canonical splitting given by
fio © (u§)~"; loosely speaking, there is a canonical copy of Ky(C:T) inside
Ko(C*T); this means that any representation of I', and in particular the triv-
ial representation «, is defined on Ky(CT'). It seems to be an interesting
question to define, without appealing to the Baum-Connes conjecture, a map

ar  Ky(C:T) - C
such that, on the image of fi§, one has:
Ol g = Q7 O ()\1")*

If " is torsion-free, then the answer is given by oz = (71),, the homomorphism
K, (CT) — C associated with the canonical trace 7+ on C;T'. Indeed the
equality of the two maps ., o iy and (7r). o pg, from RK( (ET) to Z, is
proved in Theorem 3.3.1 in [Pie00] (see also Theorem 6.14 of [Mis]), and can
be seen as a version of Atiyah’s L%-index theorem.

Proof of Theorem 1, case of an epimorphism

We have to show o, (fi; * (x)) = [i; (e (2)) in KK;(C, C*Ty) = K;(C*T).

The Hilbert C*T'y module underlying ., (fi;* (x)) is (as in section 3.1) the
tensor product £®@c«r, C*I'y, where C*I'y is viewed as a left module over C*T';
via «, and as a right module over itself. The C*I'y-valued scalar product on
& Q¢+, C*I'y is given by

(M @ bi|m2 ® ba) o1y = ba({n1]M2) c+1, ) b2

(m,me € €, by,by € C*I'y; see 4.5 in [Lan95]). The operator giving the K-
theory element is F ® 1.
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On the other hand the C*T'y-module underlying i} > (c,(z)) is defined as
the completion & of 7(¢*(C,(Y)))H with respect to the CI'y-scalar product

<L &l6 > (1) = < &b >

(&1,& € 7(¢*(Co(Y))H, 72 € T3). The operator F giving the K-theory
element is the continuous extension of F' given by Lemma 4.

For 5 € n(C,(X))H, we denote by 7 the image of  in H. We notice that
7 really belongs to 7(¢*(C.(Y)))H; indeed, for n = 7(f)E, let K be the image
of supp f in X, and let g € C,(Y) be equal to 1 on ¢(K). Then ¢*(g).f = f
and

TN TN

(¢ g)m(f)€ = m(f)§ = 1.
We define a map

w_{w«zuvu®aﬁmy = #(¢*(C(Y)))H
' n® Y2 - Yo ']
(n € n(C(X)H, 72 € Ts). Next, for v,v/, v € Ty, let v; € T'; be any

group element such that a(y;) = yy2y/~'. Then, for n, 91 € 7(C.(X))H we
compute:

me @) (y2) = (v""a((mlnt)cr,)v) (12)
= a((nnh o) (yr2y)
> nenmintcr, (ny1)
> nen{nlnyiny)
L Alyyyr it >
Ly Ml > ()
= LY@ Y)|¥(n @1 > (72)

This means that ¥ extends to a unitary isomorphism of C*I';-modules be-
tween £ ®¢-r, C*Ty and €. Notice that, for f € C,(X), g € C.(Y), € € H,
one has:

TN TN

T(¢*g)m(f)E = m(¢*g.f)E = U(m(9"g.f)E® 1).
This shows that ¥ has dense image, so that ¥ is onto. Finally, an easy

computation gives
V(Fe1)I =7,

which concludes the proof of Theorem 1. O
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3.3 An application to free actions

Let X be a locally compact, proper I'-space; let a be the homomorphism
from I to the trivial group. By the remark following Lemma 11, there is a
homomorphism

a. : KK} (Cy(X),C) — KK;(Co(T\X),C).
Corollary 4 IfT" acts properly and freely on X, then o, is an isomorphism.

It is of course well-known that, in the case of a free action:
KK} (Cy(X),C) ~ KK;(Co(T\X),C)

(see [Rie82]). This is usually proved by identifying KK (Cy(X),C) with
KK;(Cy(X)xT,C), and then appealing to freeness of the action to conclude
that Cy(X) x I' is Morita equivalent to Cp(I'\ X'). We think that the interest
of Corollary 4 is to provide an explicit and easily described isomorphism.
Thanks are due to S. Echterhoff for his help in the following proof.

Proof of Corollary 4: We are going to show that a, coincides with
the isomorphism obtained via Morita equivalence, as indicated above. The
imprimitivity bimodule realizing the Morita equivalence between Cp(I'\ X)
and Cy(X) x I' is a suitable completion C.(X) of C.(X), with the obvi-
ous left action of C.(I'\X), the right C.(X X I')-module structure given
by formula (5), and the C.(X x I')-valued scalar product given by formula
(6). The bimodule C.(X) defines an element [C.(X)] in the Kasparov group
KKy (Co(T\X),Co(X) xT).

Consider the Kasparov elements

r=(H,n,F) e KK (Cy(X),C)
and
a(z) = (ﬁ’ﬁ7 F) € KK;(Cy(I'\X),0),

as in Lemma 11. View z as an element of K K;(Cy(X) x ', C). We want to
show that

[Ce(X)] Qcpxyxr T = (). (3.3)
For f € C.(X) and ¢ € H, denote by [7(f)¢] the image of 7(f)¢ in H. An
easy check shows that the map

CAX)@H - H: fRE— [n(f)E]
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extends to a unitary isomorphism between the Hilbert spaces C.(X )®Co( X)xT
H and H, which moreover intertwines the representations of Co(T'\ X).

To show that the operator F realizes the Kasparov product, we use the
connection formalism of Connes and Skandalis [CS84]. For f € C.(X), con-
sider the map

O H—H:E—[n(f)E]
We have to show that F' is an F-connection, i.e. that the operator 6, F — F;
is a compact operator from H to H. Set T = [r(f), F], a compact operator
on . Notice that, for £ € 7(C.(X))H, one has

(0;F — Fop)¢ = [T¢). (3.4)

Since F' is properly supported, there exists g € C.(X) such that 7(g)T'n(g) =
T.
We claim that the map

T(g)H — H : 7(g)n+ [7(g9)n]

is bounded. Indeed

< w(g)nim(g)n > =Y (yw(g)nlm(g)n)-

But the summation in the right hand side is over the finite set

F={yel :vy(suppg) N suppg # 0},

so that, by the Cauchy-Schwarz inequality:
< m(g)nlm(g)n> < card F |7 (g)n]l*,

which proves the claim.
Consider now the product of the following three operators:

Ho7(@H: = 7(9)s;
T(gH = 7(g)H (= TG
T(gH —H m(g)n = [7(g)n].

It follows from equation (3.4) that this product is exactly §;F — F'6;. Since T
is compact and the two other operators are bounded, it follows that OfF—FH I
is compact: this proves formula (3.3), and hence concludes the proof. [
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Chapter 4

Interlude: the group of integers

For the group Z of integers, we take EZ = EZ = R (the real line) and
BZ = S* (the circle). By Fourier series (see [Ped79], 7.1.6), we identify C*Z
with C(SY).

Proposition 3 For:= 0,1, the map
Z . 3oL _ 1 *
pi K7 (R) = K;(S7) — Ki(C*Z)

18 an tsomorphism.

4.1 Proof, case : =0

This is the easy case. We have Ky(S') = Z, generated by the character of
C(S') given by evaluation at a given base-point (or, dually, generated by the
inclusion of the base-point). When lifted to R, this gives exactly the element
Bioy € KE(R) described in Example 1. On the other hand, Ko(C(S*)) = Z,
generated by the class of the constant function 1 (or, dually, generated by
the trivial one-dimensional vector bundle over S!). The result then follows
from Example 1 above. ]

4.2 Proof, case i =1

Here again, both groups K;(S') and K;(C(S?')) are isomorphic to Z. To
describe the generator of K;(S'), we identify S* with R/Z and consider the
Hilbert space L?(S"') with the trigonometric basis (exp(2minf)),cz. Consider

47
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the operator F', diagonal in that basis, given by
F = diag(sign(n))ncs.

Let M be the representation of C(S') by pointwise multiplication on L?(S?).
Then the triple (L?(S'), M, F) defines the “Toeplitz” generator of K;(S') =
KK,(C(Sh),C).

To proceed, it will be convenient to work in the context of unbounded
Kasparov elements (in the sense of Baaj-Julg [BJ83]). The unbounded pic-
ture of (L*(S'), M, F) is (L*(S'), M, D), where

indeed the phase of the operator D is just F. To say that (L?(S'), M, D) is
an unbounded Kasparov module means that:

1. D is a densely defined, self-adjoint operator;
2. M(f)(1+ D*)~!is a compact operator for every f € C(S');

3. [M(f), D] is a bounded operator for every f in a dense subalgebra of
C(S') (here C>=(S1)).

Working with D has the advantage of being independant of the choice of any
particular basis.

Via the isomorphism K;(S') ~ KZ%(R), the triple (L?(S!), M, D) goes to
the triple (L*(R), M, D), where M is the Z-covariant representation of Co(R)
by pointwise multiplication on L?*(R), and
p=1.2
v dt
As a domain for D, we take the Schwartz space S(R).

We pause at this point to notice that, since the Fourier transform of
the operator D is the operator E of multiplication by the dual variable X
(up to a factor 2r), the most natural bounded version of D would be H,
the convolution operator by the function whose Fourier transform is the sign
function, which is nothing but the Hilbert transform on L?(R). One difficulty
here is that H is not properly supported! (This can be seen as a good reason
to consider the unbounded picture for Kasparov elements. . .)
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To proceed, we shall appeal in a systematic way to the Fourier transform
& — &, where for £ € S(R) and A € R:

= Ag(t) exp(—2miAt) dt.

Fourier transforming the Kasparov triple (L?(R), M, D) yields the Kas-
parov triple (L?(R), A, E) where A is the representation of Cy(R) by convo-
lution by Fourier transforms, and n € Z now acts (on the left) by pointwise
multiplication by the function A — exp(—2min)). The domain of E is S(R).
The C*Z-valued scalar product on S(R) is given by

(&) (n) = (En(E) / £V exp(—2min)és(X) dA

(&1, € S(R), n € Z). Under the identification C*Z — C(S') given by

Fourier series, i.e.

0 — Z n) exp(2mind))

neZ

(a € CZ, 6 € S'), this becomes a C(S*)-valued scalar product:

(6l&)(0) = 3 [ G exp(@min(t — N)éh)

neZ

Let € be the completion of S(R) for this C'(S!)-valued scalar product. Then
pE(L2(R), A, E) is described by (£, E) € KK;(C,C(S')). We now want to
describe the Hilbert C'(S')-module £ as a continuous field of Hilbert spaces
over S'.

For that purpose, consider the Hilbert bundle over S! induced by the left
regular representation of Z; in other words, the total space of this bundle is
R xz ¢*(Z) and the space of continuous sections is

= {n:R — £*(Z), continuous, n(A+1), = n(A)ny1 for every n € Z, A € R};

a section is determined by its values for —% <AL % Pointwise scalar

product turns &' into a C(S!)-Hilbert module:

771 |772> Z 771 n772

neZ
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(1,12 € E'); here 6 is any real number which lifts § € S*.
Consider the map ¥ : S(R) — &’ defined by

() (A)n = (A +n)

(€ SMR), Ne R, neZ) Let n € Z act on &' (on the right) by pointwise
multiplication by 6 — exp(2minf). It is clear that ¥ is a CZ-module map.
Moreover ¥ is isometric with respect to C(S')-valued scalar products; indeed:

(&) [¥(&))(0) = Znezfl(é +n)&(6 +n)
= Znez(g§2)(9 + n)

—_—

= > ez E1&2(n) exp(2mind)
= Y ez €xp(2mind) fR(E@)()\) exp(—2min\) dA
= <51 |f2> (0):

where the third equality follows from the Poisson summation formula. It
is clear that ¥ has dense image since, on the suitable subspace of smooth
sections of R Xz £%(Z) with rapid decay in the fibers, ¥ can be inverted by
setting

(T m)(A) = n(A)o
(n € &, A€ R). So V¥ extends to an isometric isomorphism of Hilbert
C(S')-modules. Set F = WEU~!; then

(Fn)(A)n = 27(A +n) - n(A)n.

We still have to identify the unbounded Kasparov element (£, F) €
KK,(C,C(S")) with the generator of K;(C(S')). For B a unital C*-algebra,
Kucerovsky ([Kuc94], Chapter 6) has shown that, when K K;(C, B) is de-
scribed by means of unbounded elements, one may realize explicitly the iso-
morphism

KK,(C,B) ~ K,(B)

by means of the Cayley transform. If (£,D) is an unbounded element of
KK, (C, B), meaning that £ is a Hilbert B-module and that D is an un-
bounded self-adjoint operator on & such that (D? + 1)~! is compact in the
sense of C*-modules, i.e. it belongs to the ideal (€) of compact operators;
then U = jg—ﬂ is a unitary operator equal to 1 modulo IC(£). Hence U

defines an element in K;(K(€)) = K1(B).
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o1

We now come back to the element (', F) € KK;(C,C(S")). The Cayley
transform of F is the unitary operator U; on &' given by

)N = O )
—(exp(2¢ arctan 2w (A +n))) - n(A),

(n € £). Consider now the function

and the family of unitary operators U; (s € [0,1]) on £’ given by
(Usn)(N)n

—(exp(2is arctan 2m(A +n) + 7i(1 — 5) fo(A +n))) - n(A),

For every s € [0,1], the operator Us; — 1 belongs to K(&'), so this family
defines a unique element in K;(C(S)). Let us look at Up; for —3 < A < 3,
we get

/(O ifn#0
(Uom)(A)n = { —exp2mid-n(A)o ifn=0.
This makes it clear that the class of Uy in K;(C(S')) is nothing but the
canonical generator (indeed, parametrizing S' with [0, 1] instead of |

11
with = A+ § we get —exp 2mi\ = exp 2mip).

99l
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Chapter 5

Lowest dimensional part of ,ulf

Recall that I'% denotes the abelianized group of I', and that sp : I'® —

K, (C;T) denotes the canonical homomorphism, induced by the map &r :

I' - K;(C;T) coming from the inclusion of I" in the unitary group of C;T".
In this chapter, we will construct a homomorphism

B : T — RK] (ET)

such that ! o 8; = kp. This was previously done by Natsume [Nat88], under
the assumption that I' is torsion-free; this assumption was needed in order
to be able to replace RK{ (ET') by RK(BI).

5.1 Definition of S,

Our definition of 3; will be in two steps: first, we define a (set-theoretic!)
map 3, : I' = RKY(ET); next, we prove that 3, is a group homomorphism.
Since the target group RKT(ET) is abelian, 3, factors through the desired
homomorphism g,.

To define 3;, we notice that every element v € I' defines a unique group
homomorphism «., : Z — I' by the requirement

ay(1) = 1.

As in the proof of Proposition 3, let z = (L?*(S'), M, D) be the (unbounded
picture of the) generator of RK%(EZ) = K,(S') ~ 7Z. By functoriality (see
Theorem 1), we get a homomorphism («,). : RK%(EZ) — RK] (ET) and
we set:

Bi(7) = (@)« ().

93
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We begin by giving another description of this map ;. Recall that ET
denotes the universal covering space of BI'. Since the I'-action on ET is
proper, there is a ['-equivariant continuous map ¢ : EI' — ET', unique up to
homotopy. Lemma 10 shows that, restricted to any I-compact subset X of
ET, the map ¢ is proper. By functoriality we have a map

¢, KK (Cy(X),C) — RK] (ET).

Let X be the image of X under the covering map ET' — BT. Since I' acts
freely on X, we have an identification:

KKY(Cy(X),C) ~ KK1(Cy(X),C).

Fix v € T, and view 7y as a loop in BT, i.e. as a continuous map v : S — BI;
set X = v(S'). Then v,(z) € KK,(Cy(X), C); applying ¢, we get an element
in RKT (ET). Thus we define:

B;:T — RKT{ (ET) : v = ¢u(7:(2)).

It is clear from the definition that B, factors through the canonical map
¢, : RK,(BT) — RKT(ET).

Lemma 12 The maps ; and B; coincide. Moreover they vanish on torsion
elements of T.

Proof: Fix 7 € I'; we distinguish 2 cases.

1) v has infinite order in T. Then () = (a,).(z) is described by
first considering X = T xz R with the Kasparov triple # induced from
(L*(R), M, D). Let ¢ : X — EI be a I'-equivariant continuous map; from
lemma 9, it follows that

()« () = i (Z).
On the other hand, since T' acts freely on X, the map 1 factors through
ET, i.e. there exists a [-equivariant continuous map 1) : X — ET such that
¥ = ¢ o). Then 7,(z) is described by v, (%), so that by functoriality:

By(7) = 6.(1:(2)) = ¢4(1(2)) = ¥:(2) = () (2) = Bo(7)-

2) v has finite order n > 1. Since «., factors through Z/nZ, it follows by
functoriality that (). : RK%(EZ) — RK] (ET') factors through

RK™"(E7,/nZ) = K*™(pt) = 0.
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Hence 3,(y) =0
Consider now the map v, : RK%(EZ) — RK}(ET); it factors through
a map 7, : RK“/"(EZ/nZ) — RKT(ET). Denote by ¢, the unique map
from EZ/nZ to EZ/nZ = pt. Because of naturality, there is a commutative
diagram
RK!™(EZ/nZ) 5 RK!(ET)
(én)s 4 1 9.
K™ty — RKT(EL)

But again K2/"%(pt) = 0, so that By(7) = ¢,(7.(z)) = 0. O
Proposition 4 The map 3;: [ — RK{ (ET) is a group homomorphism.

Proof: In view of the preceding lemma, we have to show that B :T —
RKT(ET) is a group homomorphism. Fix 7, 72 € I' and view v;, 7, as
continuous maps S — BI. Set X = 74,(S') U~,(S"). For i = 1,2, the
element (7;)«(z) € K;(X) is described by the triple (L*(S'),m;, D) where,
for f € C(X), the operator m;(f) is pointwise multiplication by f o~; on
L?(S"), and D = % - L. Similarly, (1172).(x) is described by (L*(S*),, D),
where 7(f) is pointwise multiplication by f o 7;7,; here ;75 : S' — X
denotes the product loop of v; and ;. It will be enough to show that

(Mm72)+(2) = (M)« (2) + (12)4(2)
in K;(X) = KK,(Co(X),C). For this, consider the doubling unitary:
LA(SY @ L2(SY) — L*(SY)
TLoee = (] ey 1505

The inverse of U is given on & € L?(S') by the formulae:

U §1(0) = % %
(U €)(0) = ZE(F);

~—

for # € S'. Since the product loop 17, is given by

m(20)  if0<6<
(1172)(0) = { 7;(29 —-1) if3<60< 1
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one sees that U(m @ m)U* = m, and that U(D & D)U* = 2. This shows
that (71).(z) + (72)«(x) is unitarily equivalent to the triple (L*(S*),T,2),
which in turn is trivially homotopic to (y172)«(z). The result follows. O

As we already mentioned, since RK] (ET) is an abelian group, the ho-
momorphism 3; : I' = RK] (ET) factors through a homomorphism

B : T — RK{ (ET).

5.2 Proof of Theorem 2

Since the homomorphism f; is already constructed, it remains to prove kr =
wi o By Clearly, it suffices to prove that, as group homomorphisms I' —
K;(C;T), one has

Rp = py © Br.
Fix v € I', and denote again by ., : Z — I' the unique homomorphism such
that a, (1) = . Consider the diagram:

Z 2 r
N\ Kz kr
6,1 K,(C*Z) ‘Y Ky (C:T) LB
Sl JTHRN
RKZ(EZ) ptl RKT(ET)

We have (o). © kz = Kr o a, trivially, B o ay = (ay) o B by the very
definition of 8, and (a,). o u¥ = p! o (a,). by Theorem 1. By diagram
chasing, one sees that Ar = u! o 3, follows from the analogous result for Z,

i.e. kz = uZ o B;. This in turn follows from Proposition 3 and its proof. [

Remarks:

1) If follows from Theorem 2 that, if v is a torsion element in I', then
Rr(y) = 0. This fact can easily be proved directly, see Proposition 2 in
[BV96).

2) The strong Novikov conjecture is the statement that

i o ¢, : RK;(BT) ~ RK'(ET) — K;(C*T)

is rationally injective for i = 0, 1 (see [BCH94], p. 276). Since f; factors
through ¢,, and since kr is rationally injective (see [EN87], [BV96]), it follows
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from Theorem 2 that ul o ¢, is always rationally injective on the image of
' ~ H,(I',Z) in RK,(BT), i.e. on the lowest dimensional part of u} o ¢,.
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Chapter 6

Appendix by Dan
KUCEROVSKY

6.1 The assembly map in the unbounded pic-
ture

The starting point for Kasparov K K-theory is an abstraction and axiom-
atization of the main properties of zero order elliptic operators, whereas
in unbounded Kasparov theory (denoted W), one uses first order operators
instead.

The Kasparov product is a generalization of the “sharp product” intro-
duced by Atiyah and Singer (1961) in their proof of an index theorem, and
this sharp product is easier to define for first order operators than for zero®
order operators. To be precise, it has been proven by Baaj and Julg (1983)
that the Kasparov product in fact reduces to a sharp product (a graded ten-
sor product) when written in terms of unbounded operators: their result is

that
[D1]®[D;] = [D1 ® 1+1® D]

in certain special cases.
Kasparov’s original approach (1980) to the product was to show the ex-
istence of operators M and N such that

[F]®[R]=[M"?(F, 1)+ N1 )

The operators NV and M have very special properties and are not easy to con-
struct explicitly, furthermore, there are some technical complications coming

29
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from the fact that the tensor product 1 ® F5 is not well-defined in certain
cases of interest, one therefore has to stabilize the Hilbert modules involved
and this makes it even more difficult to explicitly determine the product
cycle.

It seems plausible that M and N would be easier to construct in the
unbounded picture. However, here the matter rested until the discovery of the
connection approach to the Kasparov product (Connes and Skandalis (1984)).
Connes and Skandalis found the following criterion for (E; ® Es, ¢ ® 1, F)
to be the Kasparov product of (E1, @1, F1) and (Es, ¢o, F3) :

1. FT, — (—1)%*T,F, is compact (where T} is the tensoring operator T}, :
Yy ry).

2. ¢1(a)[F, F1 ® 1]¢1(a)* is positive modulo compact operators for all a €
A.

Given this result, it is possible to see what the counterpart in terms of un-
bounded cycles should be. Roughly speaking, the result of using unbounded
cycles instead of bounded ones is that, quite generally, bounded operators
are replaced by unbounded ones, and compactness conditions are replaced by
boundedness conditions. This has the advantage that not only is bounded-
ness often easier to prove than compactness, but the Kasparov product can
be simpler to compute.

We briefly summarize both the bounded and unbounded pictures of Kas-
parov theory in the following table. In the table, a generic cycle in bounded
K K-theory is denoted (F, ¢, F'), a Kasparov product in the bounded picture
is denoted (Ei, ¢1, F1) ® (E2, ¢o, ) = (F1 @ Fs,¢1 ® 1, F), and the corre-
sponding objects in the unbounded picture are denoted similarly but with
D, D¢, and D, instead of F, F} and F5.

Bounded picture: KK (A, B) | Unbounded picture: ¥(A, B)

Fredholm condition:

¢(a)(1 — F?) is compact ‘ #(a)(A — D)~ ! is compact for some \.
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Commutator condition:

[F, ¢(a)] is compact ‘ [D, ¢(a)] is bounded

Self-adjointness condition:

¢(a)(F* — F) is compact D* — D is bounded.

Connection condition (where T, is the tensoring operator 7, : y — z®y.):

FT, — (—1)%*T,F, is compact. DT, — (-1)%*T,D, is bounded. It is
enough to have boundedness for all z in
some dense subset of ¢1(A)E;.

Positivity condition:

¢(a)[F, F1 ® 1]¢(a)* is positive modulo | [D, D; ®1] is bounded below. It is enough

compact operators to have semiboundedness in the sense of
quadratic forms on the domain of defini-
tion.

Degenerate cycles

The representation ¢ commutes with F' | The representation ¢ commutes with D
and F? = 1. and D has a gap in its spectrum.

“Compact perturbation” of Kasparov cycles:

Cycles (E, ¢, F) and (E,$, F') are equiv- | The corresponding condition in the un-
alent if ¢(a)(F — F') is compact. bounded picture is that D — D’ is bounded
on the common domain of D and D'.

Cycle homotopy:

A cycle in KK (A, B[0,1]) defines a homo- | In the unbounded picture, the definition
topy of the cycles given by evaluation at | is the same, except that the cycle defining
the endpoints of [0,1]. the homotopy is unbounded.
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Operator homotopy:

The special case of cycle homotopy in
which the representation ¢ and Hilbert
module E remain constant through the
homotopy; and the operators Fy,F} are
linked by a norm-continuous path in £L(E).

Equivariant cycles.

In the unbounded picture, operator homo-
topies are also a special case of cycle ho-
motopy, with the extra condition that the
Cayley transform of the operator imple-
menting the homotopy must correspond to
a norm-continuous family of operators.

Let a4 be the action of a locally compact second countable topological

group, covariant with respect to the representation ¢.

In the bounded picture, the requirement
is that the function g — (ag(F) — F)¢(a)
is norm-continuous and compact at every
point.

In the unbounded picture, the function
g+ (ay(D)— D) is bounded at each point
and pointwise continuous in the sense that
g — (ag(D) — D)e is continuous for each
e in the domain of D.

The equivalence relation for Kasparov cycles can be given in any of several

standard forms; namely:

1. Cycle homotopy; or

2. Operator homotopy plus addition of degenerate cycles; or

3. Compact perturbation plus addition of degenerate cycles and unitary

equivalence.

The equivalence of these three forms is a nonobvious but very useful result.
This ends our brief outline of bounded and unbounded K K-theory. For a
more precise description, we refer the reader to [Bla86], [Kas81], [Kas95] for
the bounded theory, and [BJ83], [Kuc94|, [Kuc97, Kuc| for the unbounded

theory.

We now discuss Chapter 2 of Valette’s Notes from the point of view of

unbounded K K-theory. The main point of that chapter is to show that a cer-

tain map from a direct limit of equivariant K-homology groups to equivariant

K-theory is well-defined. It is sufficient to define a map

it K (X) — K (C*T)
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for I'-compact subsets X of ET', provided that this map commutes with
the inclusion maps used to define the direct limit RK] (ET). In terms of
unbounded Kasparov theory, the explicit definition of the map /i’ is:

it Up(Co(X),C) — Up(C,C*T)
(H,m,D) +— (&,D)

where & is the Zy-graded Hilbert C*I" module obtained by completing 7(C.(X))H
with respect to the C*T'-valued inner product (£1,&) () = (&1,7&2) as in
section 2.3. It is not obvious that this map ' is well-defined, and the easiest
way to see that it does map a cycle to a cycle is by an indirect approach.

We define a large semigroup Ur(A, B) that contains (A, B):

Definition 5 The semigroup Ur(A, B) is given by triples (E®FE, ¢, ( 10) 10) ))

with the direct sum operation, where E is any Hilbert B-module with an ac-
tion of ', ¢ is an (equivariant) representation of A on E, and D is a properly
supported equivariant reqular operator' on E with [D, ¢(a)] bounded for all a
in some dense subset of A.

We don’t need the equivariance condition, assuming the boundedness of
[D,~] would be enough, but this additional condition, which is also assumed
in the main part of this paper, makes the calculations more clear by suppress-
ing some terms involving [D, ] that would otherwise arise. The reason for
introducing this semigroup is only that it is convenient to have a large semi-
group for which some form of the Kasparov equivalence relation makes sense.
In fact, we could prove our main result without any reference to this semi-
group, which is only used as a convenient setting for proving compactness of
the resolvent of a certain operator.

Definition 6 The equivalence relation ubd on U(A, B) is generated by uni-
tary equivalence, perturbation by bounded operators, and addition of degen-
erate Kasparov cycles.

!The definition of regularity is that an operator is regular if and only if its graph is
orthogonally complemented. It follows that a bounded operator is regular if and only if
it is adjointable. The reason for preferring regularity to adjointability is that regularity is
defined in terms of the graph of the operator, and hence the definition can be immediately
generalized to the case of unbounded operators. All Hilbert space operators are regular,
but there are usually many non-regular operators on a Hilbert module.
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Then we see that the Kasparov group is stable under equivalence within
Up (A, B) :

Proposition 5 Ur(A, B)/ubd contains Yr(A, B).

This proposition is an equivariant version of a lemma in [Kuc].
Proof: In terms of cycles, this proposition says that a triple (£ &

D 0
an unbounded cycle. This is obvious except for the compactness of the re-

E ¢, ( 0 D )) is an unbounded cycle if and only if it is equivalent to

solvent, which follows from the facts that unitary equivalence preserves the
compact operators on a Hilbert module, and that ¢(a)(\ — 7)~! is compact
for some ) if and only if this is true for ¢(a)(N —T + B)~', where B is some
bounded operator. O

The map fi" is certainly at least a map into Ur(C, C*T'), and we will use
a unitary equivalence and bounded perturbation to show that the image is
in UI'(C, C*TI') after equivalence.

We remind the reader that # is the C*I'-module completion of C,(I', H)
with respect to the CI'-valued inner product (¢, ) (o) := > (€(7), n(70))
and that in lemmas 6 and 7 we defined another inner product C.(X) x
Co(X) — C.(X x T') and then constructed a projection p € C.(X x I') by
defining p := (h,h) where h € C.(X) is a function with }°__ h(yz)* = 1
for all x. We now check that the function A can be chosen to have bounded
commutator with a given unbounded operator that comes from a triple in
Ur(C,C*T).

Recalling that the function A2 can be constructed by choosing any positive
f which is nonzero on a compact global slice [Pal61] (which exists since X
is a ['-compact ['-space with proper action of I') and then performing an
averaging operation that will be described; we can also assume that given an

unbounded selfadjoint operator D that comes from a triple, the commutator
[f, D] is bounded on the domain of D. The function h? is defined by

2 o f(z)?
SR Sy TerEs

Since D is properly supported, there is a g such that g[f?, D] = [f?, D], and
taking adjoints shows that g[f?, D]g = [f?, D]. In particular, the function
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ft = nyer vf*y ! has bounded commutator with D, since A,([f?, D]) =
[f2, D] is bounded. Therefore

+i[1/fr, D] < ||[f2, D]|| £

is bounded, by a form of Powers’ identity[Pow75, Kuc|, and hence [h, D] =
[f/ fr, D] is bounded.

Lemma 13 There is a unitary § : 7#(p)H — & which almost commutes
with operators coming from triples (£, D) in Up(C,C*T'), in the sense that
B7(p)D — DB : 7(p)H — & is bounded.

Proof: The map f is defined in the proof of lemma 8, where it is also
shown that (8z, Bz), = (z,z)y, which implies by the polarization identity
that § is an unitary.

For the second part of the lemma, we recall that [7(h), D] can be assumed
bounded on the domain of D, and since (3 is unitary it is enough to show
that 7 (p)DB* — D : £ — £ is bounded. Suppressing the representation 7,

we write
BpDB* = Y . vhDhy™!
= Ay([h, DIh) + 3 cpyDR*y7T
= Agy([h,D]h)+ D

where we have first used the proper support of D to find a g € Cy(X) such
that hg = h and gDh = Dh, and then we have used the equivariance of D
and the averaging property of h to show that )  yDh*y~" = D. Since
Ay([h, D]h) is bounded, we are done. O

Remark: Since An(T) = pT5* for T : H — H, we see that the “aver-
aging operator” Ay is actually a unitary transformation in the special case
f = h, and therefore can be applied without losing information. Further-
more, A, commutes with the functional calculus.

We can now give a quick proof that an element (£, D) of the image of i
is a cycle. First of all, if we consider a map from ¥ (Cy(X), C) to ¥r(C, C*T)
given by (H,n, D) — (H,7(p) : C — L, D), then it is quite clear that an
element of the image is in fact a cycle. The main question is whether or
not the resolvent R := #(p)(i + D)~" is compact on H, but regarding H as
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a function space over I', we see that R is compact at every point, and is
compactly supported because

(p)€ = 7(z = h(z)h(y2)E(7), € € Ce(T, H)

|

where h is compactly supported and I' acts properly.
Now we use the preceeding lemma to give the equivalences

(7‘2,7?(])) :C— E’D) ~d (7:[, ~(p)D)
, B7(p) D)

~u |

proving that the map from ¥r(Cy(X),C) to ¥r(C, C*T') that we just gave is
in fact the Baum-Connes map ji’.
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