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Abstract

We study almost Kéhler manifolds whose curvature tensor satisfies the second curvature condition
of Gray (shortly AK5). This condition is interpreted in terms of the first canonical Hermitian
connection. Rather surprisingly, it turns out that it forces the torsion of this connection to be
parallel in directions orthogonal to the Kahler nullity of the almost complex structure. We prove a
local structure result for A, manifolds, showing that the basic pieces are manifolds with parallel
torsion and special almost Kahler manifolds, a class generalizing, to some algebraic extent, the class
of 4-dimensional AKs-manifolds. In the case of parallel torsion, the Einstein condition and the
reducibility of the canonical Hermitian connection is studied.
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1 Introduction

An almost Kahler manifold (shortly AK) is a Riemannian manifold (M?", g), together
with a compatible almost complex structure .J, such that the Kéhler form w = ¢(.J+, )
is closed. Hence, almost Kahler geometry is nothing else that symplectic geometry
with a prefered metric and complex structure. Since symplectic manifolds often arise
in this way is rather natural to ask under which conditions on the metric we get
integrability of the almost complex J. In this direction, a famous conjecture of S.
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I. Golberg asserts that every compact, Einstein, almost Kahler manifold is, in fact,
Kéhler. At our present knowledge, this conjecture is still open. Nevertheles, they are
a certain number of partial results, supporting this conjecture. First, let us note that
Golberg conjecture is definitively not true with the compacity assumption removed.
Now, K. Sekigawa proved in [20], that the Goldberg conjecture is true when the scalar
curvature is positive. The rest of known results, most of them enforcing or replacing
the Einstein condition with some other natural curvature assumption are mainly in
dimension 4.

We prove a local structure theorem concerning almost Kahler manifolds in the
class AK,.

Theorem 1.1 Let (M?",g,J) be an almost Kihler manifold in the class AKy. Let U
be an open set where the Kahler nullity has constant rank. Then there an open dense
(with respect to the induced topology) set D in U such that around each point of D
the manifold M 1s locally the Riemannian product of a almost Kahler manifold whose
first canonical connection has parallel torsion and a special AKy-manifold.

The precise definition of special AK, manifolds is given at the end of the section 4.
They are those supporting AK, structures for which the integral manifolds of the
distribution orthogonal to the Kahler nullity are Kahler, with respect to the induced
structure. Note, that algebraically (see definition 4.1 for details) this property is
automatically satisfied in 4-dimensions.

Theorem 1.1shows that the study of the torsion of an almost Kéhler manifold of
class AK, reduces, in the local sense precised below to the study of the structure of
the torsion of a special almost Kahler manifold.

The precise definition of the latter is given in section 4. Special almost Kahler
manifolds can be thought as some kind of generalization of 4-dimensional AKs man-
ifolds, since they share the same algebraic properties of the first jet of the almost
complex structure.

Concerning almost Kahler manifolds with parallel torsion, and in connection with
the existence problem of Einstein, almost-Kahler metrics we are able to prove the
following :

Theorem 1.2 For every almost Kahler manifold with parallel torsion the holonomy
of the canonical Hermitian connection is reducible, in the real sense. Furthermore, if
such a manifold is Einstein, then it has to be Kdhler.

This shows that an Einstein AKX, manifold, if any, is locally the product of a Kahler
Einstein manifold and an Einstein special AK,-manifold. Note the difference with
nearly-Kéhler manifolds where many Einstein homogenenous examples exist (see
[15]).

Our paper is organised as follows. In section 2 we recall some general, well known
facts of almost Kahler geometry. In section 3, the main technical ingredient of this
paper is proved : using the first canonical Hermitian connection we give an interpre-
tation of the second Gray condition on curvature in terms of the torsion of the last
mentioned connection. Namely, we show that the associated (bundle valued) 1-form
has to be closed. We study this condition using some standard methods and we prove



that the torsion of the canonical Hermitian connection has to be parallel in directions
orthogonal to the Kéahler nullity of the almost complex structure. Note that this
result continues to hold in the more general case of quasi-Kahler manifolds satisfying
the second Gray condition on curvature. Finally, in section 6, a proof of the theorem
2.1 is given, by using Sekigawas’s formula (in fact its pointwise version develloped in
[3]) in the special case of parallel torsion.

2 Preliminaries

Let us consider an almost Hermitian manifold (M?",g,J), that is a Riemannian
manifold endowed with a compatible complex structure. We denote by V the Levi-
Civita connection of the Riemannian metric g. Consider now the tensor V.J, the
first derivative of the almost complex structure and recall that for all X in TM we
have that Vx.J is a skew-symmetric (with respect to g) endomorphism of T'M, which
anticommutes with J. The tensor V.J can be used to distinguish various classes of
almost Hermitian manifolds. For example, (M?", g, J) is quasi-Kéhler iff

VixJ =—-JVxJ

for all X in TM. If w = g(J-,-) denotes the Kéhler form of the almost Hermitian
structure (g, .J), we have an almost Kéahler structure (AK for short), iff dw = 0. We
also recall the well known fact that almost Kahler manifolds are always quasi-Kahler.

The almost complex structure J defines a Hermitian structure if it is integrable,
that is the Nijenhuis tensor N; defined by

N;(X,Y)=[JX,JY] - JX,) Y] - JX,JY]| - J[JX,Y]
for all vector fields X and Y on M vanishes. This is also equivalent to
VixJ=JVxJ

whenever X is in T'M. Therefore, an almost Kahler manifold which is also Hermitian
must be Kahler.

In this paper we will deal mainly with almost K#hler (AK for short)-manifolds,
altough we will autorize us short excursions to the quasi-Kéhler class. We begin to
recall some basic facts about the various notions of Ricci tensors. In the rest of this
section (M?", g, J) will be a almost Kéhler manifolds.

Let Ric be the Ricci tensor of the Riemannian metric g. We denote by Ri¢’ and
Ric” the J-invariant resp. the J-anti-invariant part of the tensor Ric. Then the Ricci
form is defined by

p=< RicdJ- ->.
We define the x-Ricci form by

2n
, 1
P :§;R(€i,z]€i)

where {e;,1 < i < 2n} is any local orthonormal basis in TM. Note that p* is not, in
general, J-invariant. The %-Ricci form is related to the Ricci form by



2.1 pr—p= %V*Vw.
The (classical) proof of this fact consists in using the Weitzenbdck formula for the
harmonic 2-form w. Taking the scalar product with w we obtain :

1
§F—s= §|VJ|2

where the %-scalar curvature is defined by s* =2 < R(w),w >
We now come to properties of the curvature tensor of an almost Kéhler manifold.
Recall first that we have the decomposition :

A*(M) = AV (M) & [[A*(M)]]

and that AM'(M) = Ay' (M) @ Rw. Then the real vector bundle [[A>°(M)]] has a
complex structure J defined by (Ja)(X,Y) = a(JX,Y).

Let R be the curvature tensor of the metric g, with the convention that R(X,Y") =
Vixy] — [Vx, Vy] for all vector fields X and Y on M. Let now R be the component
of R acting trivially on A (M). Tt is defined by :

1
R(X,Y,Z,U) = ~(R(X,Y, Z,U)~R(JX, JY, Z,U)~R(X,Y, JZ, JU)+R(JX, JY, I Z, JU)).
4

Now, R decomposes further as R = R' + R” where R’ and R" are the components of
R commuting, resp. anticommuting with J. Explicitely, we have :

R(X,Y,Z,U) = %(R(X, Y,Z,U)—R(JX,JY,Z,U)— R(X,Y,JZ, JU)+ R(JX,JY,JZ, JU)
—-R(X,JY,Z,JU) - R(JX,Y,Z, JU) — R(X,JY,JZ U) — R(JX,Y,JZ,U)

and

R"(X,Y,Z,U) = %(R(X,Y,Z, U)—R(JX,JY,Z,U)—- R(X,Y,JZ,JU)+ R(JX,JY,JZ, JU)
+R(X,JY,Z, JU)+ R(JX,Y, Z,JU)+ R(X,JY,JZ,U) + R(JX,Y, JZ, U))

forall X,Y,Z, U in TM. An important information about this tensors is given by an
identity of A. Gray from [13], page 604, Cor.4.3 :

2.2 R'(X,Y,Z,U) = -1 < (Vx )Y — (Vy )X, (V2 )U — (VuJ)Z > .
We will now give an important formula, which can be interpreted as an obstruction to
the existence of almost Kéhler, non-Kéhler structures. This is a corrected version of
the formula in [3], where it was accidentally asserted that R’ is given by the expression
in formula (2.2).

Proposition 2.1 Let (M*",g,J) be an almost Kihler manifold. Then the following

holds :
A(s* —s) = —46(J6(JRid")) + 85(< p*, V.w >) + 2|Ric"|?

+4 < p,® — V*Vw > — |0 — [V*Vw|? — 8| R'|%
Here, the semi-positive 2-form ® is defined by
q)(X, Y) =<V xw,Vyw > .



Proof :
The proof is exactly that the one given in [3], where one has to make use of (2.2), the
correct "translation” of the identity of Gray. B

3 Gray’s curvature conditions

This section is dedicated to interpret some of the well known conditions on the cur-
vature of a almost Hermitian manifold in terms of the torsion of the first canonical
Hermitian connection. We begin by recalling how one can distinguish several classes
of almost Hermitian manifolds by ”the degree of ressemblance” of their Riemannian
curvature tensor with the curvature tensor of a Kahler manifold.

Let (M*", g, J) be an almost Hermitian manifold. Let R be the Riemannian curva-
ture tensor of the metric g. Then the following classes of almost Hermitian manifolds
appear in a natural way [13]:

(Gy): R(X,Y,Z,U)—R(JX,JY,Z,U)=R(JX,Y,JZ,U)+ R(JX,Y, Z, JU)
(G3): R(JX,JY,JZ, JU)=R(X,Y,Z,U)
Using the first Bianchi identity it is a simple exercise to see that Gy = Gy = G3. It
is also clear that a Kahler structure satisfies all the three conditions. Let us set now
some notations.

Following [13], let AK be the class of almost Ké&hler manifolds. Then the class
AK;,1 < i < 3 contains those almost Kahler manifolds whose curvature tensor satis-
fies the condition (G;). Obviously, we have the inclusions :

AK, C AK, C AK.

Note that it was shown in [12] that locally AK; = K, where K denotes the class of
Kahler manifolds. The other inclusions are strict in dimensions 2n > 6, as shows
the examples of [9], multiplied by K&hler manifolds. In the same spirit, the class
AH,;, 1 < i< 3 contains those almost Hermitian manifolds whose Riemannian curva-
ture tensor satisfies condition (Gj).

Let us consider now the first canonical connection of the almost Hermitian manifold
(M?* g,.J) to be defined by :

VY =VxY + an

whenever X, Y are vector fields on M, where V is the Levi-Civita connection of g and
where, to save space, we setted nxY = %(VXJ)JY. We obtain a metric Hermitian
connection on M, that is Vg = 0 and V.J = 0. Recall that for each X in TM ny is
a skew-symmetric, J-anticommuting endomorphism of T'M.
The torsion tensor of the canonical Hermitian canonical connection, to be denoted
by T is given by
IxY =nxY —mpyX



for all X, Y in TM. Then by the torsion of the almost Hermitian manifold (M?", g, J)
we will mean simply the torsion tensor of the canonical Hermitian connection.
For the almost Hermitian (M?", g, J) be almost Kihler one requires that the Kahler
form w(X,Y) =< JX,Y > be closed. In our notations, this is equivalent to have
3.1 <TxY,Z >=—<nzX,Y >.
In the almost Kahler context, this relation will be used almost implicitely in the rest
of this paper.

Let R(X,Y) = —[Vx, Vy] + V|x,y] be the curvature tensor of the connection V.
Now a standard calculation involving the definitions yields to
3.2 RX,Y)Z = R(X,Y)Z + [nx,ny]Z— [dvu(X, Y)] Z
where

[deu(x, )| 2 = (Tan) (v, 2) = (Vyn) (X, 2) + v Z
for all vector fields X, Y, Z on M. Note that deu(X,Y) is a J-anticommuting endo-
morphism of T'M, whenever X,Y are tangent vectors to M.

Remark 3.1 In the formula (3.1), the notation u stands for the tensor n, considered
as a 1-form with values in the bundle Q*(M). Then dg, with its expression given
below, is the twisted differential acting on twisted one forms, when considering the
tangent bundle of M endowed with the connection V. Since our discussion is intended
to be self-contained and at the elementary level, we will keep things at the level of the
notation after (3.1).

The fact that V is a Hermitian connection implies that R(X,Y, JZ, JU) = R(X,Y, Z,U).
Using this in formula (2.1), together with the skew-symmetry of the J-anticommuting
endomorphism 7y gives us :

3.3 R(X.Y, Z,U) — R(X,Y,JZ,JU) = 2 [(dvu) (X, Y)} (Z,U).
Using the symmetry property of the Riemannian curvature we also deduce that

3.4 R(X.Y,Z,U) = R(JX, JY, Z,U) = 2|(dgu) (2, V)| (X, V).
Lemma 3.1 The almost Hermitian manifold (M*", g, J) satisfies the condition (G3)
ilf

3.5 [(dgu)(Z,0)] (X, V) = |(dgu)(X, V)] (2,0).
Moreover, we have (dgu)(JX, JY )+ (dgu)(X,Y) = 0, hence dou defines a symmetric
endomorphism of A% (M).

Proof :
We change Z and U in JZ and JU respectively in (3.3) and take the sum with (3.2).

Using (Gj), we get [(dvu)(JZ, JU)](X, Y) = —[(dvu)(X, Y)} (Z,U). To get (3.4)

we change again Z in JZ and U in JU and use that dug(X,Y) is J-anticommuting.
The rest is straighforward. W

This simple observation has a number of usefull consequences related to the alge-
braic symmetries of the tensor R.



Corollary 3.1 Let (M*",g,J) be a quasi-Kahler manifold in the class AHz and let
X, Y, Z, U be vector fields on M. The following holds :
(1)

R(X,KZ, U) — R(Z, U, X, Y) =< [ﬁx,ﬁy]Z,U > =< [nz,?’]U]X,Y >
(ii) R(JX,JY), Z,U) = R(X,Y, Z,U).

Proof :
Property (i) follows immediately from (3.1), the symmetry of Riemannian curvature
operator and lemma 3.1. Since R is a Hermitian connection we have R(Z,U, JX, JY) =

R(Z,U,X,Y), hence (ii) follows from (i) and the quasi-Kéahler condition on the tensor
n. A

Note that the previous corollary is well known for nearly-Kahler manifolds (see
[14] for instance). Also note that property (i) holds in fact for any almost Hermitian
manifold in the class AH;. .

We can have now a clearer understanding of the tensor R’ appearing in the Seki-
gawa’s formula (see proposition 2.1) in terms of the torsion of the canonical Hermitian
connection.

Corollary 3.2 Suppose that (M?", g, J) belongs to the class AK3. Then :
RI(Xa K Z7 U) =< (vx?’])(}/, Z) o (vYn)(Xa Z)a U>

whenever X,Y, Z, U belongs to TM.

Proof :
This is a simple computation involving the definition of the tensor R’ (see section 2)
and lemma 3.1. It will be left to the reader.l

With this preliminaries in mind, it turns out that quasi-Kahler manifolds in the
class AH5 have a particularly nice description in terms of the torsion.

Proposition 3.1 Let (M**, g, J) be a quasi-Kdhler manifold. Then M satisfies con-
dition (G3) iff

3.6 (Vxn)(Y.Z) = (Vyn)(X, 2)
whenever X,Y, Z are in T M. In particular :

3.7 (Vixn)(JY, Z)+ (Vxn)(Y,Z) = 0.
Proof :

Using (3.2) and (3.3) it is straightforward to see that condition (G3) is equivalent
with

3.8 [(dgu)(Z, U)} (X,Y) = [(dgu)(JX, )|z, 0)

Expanding the right hand side of this equation and taking into account that (M?*", g, .J)
is quasi-Kahler gives



[(dgu)(Z,0)] (X, 7) =
3.9 < (Vixn)(JY,2),U >+ < (Vyn)(X,2),U >+ < np,vZ,U >=
< (Voxm)(JY, 2) + (Vxn)(V, 2),U > = | (dgu)(X, V)] (Z.U) +2 <y Z,U > .
But M equally satisfies condition (G3), hence using (3.4) in (3.9) we obtain

210 2 [(dgu) (X, Y)} (Z,U) = 2 < iy Z,U >=

< (Vxn)(JY,Z),U >+ < (Vxn) (Y, Z),U > .

But the right side of this equation, viewed as a tensor in X and Y is J-invariant,
whilst the right hand side is J-antiinvariant. Therefore, both have to vanish and this
finishes the proof l

Remark 3.2 From the previous proposition we deduce that quasi-Kdhler, class AHo-
manifolds have to satisfay the algebraic constraint :

<Ny U, W >=<nr,wX,Y >.

Indeed, this follows immediately from (3.6) and lemma 3.1. Note also that this rela-
tion s automatically satisfied in both nearly Kahler and almost Kahler cases.

Using 3.1 we obtain that for a quasi-Kahler manifold in the class A5, the difference
between the curvature of the canonical Hermitian connection and the Riemannian
curvature tensor is simply expressed by :

3.11 R(X,Y)Z = R(X,Y)Z + [nx,0v]Z = tirxv Z

for all vector fields X, Y, Z on M. Note that this difference behaves as the torsion of
the canonical Hermitian was parallel.
We will exploit the second order version of (1.6) as follows.

Lemma 3.2 Let (M*",g,.J) be a quasi-Kdhler manifold in the class AHo. Then for
all vector fields X,Y,Z on M we have :

3.12 Oxy.z ([E(X, Y),12] — nﬁ(m)z) toxys (Vreyn)(Z,) =0
where o denotes the cyclic sum.
Proof :

Starting from (Vyn)(Z,U) = (Vzn)(Y,U) we obtain after derivating in the direction
of the vector field X that : (V;Yn)(Z, U) = (V;Zn)(Y, U). Tt is elementary to get
then :

—2 —2
oxy,z |(Vxym)(Z,U) = (Vyxn)(Z,U)| = 0.

Using the Ricci identity for the connection with torsion V (see [8] for instance) we
arrive at :

oxyvz RX,Y)N)(Z,U)+oxyz (Vreyn)(Z,U) = 0.



We end the proof by recalling that the action of the curvature on 7 is explicitely given
by :
(R(X: Y)77) (Z7 ) = [R(X: Y): 772] — Mr(x,y)z-

|
Proposition 3.2 Let (M?", g, J) be a quasi-Kdhler manifold in the class AHy. Then
we have :
3.13 Vreyn = 0.
Proof :

Replacing in (3.12) XY, Z by JX, JY, JZ respectively we obtain

oxy.z ([R(JX; JY ), n1z] — WE(JX,JY)Jz) +oxyz (Voeyn)(JZ,-) =0

Now, n(JU,-) = —Jn(U,-) for all U in TM, and it follows that
—Joxyz ([E(JX, JY ), nz] — WE(JX,JY)z) + Joxyz (Vreyn)(Z,-) = 0.

Using now corollary 3.1, (ii) and lemma 3.3 we get ox.yz (Vryvn)(Z,-) = 0, or in
expanded version :

3.14 (Veoyn)(Z,) + (Vo z20) (X, ) + (Vi xn)(Y, ) = 0.

It is clear that at Z fixed, the first term of (3.14) is J-anti-invariant. Now, (Vrz,,.zn)(JX, ) =

~(Vryzn)(JX, ) = (Vi 2n)(X,+) by (3.7), hence the last two terms of (3.15) are
J-invariant. This clearly ends the proof of the proposition. ll

4 A first decomposition result

In this section we will analyse some important geometric consequences of the propo-
sition 3.2 in the last section in the particular context of almost Kahler geometry. Our
main object of study will be an almost Kahler manifold (M?", g, J) belonging to the
class AK,.

Let us first set a notational convention, to be used intensively in the present and the
next section and intended to improve presentation. If £ and F' and vector subbundles
of TM and @ is a tensor of type (2,1), we will denote by Q(E, F) (or QgF) the
subbundle of T'M generated by elements of the form Q(u,v) where u belongs to E
and v is in F. We will also denote by < E, F' > the product of two generic elements
of E and F respectively.

An important object associated with an almost Kéahler manifold is its Kahler
nullity. This is the vector bundle H over M defined at a point m of M by H,, =
{v e T,,M:V,J =0}. We also define V to be the orthogonal complement of H
in TM. Tt is easy to see that at each point of M we have that V is generated by
elements of the form TxY, X|Y in T M, in other words

V =T(TM,TM).

Hence, we have a orthogonal, .J-invariant decomposition



4.1 TM =Y @ H.

Note that, a priori, H need not to have constant rank over M. However, this is true
locally, in the following sense. Call a point m of M regular if the rank of n attains
a local maximum at m. Using standard continuity arguments, it follows that around
each regular point, the rank of 77, and hence that of H is constant in some open subset.
It is also easy to see that the set of regular point is dense i in M, provided that the
manifod is connected. As we are concerned with the local (in some neighbourhod of
a regular point ) structure of AK, we can assume, without loss of generality, that H
has constant rank over M. This assumption will be made in the whole rest of this
section.
Let us examine now some elementary properties of the decomposition (4.1).

Lemma 4.1 (i) (VuT)(Uy, Us) belongs to H for all vector fields U, Uy, Uy on TM.
(ii) Vy X belongs to H for all V in'V and X in H.
(i1i) VW belongs to V if VW are in V.

Proof :
(i) Start from the relation < TxY,T,U >= — < np,vZ,U >. Derivating in the
direction of U; we get

< (Vu, T)(X,Y), T,U > + < TxY,(Vy, T)(Z,U) >=
< (VUIT])(TXK Z) > =< n(ﬁUlT)(X,Y)Z’ U>.

But the first term of the right hand side vanishes by (3.6) and (3.13). Moreover,
by (3.5) < (Vy,T)(X,Y), T,U >= — < Ny, 1)(x.v)Z, U > hence it follows that

< TxY,(Vy,T)(Z,U) >= 0 and since V is generated by {TxY : X,Y € TM} the
proof is finished.

(ii) We know by (3.13) that (Vyn)(X,U) = 0 for all U in TM. Since nx = 0 this gives
5, xU = 0 and the proof is finished. Now, (iii) is a straightforward consequence of
(ii). W

As an immediate consequence we obtain our first information concerning the nature
of the distributions V and H.

Corollary 4.1 Both distributions V and H are integrable.

Proof :
The integrability of V follows directly from lemma 4.1 ,(iii) and the fact that T'(V, V) C
V. To prove (ii) we use that (Vxn)(Y,U) = (Vxn)(Y,U) for all X,Y in H and U in
TM (see proposition 3.1). Since T'(H, H) = 0, this is equivalent to nx ;U = 0 and
this implies readily that [X, Y] belongs to H. B

Note that in the context of quasi-Kéhler .A#, manifolds it is already known [13]
that H is an integrable distribution, over each open subset of M where it has constant
rank.

Lemma 4.2 For all (vector fields V,W belonging to V and X,Y in H respectively
we have :

10



(it) [R(Xv Y),v] = Ny (X,Y) where Py (X,Y) = My y X — Ty x Y.
Proof : B
(i) We know that V7 vanishes in vertical directions (cf. 3.13). By derivation, and

taking into account lemma 4.1, (iii) the result follows.
(ii) We use (3.12) actualized by (3.13). We have :

[RX,Y), v + [R(Y, V), nx] + [R(V, X), mv] = Mrixyvyva Ry x+ Rv.x0y-

Now the last two terms of the first member are clearly vanishing and the use of the
first Bianchi identity for V yields after a short computation to the claimed result. B

We are now going to obtain a first decomposition of the vector bundle V having
good algebraic properties with respect to the torsion tensor 7. Define a subbbundle
Vo of V by setting

Vo =TV, V)

and let V; be its orthogonal complement in V. In fact, V; can be considered as the
Kahler nullity of the foliation induced by V with respect to the induced almost Kéahler
structure. More precisely, define a tensor

n:VxV—YVby gw=(nw)y.

Then we have V; = {v € V : 5,V = 0}. In other words, we have 1,V C H and this
implies that 7'(V1,V;) = 0. Note that 7 completely determines the torsion over V,
that is M,w — N,v = T(v, w) for all v,w in V. This follows from T'(V, V) C V.

In the subsequent, we will assume that the subbundle V, has constant rank over
M. As our study is purely local and we have already assumed that H has constant
rank over M, there is no loss of generality since Vj, has constant rank around each
point of some open dense subset of M.

Remark 4.1 In the subsequent we will treat the distribution V as it were an almost
Kahler manifold with parallel torsion and Vi its Kdhler nullity. This approach is
motivated by the simple observation that the integral manifolds of V with respect to
the induced metric and almost complex structure are almost Kahler manifolds with
parallel torsion. Moreover, one can see that the first canonical Hermitian connection
of such an integral manifold, coincides with the restriction of V.

The point of departure of our study is the following :

Lemma 4.3 The orthogonal decomposition V = Vo@®V, is J—invariant and V -parallel
inside V.

Proof :
From (3.13) we get that V7 = 0 for all V in V. A routine use of lemma 4.1, (iii)
yields now to the parallelism of Vy and hence to that of V; inside V. B

In the following lemma we show that the existence of such a decomposition gener-
ates strong algebraic restrictions involving the tensors 7" and 7).

11



Lemma 4.4 (i) Suppose that we have an orthogonal, J-invariant, decomposition V =
Dy & Dy where the distributions Dy and Do are J-invariant and V-parallel inside V.
Then we have :

R(vy, wy,w, wy) = — < Ty, w, N, 01 > — < Ty, Ny, 1 >

for all vi, w1 in Dy, w in ¥V and wy in D,.

(ii) under the assumptions in (i) we have np,T(Dy, Dy) = 0.
(ii5) R(v,w,vy,w;) =0 for all v,w in Vy and vy, w; in V.
(iv) for all v;;1 < i <4 inV we have :

R(v1, v9,v3,v4) — R(v3, 04,01, V2) =< [y s Doy U3, Vg > — < [Ny, Ty JU1, V2 >

Proof :
We will prove (i) and (ii) in the same time. Using the first Bianchi identity for the
connexion V, we get :

R(vy, w, w, we) + R(wy, w, vy, we) + R(w, vy, wy, we)+
< Ty, Wiy My > + < Loy W, My v1 > + < Ty, Ny >= 0.

Now the second and the third term below vanish since Dy, Dy are V-parallel inside
V. Using that R(Jvy, Jwy, w,wy) = R(vy, wi,w,w;) and the J-invariance properties
of the tensor 7' it follows easily that < T, wq, ny,w >= 0. Hence < T, wy, Ny, w >= 0
and since w in V was chosen arbitrary we get (ii). The proof of (i) is now straight-
forward.

To prove (iii) we take Dy =V, Dy =V in (i) and use that V) is the K&hler nullity
of 7). Finally, for the proof of (iv) we use corollary 3.1, (i) and the fact that the tensor
n" defined by nw = (n,w)x is symmetric for all v,w in V (this is a consequence of
the fact that the torsion is concentrated in V). B

We are now able to prove our first decomposition result as follows.

Proposition 4.1 The subbundle Vy admits an orthogonal, J-invariant decomposition
V() — W1 @ W2

which is V-parallel inside V and has the following algebraic properties :

(i) Wy =T (Wy, W)

(“) ﬁW1 Wy = ﬁWQ Wiy =0

(11i) nw,Ws C V.

(“)) ﬁW2V1 = Ws.

Proof :

We define Wy = T'(Vy, V) and let W5 be the orthogonal complement of Wy in V. It
is clear that W;,7 = 1,2 are J-invariant and V-parallel inside V. Hence, we have a
V-parallel decomposition (inside V)

V=W, (W, )V).
Using lemma 4.4, (i) with Dy = Wiy, Dy = Wo @ V; we get iy, T (W2, V1) = 0 hence
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4.2 Nw, N, V1 = 0
since 7,V = 0. It follows that

< ﬁW2V17 ﬁWlWQ >=0.

Now, the definition of Wy implies that < W5, T(Vy,Vs) >= 0 and the use of the
almost Kéhler condition (3.1) gives :

4.3 hwy, Vo C V1.

In particular, ny, Wi C V;. Then < 9w, V1, Hw, W1 >= 0 since the vanishing of the tor-
sion on V) implies that 7y, V; is orthogonal to V;. We deduce that < 7y, Vi, T(Wy, Wy) >=
0, in other words ny, T (W7, Ws) is orthogonal to V;. But T(W;,Ws) C W; by the
definition of W; and we saw that 7y, W; C V. It follows that

ﬁWQT(Wl, WQ) — O

Consider now the orthogonal, J-invariant and V-parallel (inside V) decomposition
V=W,® (W; ®&V;). Using again lemma 4.4, (ii) we get

A, T (W1, W7) = 0.

Now, since T'(Wy, W5) = 0 (this follows immediately from (4.3)) and by the definition
of Wy we have that W is generated by T'(Wy, W1) and T'(Wy, W) and by the previous
discussion we obtain :

Tw, W1 = 0.

Therefore, the second half of property (ii) is now proven .

Now, fw, V1 is orthogonal to Wy, but we also know that it is orthogonal to V; as
T(V1, V1) = 0. Tt follows that ny,V; C Ws. Let define now E = 7y, V; and let F be
the orthogonal complement of E in W5. Then 7y, F' is orthogonal to V; and then by
(4.3) we obtain that 7y, F = 0. Since T(W,, W5) = 0 we also have npW, = 0. But
nrVY1 € E C W5 and then gV, = 0. Or F' is contained in Wy hence npW; = 0. We
showed that 7V = 0 and since F' is contained in V) it has to vanish.

We get that nyw,V; = Wy, proving the property (iv). Now using (4.2) we obtain
that 7y, Wy = 0 finishing the proof of (ii). Then T'(Wy, W5) = 0 and this implies that
Wy = T(Wy,Wp). Then (i) is also proved, and (iii) is an easy consequence of (ii) and
of vanishing of the torsion on W,. B

We end this section with the following definition.

Definition 4.1 Let (M?",g,J) be in the class AKy. It is said to be special iff H is
of constant rank over M and (VyJ)V = H.

From an intuitive point of view, special AK5 manifolds are those for which the integral
manifolds of the distribution V), the orthogonal of the Kahler nullity are Kahler. with
respect to the induced structure. Furthermore, the equality required in the definition
forbids product with Kahler manifolds.
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Remark 4.2 (i) Every 4-dimensional manifold in the class AKy is special on the
open set where its Nijenhuis tensor does not vanish.

(ii) If (M?", g, J) is a special AKo-manifold then it follows directly from the definition
that T(V,V) = 0. We also have

(VyJ)H = V.

Indeed, if E is the orthogonal complement of (VyJ)H in V then nyF = 0. The
vanishing of the torsion on V implies then ngY = 0. In other words, ngH is orthogonal
to V and then it has to vanish. We showed that F' is in fact contained in the Kahler
nullity of (g, J) hence F' =0 and our assertion follows.

5 Curvature properties

In this section we will examine the curvature tensor of a local AK,-manifold. After
proving some general properties we will show how the algebraic-geometric properties
of R can be used to obtain more information about the algebraic nature of the decom-
position given in proposition 4.1. Finally, this study will lead to the proof of theorem
1.1, which is given at the end of this section.

Throughout this section (M?", g, J) will be an almost Kéhler manifold in the class
AK,. All the notations in the previous section will be used without further comment.

Lemma 5.1 Let V;,1 <1< 3 beinV and X in H. We have :

(i) R(V1,Va, V3, X) =0

(“) R(_X:_‘/la ‘/2: ‘/E’y) =—< [nV2777V3]X7 Vi>

Proof :

(i) follows directly from lemma 4.1, (iii) and the integrability of V. To obtain (ii) one
uses the symmetry property of corollary 3.1, (i). Finally, (iii) follows by derivating
(ii) and taking into account that V- X belongs to H for all X in H and V in V and
the fact that Vyn =0. B

We will now use the second Bianchi identity for the canonical Hermitian connection
in order to get more information about the algebraic properties of V.J with respect
to the decomposition (4.1).

Proposition 5.1 Let X,V;,1 < i < 4 be vector fields on H and V respectively. We

have :
(1)
5.1 E(anX"/lav&w) - R(nVrX"/Q’V&w) =—-< [77V3a77V4]X7 TV1V2 >
(ii) (VxR)(Vi, V3, V3, Vi) = 0.
Proof :

Using the second Bianchi identity we obtain
(vXE)(‘/la ‘/Qa ‘/3; ‘/4) + (vvlﬁ) (‘/Qa X7 ‘/37 ‘/;l) + (VWE)(X) ‘/la ‘/3; ‘/;1)+
E(TX‘/I: ‘/2: ‘/E’)‘/;l) + R(Tvl‘/?: X7 ‘/37 ‘/21) + R(TVQXJ ‘/1: ‘/E’): ‘/;1) =0.
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Now, the second and the third terms of this equation are vanishing by lemma 5.1,
(iii). It is easy to see that the first term is J-invariant in V; and V5 and that all
the remaining terms are J-anti-invariant in V; and V5. Therefore, (ii) is proven and
we obtain : R(Tx Vi, Vo, Va, Vi) + R(Ty, Vo, X, Vi, Vi) + R(Ty, X, V1, V3, V) = 0. Since
T(V,V) CV it suffices now to use lemma 5.1, (ii) to conclude. W

An important consequence of the equation (5.1) is :
Corollary 5.1 We have
1T Vo = 0.
Proof :
Take V3 in Vo, V4 in V; and V1, V5 in V in equation (5.1). Since V;,i = 0,1 are
orthogonal and V-parallel inside V we have that

< [nV3777V4]X7T(‘/1; Vé) >= 0.

for all X in H. Since by definition T'(V, V) =V, it follows that < [ny,, ny,| X, U >=0
for all U in Vy. Now, ny,(msX) is in H since Vj is in V; and n1, X in V hence
< X, U >= — < nyymy, X, U >= 0. In our notations, < ny, H, Ny, Vo >= 0.
Then we get that 7y, 7y, V, is orthogonal to H. Or the definition of V), ensures that
My, V is contained in H and our result follows. B

Using the previous corollary and equation (5.1) as main tools, we will proceed now
to the refinement of the decomposition given in proposition 4.1. More precisely, our
immediate objective will be to show that the space W5 occuring in the decomposition
given in proposition 4.1, must vanish. To proceed, consider the decomposition

Vo =W @& Wy

and define E' = ny, Wy C V) and let E be the orthogonal complement of E' in V).
Obviously, the decomposition V; = E & FE’ is J-invariant and V-parallel inside V.

Using corollary 5.1 we obtain some preliminary algebraic information as follows.
Lemma 5.2 We have :

npH C Ws.

Proof :
Using the corollary 5.1, the fact that T'(Wy, W) = W; and the definition of E’ we
obtain easily that

5.2 77V1W1 =0
and
5.3 m, E' = 0.

The second equation gives us ngE’ = ngE' = 0. Then we have that ng E is contained
in T(E,E") =0 (since T(V1, V1) = 0) and thus it vanishes, showing that ngV; = 0.
Hence ng H is orthogonal to V; and by the first equation it is also orthogonal to W,
and our result follows. l

We will need now one more auxiliary lemma.
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Lemma 5.3 We have :

(i)

R(Ul, w1, Vo, ’U)(]) = —< [ﬁvo, ﬁwo]vla wp >
for all vy, w1 in V1 and vy, wy in V.
(i1) Define a symmetric tensor 7 : Vo — Vo by setting

< fIl)OawO >= § < ’f]’uovkaﬁU)ovk >
v EVL

for all vo, wy in Vy (here {v} is an arbitrary local orthonormal basis in V). Then 7
preserves Wy and the restriction of 7 to Wy has no kernel.

(11i) Let U be in V such that

R(U, V1, Vo, V3) =0

for all Vi in E' and V5, V3 in Vy. Then U L E'.

Proof :

(i) It suffices to apply lemma 4.4, (iii) and (iv).

(ii) That Wy is preserved by 7 follows directly by the fact that W, is V-parallel
inside V. Let v in W5 be such 7V = 0. Then the definition of 7 implies directly
that 7,); = 0. It follows that 7, W5 is orthogonal to V; and we know that it is also
contained in V', since v belongs to W, (cf. propositon 4.1, (iii)). Thus 7,Ws = 0,
and again the fact that v belongs to Wj yields 7,1¥; = 0 (see proposition 4.1, (ii)).
Hence 7,V = 0, v is in W5 C V), and this clearly implies the vanishing of v.

(iii) Using the symmetry formula of lemma 4.4, (iv) we obtain that

R(Va, V3, V1,U) = 0

for all V5, V3 in V; and V] in E’. Let now vy, wy be in Wy. If {v;} is an orthonomal
basis in V; then by lemma 4.2, (i) we have that :

5.4 R(v, JUE) o W0 = My Fug o W0 + Moo (F(Vk5 JUg)w0).
Now note that using point (i), one easily finds that Y. R(vy, Jup)v = —2(7J)v for
VEEVL

all v in Vy. With this in mind, we project (5.4) on V and sum over £ to find :

Z R(vk, Jog)Nogwo = 2J | TlrugWo + T (F0o)].-

v EV

But elements of the form 7,,w, generates, by definition, £’ hence taking the scalar
product with U yields to < #y,wo + 7y, (Fwe), JU >= 0 for all vy, wq elements of
W,. Since 7 is positive without kernel on Wy, by eventually considering its spectral
decomposition we deduce that JU (and then U) is orthogonal to 7y, Ws = E’ and
the proof is finished.

Based on these preparations we are able now to show the following.
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Proposition 5.2 The subbundle V admits a orthogonal, J-invariant and ¥V -parallel
(inside V )-decomposition :
V=V, &V

with V(] = T(Vo, Vo) and ?7V1V0 =0.

Proof :
We are going to show first that we must have E' = 0. Let us consider vy in Ws, wy
in E' and vy, v9 in V; as well as X in H. Using proposition 5.1, (i) we obtain

R(nvoXa Wy, V1, U?) - R(T]’on: Vo, V1, U?) =—< [77’017 nvz]X: TonU >

But 7,,X belongs (see lemma 5.2) to Wy C V), hence the second term of the left
hand side vanishes by lemma 4.4, (iii), as well as the right hand side, since T, vq is
in V whilst [n,,,7,,]X is in H. We found that :

R(TlvoXa Wy, V1, v2) =0

for all wg in E" and all vy, v9 in V;. Applying lemma 5.3, (iii), we obtain that 1, H
is orthogonal to E’, that is in our notations < nu,H, E’ >= 0. It follows that
B CV =W, e W, & V. But nw,W; = 0,9,V = Wy (cf. proposition 4.1, (ii)
and (iv)) hence ny, E' C Wy. Or T(E',W5) C V hence it follows that ngm W, C V.
Since E’ lies in Vj, the definition of V; implies nz W, C H and we obtain that
np Wy = 0. By means of lemma 5.2 this also implies 9 H = 0. But using (5.2)
and (5.3) we obtain (because E’ is contained in V;) that nmW; = 0 and ngV; = 0.
This means that E’ is contained in H, the Kéhler nullity of (g, .J) and we obtain that
E' =0.

Now, fjw, W5 must vanish and it follows that 7y, V), is orthogonal to W,. But we
already know (see proposition 4.1, (iv)) that the last mentioned spaces are in fact
equal, and then W5 = 0. It follows that W; = ), and the proof is now finished, where
the last assertion follows by (5.2). W

We will investigate now the geometrical properties of the decomposition in the
proposition 5.2, properties that will lead, once again, to a better understanding of its
algebraic structure.

Let we introduce the configuration tensor A : H x H — V by setting :

VyY =VyY +AY

for all X,Y in H, where VY denotes the orthogonal projection of_VXY on H. The
tensor A is precisely the obstruction to the distribution H to be V- parallel. In a
similar way, we define B: H x V — H by

ViV =VxV + BxV.

Because the connection V is metric we have < BxV,Y >= — < V, AxY > for all
X,Y in H and V in V. Since H is integrable we have that A is symmetric, that is
AxY = Ay X. Tt is also obvious that [Ay, .J] = 0 for all X in H.
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Lemma 5.4 (i) The distribution V, is V-parallel.
(ii) Moreover we have that ny,Vy = 0 and ny, H = V.

Proof :

(i) We begin by showing that the operator Bx, X in H must vanish on V. Indeed,
let us recall that (Vxn)(V,-) = (Vyn)(X,-) =0 for all X in H and V in V (see (3.6)
and (3.13)). If W is in V it follows then easily that (VxT)(V, W) = 0. In other words

VTyW) + Bx(TyW) = T(VxV,W) +T(V,VxW)

belongs to V and this implies the vanishing of Bx on V. Consider now Vg, Wy in V.
We have, for any X in H :

Vx(Ty,Wy) = T(YXVU, Wo) + T(VE):NVXWU)
=T(VxVo, Wy) + TV, VxWy).

But Vy = T(Vo, Vo) = T(Vo, V) and V, is V-parallel insider V, hence (i) is proven.
(ii)) We will show first that ny, H = V;. Since ny,Vy = 0 we have that ny, H C V.
Consider the decomposition V; = E @ F with ny,, H = E and F' the orthogonal
complement of E in V. From the definition of F it follows that 7y, F' is orthogonal to
H and hence it vanishes (recall that n,,V; C H). Since T'(Vy, V;) = 0 it also follows
that npV; = 0. This implies that ngH, which a subspace of V), is orthogonal to V;,
and hence npH = 0. Finally since npVy = 0 (F lies in V;) we get that F is contained
in the Kahler nullity of (g, .J) and then, of course, F'=0.

Now, by (i) we deduce that V; @ H is a V-parallel distribution. Using an argument
similar to that of lemma 4.4, (ii) for the V-parallel decomposition TM = Vy@® (V@ H)
we find that

nVOT(Vla H) =Nyt H = 0.

Combining this with 7y, H = V) finishes the proof of the lemma. W
The last step before proving the splitting theorem 1.1, consists in investigating

reducibility properties of the Kahler nullity H. We need to introduce some notations.
For every X in H define a linear map :

vx : Vi = Vi by vxV =g X.

The maps yx are in relation with the curvature of H (with respect to the canonical
Hermitian connection), as showed in the following lemma.

Lemma 5.5 Let X,Y, 7 be in H and V,W in V;. We have :
E(Xa}/anvm/a Z) = F(’YZV,M/,X, Y)+ < [[’YXany]a,yZ]VaW >

Proof :

From lemma 4.2, (i), we know that [R(X,Y),nv]W = ng,(x,y)W, where, in our
present notations Sy (X,Y) =1, vX — 1y,vY = [7x,7v|V. Taking the scalar prod-
uct with Z yields after an easy calculation to the wanted result. ll
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Lemma 5.6 Suppose that Hy is a J-invariant, V-parallel distribution contained in
H. Let Hy be the orthogonal complement of H, in H. Then the spaces ny, Hy and
My, Hy are mutually orthogonal.

Proof :
Let X; and X5 be in H; and H, respectively. Then the parallelism of H;, together with
the symmetry property of R (see corollary 3.1, (i)) ensures that R(X;, Xo, nyW, Z) =
R(vzV,W, X1, X3) =0 for all V,;W in V; and Z in H. Then, by the previous lemma
we obtain

[[,}/X17,YX2]7 ’YZ] =0

for all Z in H. Taking Z = X we find that
’7?{1’7)(2 + /YX2/Y§(1 = 2’7X1/YX2/YX1'

We change now X, in JX5 in the previous equation and take into account that
vix = vxJ = —Jvx. It follows that

7%(1’7)(2 + '7X2'7§(1 = —27x,7x,7x,
hence we must have

Va, 1x: + x5, = VX 7xYx; = 0.
This easily implies that v}”’(m@ = 0 and since yx is a symmetric operator for all X
in H (as a consequence of T'(V,V) C V) we get that yx,v7x, = 0. But this fact is

equivalent to the orthogonality of the spaces 7y, H; and 1y, Hs, and the proof is now
finished. W

Proof of theorem 1.1 :
Let us define the distribution H; to be H; = (ny,Vo) g where the subscript denotes
orthogonal projection. We have then 1y, Vy = Vo @ H;. As ) is V-parallel, so is
Ty Vo, hence H, must be V-parallel. Define now W; = 7y, H;,1 < i < 2. Then
using lemma 5.6 and the fact that ny, H =)V we obtain a J-invariant and orthogonal
decomposition

Vi =W, Ws.
The orthogonality of W, and W5 ensures, in the standard way, that ny, Wy = 0 and
that ny, Hy = nw,Hs = 0. Let us show now that W, is a V-parallel distribution. Let
X bein H and U, X; be in W, and H; respectively. Then :

Vx(nuX1) =nuVxXi + e, X1

belongs to nw, Hy + nryy X1 = Wi, were we used the V-parallelism of H;. In the
same way it can be showed that W, is V-parallel inside V. We get a V-parallel
decomposition :

TM=0Vo® W, @® Hy) & (Wy @ H,).

Using the behaviour of the tensor n with respect to this decomposition proven pre-
viously it follows that this splitting is in fact V-parallel. From the discussion below
it is now clear that the first factors gives rise to a AK-manifold with parallel torsion
and the second to a special AK,-manifold. W
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6 On parallel torsion

In this section we will consider an almost Kéhler manifold (M?", g,.J) whose first
canonical connection has parallel torsion. Then (M?", g, J) naturally belongs to the
class AK3. Our aim here is to show that in this setting that metric cannot be
Einstein if the J is not integrable. Along the way we will also obtain some information
about the holonomy of the canonical Hermitian connection. We will need first some
preliminaries.

Lemma 6.1 For any AK-manifold with parallel torsion we have :
(i)
V*Vw = @°
where the 2-form ®° is defined by ®°(X,Y) =< (rJ)X,Y >.
(i1) If {e;,1 < i < 2n} is a local orthonormal basis in TM, then :

2n 1
ZF ei, Je;)) = 2p + 2<I>0

Proof :

(i) Let us recall the fact that (Vxw)(Y,Z) =< (VxJ)Y,Z > for all X, YZ in TM.
Using this and the parallelism of the torsion, a simple algebraic computation which
will left to the reader yields to the desired result.

(ii) Follows immediately from formula (3.11). B

It is an easy exercise to show that the Ricci tensor is J-invariant in the presence
of parallel torsion. Furthermore, from lemma 6.1, (ii) it follows also that the Ricci-x
tensor is J-invariant.

Now, our key ingredient for proving theorem 1.2 consists in the following lemma,
whose first part is Sekigawa’s formula in the AK, case and whose second part is a
relation complementary to Sekigawa’s coming from the parallelism of the torsion.

Lemma 6.2 We have :
(1)
4<p,®— @ >= | + |9°)?

(ii)

4<p®+0" >+ <D+ >=0.
Proof :
(i) This is an immediate consequence of Sekigawa’s formula (see proposition 2.1),
actualized in the parallel torsion case. Indeed, we must have R’ = 0 (see corollary
3.2). It also clear that s* — s is a constant function. Then, using lemma 6.1, (i) in
Sekigawa’s formula we get the desired result.
(ii) Since the torsion is parallel, we have that R(X,Y).n =0 for all X, Y in TM. It
follows that p.n = 0 and taking the scalar product with Jn we obtain after an easy

computation that < p, ®+®° >= 0. It suffices now to use lemma 6.1, (ii) to conclude.
|
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par We can prove the following proposition, which is nothing else that theorem 1.2
in the introduction.

Proposition 6.1 Let (M?",g,J) be almost Kdihle with parallel torsion. Then :
(i) If g is Einstein then J is integrable ;

(i1) If J is not integrable the connection V has real reducible holonomy.
Proof :

We prove both assertions in the same time. Let us suppose that we have

6.1 2<p,® >=<p,®° >

and prove that .J is integrable. Using (7.1), the relations in lemma 7.1 become :

—2 < p, @ >=|D|2 4 |32
6 < p,® > +|P°2+ < P, D >=0.

We deduce that 3|®[? + 2|®°]2 =< &, 9% >. Since < @, 3" >< || - ®°| we have
clearly that ®° = & = 0, that is (g, J) is a Kéhler structure.

Now, if the manifold is Einstein, (7.1) is clearly satisfied, hence (i) is proven. To
prove (ii), suppose that V has irreducible holonomy. Then the V-parallel forms ®, ®°
must be multiples of w hence 2& = ®° so (7.1) is again satisfied. W
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