Pseudo-Riemannian submersions from complex pseudo-hyperbolic

space forms *

Paul-Andi Nagy
April 23, 2002

Abstract

We study pseudo-Riemannian submersions with complex fibers from a complex pseudo-hyperbolic
space form. Using the effect of the K&hler condition on the fundamental O’Neill tensors we prove
total geodesicity for all such submersions. Simple geometric arguments are given in order to obtain
a classification.
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1 Introduction

Contrary to Riemannian submersions, for which a considerable amount of information
is now available, pseudo-Riemannian submersions, as defined in [13] were subject to
less attention. However, various classification results are known, such as the descrip-
tion of totally geodesic pseudo-Riemannian submersions from anti-de Sitter space [11]
or from pseudo-hyperbolic spaces into a Riemannian manifold [2].

In this paper we study pseudo-Riemannian submersions with complex fibers from a
complex pseudo-hyperbolic space form. We are motivated by results in [12], asserting
that on a compact Kdhler manifold any Riemannian foliation with complex leaves is
totally geodesic or transversally integrable, provided that the manifold is holonomy
irreducible. It is then natural to investigate the same problem in the simplest non-
compact case, that of constant negative holomorphic curvature. Our first main result
is as follows.
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Theorem 1.1 Let m1 : M — N be a pseudo-Riemannian submersion with complex
fibers from an indefinite Kdhler manifold of constant negative holomorphic curvature.
Then the following hold :

(i) The fibers of m are totally geodesic;

(i1) If the fibers of m are totally geodesic then they are 2-dimensional;

(i1i) m is equivalent to the twistor fibration of a quaternionic Kdhler manifold of
constant negative quaternionic curvature. Moreover, when M 1is simply connected

and complete one gets the canonical Hopf submersion CHyi' — HHZ" .

Hence, the complexity of the leaves together with the presence of a pseudo-Kahler
metric is sufficient to ensure total geodesicity in this case. Howewer, the (very sim-
ple) proof of this fact is strongly using the constancy of the holomorphic sectional
curvature, hence do not apply to other examples. Note also that in the case of the
complex pseudo-hyperbolic space and under the assumption of total geodesicity, part
(iii) of theorem was already proven in [2] if the base manifold is Riemannian and in
[1] under the assumptions that the fibers are 2-dimensional or the base manifold is
isotropic.

Theorem 1.1 has the following consequence related to (indefinite) Kahler submer-
sions (see [16] for basic definitions).

Corollary 1.1 They are no Kihler submersions starting from a (Riemannian) com-
plex space form of non-zero scalar curvature. The same holds in the indefinite case.

For the proof of this fact it suffices to assume, by eventually reversing the metric,
that the scalar curvature is negative. Recall that such a submersion has integrable
horizontal distribution (the proof of this, given in [16]) works also in the indefinite
case). Using theorem 1.1, we obtain that the fibers are totally geodesic hence the total
space of the submersion is locally a (pseudo)-Riemannian product, and we conclude
by the indecomposability of a complex space form of non-zero scalar curvature. Note
that in the Riemannian case and for positive scalar curvature corollary 1.1 was already
proven in [7].

The paper is organised as follows. In section 2 we prove some usefull relations
between the O’Neill’s tensors of a pseudo-Riemannian submersion from a pseudo-
Kéhler manifold. Total geodesicity is studied in section 3, with special emphasis on
the case of fibers of codimension 2, which appears to stand out in the discussion.
In the last section we are concerned with showing that the fibers have to be two-
dimensional. This a consequence of the single fact that the fibers have constant
sectional holomorphic curvature and not of the constancy of the ambient holomorphic
curvature.

2 Preliminaries

Let us first recall the definition of a pseudo-Riemannian submersion.

Definition 2.1 [13] Let (M, g) and (N, h) be pseudo-Riemannian manifolds. A pseudo-
Riemannian submersions m : M — N is a submersion such that the fibers are pseudo-

Riemannian manifolds and such that dm preserves the scalar product of vector normal
to fibers.



Given such an object let V be the vertical distribution. A direct consequence of the
definition is that we have a direct sum TM = V & H where H is the orthogonal
complement of ¥V in T M.

We start by collecting a number of basic facts about pseudo-Riemannian sub-
mersions and next we will specialize to the Kahler case. Let V be the Levi-Civita
connection of the metric g. Throughout this paper we will denote by U, V, W.W'
vector fields in V and by X, Y, Z etc. vector fields in H. It is easy to verify that the
formula [14]

Vel = (VeFy)y + (VeFu)n

defines a metric connection with torsion on M (here the subscript denotes orthogonal
projection on the subspace). The main property of this connection is that it preserves
the distributions V and H. If T and A are the O’Neill’s tensors of the submersion 7
then the following relations between V and V are known to hold

VxY = ?XY +AxY, VxV = V_XV + AxV
Vv X =Vy X+ Ty X, ViW =VyW + Ty W.

For the algebraic properties of Tand A see [4]. We only recall here that A is skew-
symmetric on H while 7" is symmetric on V.

Our workhorse device in what follows will be the O’Neill’s formula for a pseudo-
Riemannian submersion which we recall below. A proof for the Riemannian case
extending over verbatim to the pseudo-Riemannian one can be find in [4].

Proposition 2.1

(i) R(U,V,W,W'") = R(U,V,W,W")— < TyW, Ty W' > + < Ty W, Ty W' >
(i) R(U,V,W,X) =< (VyT)(U W), X > — < (Vg T)(V, W), X >

(i) R(X,U,Y,V) =< (VxT)(U,V),Y > + < (VyA)(X,Y),V > —
<TyX,TvY > + < AxU, AyV >

(iv) R(V,W,X,Y) =< (VyA)(X,Y), W > — < (VwA)(X,Y),V > +
<AV, AW > — < AxW, AV > — < Ty X, TwY >+ <Tw X, TyY >

() RIX,Y,Z, V) =< (VzA)(X,Y),V >+ < AxY, TvZ > — < Ay Z, Ty X > —
<AzX,TvY >

(vi) R(X,Y,Z,Z") = R(X,Y,Z,Z") —2 < AXY,A;Z' > + < Ay Z,AxZ' > —
< AxZ,AvZ' >.

Here R and V are the curvature tensors of the connexions V and V, respectively.

In the rest of this section we will asssume that (M, g) is an indefinite Kéahler
manifold of dimension 2m, with complex structure .J(see [3] for some basic examples).
Moreover, we suppose that the submersion 7 has complex fibers, that is JV =V (and
then, of course, JH = H). As V.J = 0, it follows that V.J = 0, hence we obtain
information about the complex type of the tensors A and T as follows
Ax(JY) = J(AxY), A;xV =-J(AxV)=Ax(JV)

2.1 TwW = J(TyW), TwX = —J(Ty X) = Ty (JX).



We also have A;xJY = —AxY and Ty JW = =Ty W. An immediate consequence
of these relations is that the fibers of our submersion are minimal, that is the mean
curvature vectore field vanishes.

We will use now the Kahler structure on M, together with suitable curvature
identities to get some geometric information about the tensors A and T'.
Lemma 2.1 Let X,Y,Z be in H and V,W in V. Then we have :
(i) (VxA)(Y,2) =0
(ZZ) < AXy, TVZ >= O
(iii) < (Vy A)(X,Y), W >=< (Vi A)(X,Y),V >.
(iv) 2 < (VyA)(X,Y),W >=< (VyT(V,W), X > — < (VxT(V,W),Y >.
Proof :
We will prove (i) and (ii) simultaneously. Since (M, g) is Kéhler one has R(J X, JY, Z, V) =
R(X,Y,Z,V). Hence by (2.1) and (v) of proposition 2.1 we easily arrive at
<(VxA)(Y,2),V >+ < AxY, Ty Z >= 0. But we know that (see [4], page 242)

oxy,z < (VXA)(Y, Z), V >= oxy,z < AXY, Tvz >
(here o denotes the cyclic sum) thus oxy,z < AxY,TyZ >= 0 and further
R(X,Y,Z)V) =< AxY, Ty Z > .

Using again that R(JX,JY,T,V) = R(X,Y,Z, V) and (2.1) yields (ii), hence (i)
follows. To prove (iii) we use the fact that R(V, W, JX,JY) = R(V, W, X,Y), (iv) of
proposition 2.1 and (2.1). The proof of (iv) follows by the formula

< (VwA)(X,Y),V >+ < (VyA)(X,Y), W >=< (VyT(V,W), X > — < (VxT(V,W),Y >
(see [4], page 242) and (iii) A

Remark 2.1 (i) By the the first two assertions of lemma 2.1 we obtain that

R(X,Y,Z,V) =0, a condition frequentely imposed when studying Riemannian folia-

tions (see chapter 5 of [14] and references therein).

(ii) By (i) and (ii) of the previous lemma it is easy to see that H satisfies the Yang-
Mills condition.

Another result that will be needed in the next section is the following :
Lemma 2.2 We have :

(1)

R(X, V)V =2[Ax, Ay|]V + Q(X, YV
for all X,Y in H and V inV where we defined Q(X,Y)V =T,y X — T, xY.
(i) If the submersion has totally geodesic fibers, then R(X, Vi, Vs, V3) = 0.

The proof follows from the general formulas in [14], page 100, and lemma 2.1, (iii).
3 Total geodesicity

We will suppose now that our manifold M has constant holomorphic curvature ¢ < 0.
An example is CH?, the complex pseudo-hyperbolic space of real dimension 2n, en-
dowed with its canonical metric of signature 2s and of constant holomorphic sectional
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curvature, equal to ¢ < 0 (see [3]), or any of its smooth quotients. The aim of this
section is to prove that every pseudo-Riemannian submersion from M has totally
geodesic fibers.

Recall now that the curvature tensor R of M equals cRy where

4R0(E1,E2, Eg, E4) =<< El,Eg >< EQ,E4 > — < E1,E4 >< EQ,E?, > +
< El,JEg >< EQ,JE4 > — < El,JE4 >< EQ,JEg >4+2< El,JE2 >< E3,JE4 > .

Using this and the lemma 2.1, (ii) one can give a very simple proof of the fact that
the fibers of 7 are totally geodesic in codimension at least 4, as follows.

Proposition 3.1 FEvery pseudo-Riemannian submersion with complex fibers from the
complex pseudo-hyperbolic space has totally geodesic fibers, provided that the real di-
mension of N is at least 4.

Proof :
Using (iii) of proposition 2.1 and (iv) of lemma 2.1 we obtain

cRy(X,U,Y,V) =LY< (VxT)(U,V),Y >+ < (VyT)({U,V), X >)+
<AxUAYV > — < Ty X, T/Y >
Or Ry(X,JU,Y,JV) = Ry(X,U,Y,V) hence by (2.1) we get that :

< AxU,AyV > — < Ty X, TyY >=
E(< X, Y ><UV>+<X,JY ><U,JV >)

where k = §. Taking U = Ty Z we obtain by lemma 2.1, (ii) and after some simple
manipulations :

3.1

Taking V = W and permuting the roles of Z and Y we obtain by the symmetry of 7'
and since k # 0 :

<TyvZ,V>Y+<TyZ,JV > JY =<Ty Y,V > 7+ <TyY,JV > JZ
or further
<Zuvy>Y+< Z, Jug>JY =<Y,v9>Z+ <Y, Jug > JZ

where vg = Ty'V. Using the fact that the dimension of H is at least 4 it is now an
elementary exercise to conclude the vanishing of vy, hence that of 77l

The rest of this section will be concerned with showing that the case when the
(real) dimension of the horizontal distribution equals 2 cannot occur.

Let us define, for each V in V an operator Py : H — H by setting Py X = AxV
whenever X is in H. Then Py is skew-symmetric and furthermore, Py J + JPy =0
for each V belonging to V.

From now on we will assume that H is two-dimensional. Then the above algebraic
properties of the operator Py, V in V imply its vanishing hence A = 0. Hence both
distributions ¥V and H are integrable.



Remark 3.1 It is easy to see that under the above conditions J projects onto a Kahler
structure on N giving 7 the structure of a Kdhler submersion in the sense of [16] (see

also [?]).

Since A vanishes (3.1) becomes

3.2 <TyX,TvY >= -k(< X,) Y >< UV >+ < X, JY >< U, JV >).
We will now examine our geometric data locally. For simplicity, let us assume that
c = —4, so that k = —1. As H is two-dimensional either g is positive or it is negative

on H. Let e be a local horizontal vector field with g(e, e) = ¢ where € € {£1}. Then
{e, Je} gives a local basis of H and expressing T in this basis we obtain 7' = a-e+3-Je
where o and  are symmetric forms on V. Let F' be the symmetric (with respect to
g) endomorphism of V associated to «. As by definition Tyye = —¢F'V whenever V is
inV, (3.2) gives F2 =¢ - 1y.

Lemma 3.1 (i) We have (VyF)V =0 for all U,V in V.

(i1) The fibers of ™ are flat in the induced metric.

Proof :

(i) The constant holomorphic curvature assumption implies that R(U,V,W, X) = 0
and this yields further by using (ii) of proposition 2.1 that (VyT)(U, W) = (VyT)(V, W).
We now choose e to be basic and since this ensures the vanishing of Ve, Vy Je we ar-
rive at (Vy F)U = (VyF)V. But, for all V in V the symmetry of F implies that Vy F

is a symmetric tensor. Moreover, Vy F anticommutes with F' (as F? is a constant
multiple of the identity) hence (Vy F)F is skew-symmetric. Or, the symmetry of VF
implies that the symmetric endomorphism Vgy F equals (Vi F)F and we conclude
that VyF = 0 for all V belonging to V, in other words, F is V-parallel in V.

(i) Using (i) of proposition 2.1 we obtain after an easy calculation :

R(U,V,W,W') =
—4(Ro(U,V,W,W") — eRo(U,V, FW, FW")) + 2¢(U, JV)g(W, JW").

for all U, V,W, W' in V. But, since F' is symmetric with F 2 = ¢, it follows that
RU,V,FW,FW') = —eR(U,V,W,W'). On the other hand, F' is parallel in V, hence
it commutes with operators of the form R(U, V') and this yields to R(U,V, FW, FW') =

eR(U,V,W,W'). This proves the vanishing of the curvature of the fibers W

3.3

We are now able to give a very simple, completely algebraic proof of the fact that
the fibers cannot be of codimension 2.

Proposition 3.2 There are no pseudo-Riemannian submersions with complex leaves
and codimension 2 fibers from an indefinite complex space form of negative scalar
curvature.

Proof :
Using (ii) of the previous lemma we see that (3.3) becomes
3.4 Ro(U, V, W, W') — eRo(U, V, FW, FW") = Lg(U, JV)g(W, JW").

for all U, V, W, W' in V. We set V = JU, W = U and we give W’ succesively the val-
ues JU, FU, (FJ)U. After a short computation, we obtain the equations g(U, FU)? +
g(U, (FI)U)? = —2e9(U,U)?, g(U,U)g(U,(FJ)U) = 0 and g(U,U)g(U, FU) = 0,
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These obviously imply that g(U,U) = 0 in other words V is totally isotropic, a con-
tradiction W

Part (i) of the theorem 1.1 is now proven. Note that no completeness assumption
or topological hypothesis on the manifold M is needed for proving the results in this
section.

4 The geometry of the fiber

In the geometrical context described in the previous section let us suppose the fibers
of the submersion be totally geodesic, i.e. T = 0. Using (i) and (iv) of lemma 2.1 we
obtain that A must be V-parallel. This easily implies

4.1 Ve(PyX)=Py(VgX)+ Pg X
for all F in T'M, where P is the operator defined in the proof of lemma 3.1. The

following result shows how the curvature of the fibers can be computed using the
tensor P.

Proposition 4.1
Previ voyvs = [Pvs, [Pyis Py ]
Proof :
Using the second Bianchi identity for the Hermitian connection V (see [9]) we obtain

(VxR)(Y, V1, Vo, Vs) + (Vy R) (Vi, X, Va, V3) + (Vi R) (X, Y, V, Vi) +

Since the distributions V and H are V-parallel we get by lemma 2.2, (ii) that
(VxR)(Y, V1, Vo, V3) = (VyR)(V1, X, Va,V3) = 0 and by (i) of the same lemma and
(4.1) it can be seen that the term (Vy; R)(X,Y, V3, V3) also vanishes. Now, we com-
pute the last two curvature terms in the Bianchi identity using lemma 2.2, (i) and
the result follows by calculus B

We will show now that if the fibers have constant holomorphic curvature then they
are necessarly two-dimensional. In order to abbreviate notations we will formulate
the main ingredient of the proof under the following form.

Lemma 4.1 Let (A, +,-) be an associative algebra over R and suppose that x,y in A
are subject to the following relations :
(1) 23 = vkxz,y® = eky
(ii) zy? + y*x = ekx
(111) yz* + 2y = vky
where k is a non-zero real number, and €,y are in {—1,1}. Then x =y = 0.
Proof :
Multiplying (ii) at left and right by y we get yzy® + y3xy = ekyzy hence yry = 0 by
(i). In the same way, but using this time (iii) one obtains zyz = 0. Squaring now (ii)
we get
(zyH)? + (v22)? + zy's + y2a?y? = k22>
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It is easy to see that the first three terms are vanishing hence

4.2 y2a?y? = k2a?.

We now multiply (ii) at left by y%z hence y%z%y? + (y?x)? = cky?2? and further
v r?y? = eky?x? since (y?r)? = 0. Using (4.1) we get ey®z? = kx? thus right multi-
plication by z followed by (i) yields ey?z = kx. Squaring, and using yzy = 0 we get
22 = 0 and the conclusion now follows immediately B

We are now able to prove the following.

Proposition 4.2 Let m : M — N a pseudo-Riemannian submersion with totally
geodesic fibers. Then the fibers are two-dimensional.

Proof :

The fibers being totally geodesic they are of constant holomorphic sectional curvature
equal to c. Then R(V,JV)V = ¢g(V,V)JV for all V in V. Using now proposition
4.1, we obtain

c
Px?} = —ZQ(Va V)PV-

If U is in V such that g(V,U) = ¢g(V,JU) = 0 then R(V,JV)U = £g(V,V)JU and
using proposition 4.1 we obtain

Of course, permuting U and V it also follows that
Py P2 + P2Py = —zg(U, U)Py.

Now, if the dimension of the fibers is greater than 2, for each v in V with g(v,v) =
¢ = +1 there exists u in V such that g(v,u) = g(v,Ju) = 0 and g(u,u) = v = +1.
Apllying the previous lemma with x = P,,y = P, we find that P, = 0, in other
words, the tensor A vanishes identically. Using (3.1) this implies easily that H is
totally isotropic for g, an absurdity B

Remark 4.1 The proof of the previous result extends ad literam to show that the
fibers of a pseudo-Riemannian submersion from a pseudo-Kahler manifold are two
dimensional, provided they are complezx, totally geodesic, and of constant holomorphic
curvature ¢ # 0.

To complete the proof of theorem 1.1 we will need now the following

Lemma 4.2 The restriction of g to V is negative definite.

Proof :

Let us suppose that g is positive definite and choose a (locally) defined vector field
of V with g(e,e) = 1. Consider the skew-symmetric endomorphism of H defined by
F = P, and note that by (3.1) we have F? = —k - 1. Hence H splits as the direct
sum H* @ H~ where H* are the eigenspaces of F' coresponding to the eigenvalues
++/—k. Moreover, H* are totally isotropic (F is skew-symmetric) and H- = JH*
(since FJ + JF = 0). Now, using (4.1) it is easy to show that

- 1
VeX — Jo(E)JX



belongs to H* for all X, F in H" and TM respectively, where « is a local 1-form
on M defined by a(E) = g(Vge, Je), E in TM. Using this fact and the isotropy of
H*, an elementary computation shows that 2R(X,Y, X,Y) = da(X, Y)g(X, JY) and
since da(X,Y) = —R(X,Y, e, Je) we arrive throught lemma 2.2 at R(X,Y, X,Y) =
2kg(X,JY)?. M being of constant holomorphic curvature we have R(X,Y, X,Y) =
3kg(X,JY)? and a simple computation shows that g(AxY, Ax,Y) = —kg(X,JY)%
Putting this togheter in proposition 2.1, (vi) we get g(X,JY) =0, thus H* and H~
are orthogonal, fact which is impossible since g is non-degenerate on H l

It is now easy to construct to twistor structure on M, as well as the quaternionic
Kéhler structure on N. For elementary quaternionic-Kéahler geometry we refer the
reader to [15] and we note that all the constructions performed in the Riemannian
case are available in the pseudo-Riemannian one.

Let m be a point of M and consider the linear span (in End~(H)) of P,,v in V
and J. We got a 3-dimensional vector bundle, @, with fibers isomorphic at each point
to sp(1). Let now L be the horizontal projection of the Lie derivative (acting on
End~(H)) in the direction of V in V. It is straightforward to verifiy that £Z leave
@ invariant for all V in V), hence @ projects on a rank 3 subbundle @ of End ™ (N).
Since by (4.1) Q is V-parallel (and V projects over the Levi-Civita connection of
N) we obtain that @ is parallel for the Levi-Civita connection of the base space and
therefore gives rise to a quaternionic-Kahler structure on (N, h). Moreover, by this
construction, one easily see that M is the twistor space of this quaternionic-Kahler

structure.

When M is complete and simply connected, so does N hence the last part of (iii)
in theorem 1.1 follows by the fact that the quaternionic pseudo-hyperbolic space is
the the single complete, simply connected, quaternionic-Kahler manifold of constant
quaternionic curvature.
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