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Abstract

We exploit the isomorphism between the first �p-cohomology H1
(p)(Γ)

and the reduced 1-cohomology with coefficients in �p(Γ), to obtain van-
ishing results for H1

(p)(Γ): we treat e.g. groups acting on trees, groups
with infinite center, wreath products, and lattices in product groups.

1 Introduction

Lp-cohomology for countable groups, in its simplicial version, was introduced

by Gromov in Chapter 8 of [Gro93], as a useful invariant of countable groups.

Let X be a simplicial complex which is a classifying space for Γ, and let

X̃ be its universal cover. Denote by �pCk the space of p-summable complex

k-cochains on X̃, i.e. the �p-functions on the set Ck of k-simplices of X̃. The

Lp-cohomology of Γ is the reduced cohomology of the complex

dk : �pCk → �pCk+1,

where dk is the simplicial coboundary operator; we denote it by

H
k

(p)(Γ) = Ker dk/Im dk−1.

As explained at the beginning of section 8 of [Gro93], this definition only

depends on Γ. Of course, L2-cohomology had been considered much earlier,
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the use of the von algebra of Γ allowing to define, for k ≥ 0, the k-th L2-Betti

number, i.e. the von Neumann dimension of H
k

(2)(Γ) (see [CG86]).

This paper is mainly devoted to vanishing results for the first Lp-cohomology

of a finitely generated group. Our motivation for that is twofold. First, van-

ishing of the first L2-Betti number has impact in geometric group theory and

topology (see Eckmann’s paper [Eck97]). Second, it was shown in [BMV05]

that, whenever a non-amenable group Γ acts properly isometrically on a

proper CAT (−1) space X, then for p larger than the critical exponent e(Γ)

in X, the first Lp-cohomology of Γ is NOT zero. If e(Γ) is finite (which is the

case when Isom(X) acts co-compactly on X, by a result of Burger-Mozes

[BM96]), we get a non-existence result for isometric actions: a non-amenable

group Γ with H
1

(p)(Γ) = 0 for p > 1, cannot act properly isometrically on a

CAT (−1) space X for which Isom(X) is co-cocompact.

The following theorem is our main result (it subsumes Theorems 4.1, 4.2,

4.3, 4.6, 4.7, 4.8).

Theorem Fix p ∈]1, +∞[.

i) Let Γ be a finitely generated group acting (without inversion) on a tree

with non-amenable vertex stabilizers, and infinite edge stabilizers. If all

vertex stabilizers have vanishing first Lp-cohomology, then so does Γ.

ii) Let N be a normal, infinite, finitely generated subgroup of a finitely

generated group Γ. Assume that N is non-amenable, and that its cen-

tralizer ZΓ(N) is infinite. Then H
1

(p)(Γ) = 0.

iii) Let Γ be a finitely generated group. If the centre of Γ is infinite, then

H
1

(p)(Γ) = 0.

iv) Let H, Γ be (non trivial) finitely generated groups, and let H �Γ be their

wreath product. If H is non-amenable, then H
1

(p)(H � Γ) = 0.

v) Let G = G1 × . . . × Gn be a direct product of non-compact, second

countable locally compact groups (n ≥ 2). Let Γ be a finitely generated,

cocompact lattice in G. If Γ is non-amenable (equivalently, if some Gi

is non-amenable), then H
1

(p)(Γ) = 0.

vi) Fix n ≥ 2. For i = 1, . . . , n, let Gi be the group of ki-rational points of

some ki-simple, ki-isotropic linear algebraic group, for some local field

ki. Let Γ be an irreducible lattice in G1 × . . .×Gn. Then H
1

(p)(Γ) = 0.
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Moreover, for p = 2, the results in (ii), (iv), (v) above hold without the

non-amenability assumption.1

Part (iii) of this Theorem extends a result of Gromov (Corollary on p.

221 of [Gro93]): if the center of Γ contains an element of infinite order, then

H
1

(p)(Γ) = 0.

Part (vi) is a modest contribution to a conjecture of Gromov (question

(?) on p. 253 in [Gro93]): if Γ is a co-compact lattice of isometries of a

Riemannian symmetric space (of non-compact type) or a Euclidean building

X, then one should have H
k

(p)(Γ) = 0 for k < rank(X).

We now describe our approach to H
1

(p), which is to appeal to an identi-

fication between the first Lp-cohomology and the (reduced) first group co-

homology with coefficients in �p(Γ). The relevant cohomological background

is presented in section 2. Denote by λΓ the left regular representation of Γ

on functions on Γ. For 1 ≤ p < ∞, denote by Dp(Γ) the space of functions

f on Γ such that λΓ(g)f − f ∈ �p(Γ) for every g ∈ Γ: this is the space of

p-Dirichlet finite functions on Γ. If Γ is finitely generated, and S is a finite,

symmetric generating subset of Γ, we say (following [Pul]) that a function f

on Γ is p-harmonic if∑
s∈S

|f(s−1x) − f(x)|p−2(f(s−1x) − f(x)) = 0

for every x ∈ Γ. We denote by HDp(Γ) the set (not a linear space, if p 	= 2) of

harmonic, p-Dirichlet finite functions on Γ. It was observed by by B. Bekka

and the second author [BV97] for p = 2, and by M. Puls [Pul] in general,

that for Γ an infinite, finitely generated group, the following are equivalent:

i) The first Lp-cohomology H
1

(p)(Γ) is zero;

ii) HDp(Γ) = C;

iii) �p(Γ) is dense in Dp(Γ)/C;

iv) H1(Γ, �p(Γ)) = 0, where H1(Γ, �p(Γ)) denotes the reduced 1-cohomology

of Γ with coefficients in the Γ-module �p(Γ).

1W. Lück informed us that, in the case p = 2, it is possible to prove part (i) of the
Theorem without the non-amenability assumption, using his algebraic version of L2-Betti
numbers (see [Lue02]). The case of amalgamated products is treated in [Lue02], Theorem
7.2.(4).
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In section 3 we add a fifth characterization to this list, giving much flexibility:

Corollary 3.2 For an infinite, finitely generated group Γ, the above prop-

erties are still equivalent to: H1(Γ, �p(H)|Γ) = 0 for every group H containing

Γ as a subgroup.

Section 4 contains our vanishing results for H
1

(p), while section 5 has a

somewhat different flavor: using the Cheeger-Gromov vanishing result for L2-

cohomology of amenable groups [CG86], we obtain a new characterization of

amenability for finitely generated groups:

Proposition 5.3: Let Γ be an infinite, finitely generated group. The

following are equivalent:

i) Γ is amenable;

ii) �2(Γ) is a dense, proper subspace of D2(Γ)/C.

After hearing of a preliminary version of our results, Damien Gaboriau

contributed a quite interesting complement, and we are grateful to him for

allowing us to include this material in our paper. Thus the Appendix contains

Gaboriau’s proof of the fact that, if the first L2-Betti number of Γ is zero,

then H1(Γ, �2(Γ)) = 0, without assuming the group Γ to be finitely generated

(compare with [BV97], or Corollary 3.2). We conjecture that the converse

should also hold in full generality.

This paper can be viewed a sequel to [BMV05], although it can be read

independently.

Acknowledgements: We thank Bachir Bekka, Marc Bourdon, Damien

Gaboriau and Wolfgang Lueck for useful exchanges and for sharing their

insights with us, and Yves de Cornulier and Michael Puls for comments on

a preliminary version of the paper.

2 1-cohomology vs. reduced 1-cohomology

2.1 1-cohomology

Let G be a topological group and let V be a topological G-module, i.e. a

real or complex topological vector space endowed with a continuous linear

representation π : G× V → V ; (g, v) 
→ π(g)v. If H is a closed subgroup we
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denote by V |H the space V viewed as an H-module for the restricted action,

and by V H the set of H-fixed points:

V H = {v ∈ V | π(h)v = v, ∀h ∈ H}.

We say that V is a Banach G-module if V is a Banach space and π is a rep-

resentation of G by isometries of V . A G-module is unitary if V is a Hilbert

space and π a unitary representation.

We now introduce the space of 1-cocycles and 1-coboundaries on G, and

the 1-cohomology with coefficients in V :

• Z1(G, V ) = {b : B → V continuous | b(gh) = b(g) + π(g)b(h),

∀g, h ∈ G}
• B1(G, V ) = {b ∈ Z1(G, V )| ∃v ∈ V : b(g) = π(g)v − v, ∀g ∈ G}
• H1(G, V ) = Z1(G, V )/B1(G, V )

If N is a closed normal subgroup of G, and V is a G-module, there is a

well-known action of G on H1(N, V |N). On Z1(N, V |N), this action is given

by:

(g.b)(n) = π(g)(b(g−1ng)) (1)

(b ∈ Z1(N, V |N), g ∈ G, n ∈ N). Clearly this action leaves B1(N, V |N)

invariant, so it defines an action of G on H1(N, V |N). We have for m ∈ N :

(m.b)(n) = b(n) + (π(n)b(m) − b(m)) (2)

showing that the N -action on H1(N, V |N) is trivial, hence the action of G

on H1(N, V |N) factors through G/N . The following result is well-known (see

e.g. Corollary 6.4 in [Bro82]) and usually proved using the Hochschild-Serre

spectral sequence in group cohomology 2.

Proposition 2.1 1) There is an exact sequence

0 → H1(G/N, V N )
i∗→ H1(G, V )

RestNG→ H1(N, V |N)G/N → ... (3)

where i : V N → V denotes the inclusion;

2For a proof without spectral sequences, see 8.1 in Chapter 1 of [Gui80].
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2) If V N = 0, then the restriction map

RestNG : H1(G, V ) → H1(N, V |N)G/N

is an isomorphism. �

For a set X, we denote by F(X) the set of all functions X → C. If a

group Γ acts on X, we endow F(X) with the Γ-module structure given by

(γf)(x) = f(γ−1x) (for f ∈ F(X), ∀x ∈ X). The following lemma is well

known. We give the quick proof for completeness:

Lemma 2.2 Let Γ be a (discrete) group and let X be a set on which Γ acts

freely. Then H1(Γ,F(X)) = 0.

Proof: Let (si)i∈I be a set of representatives for Γ-orbits in X. For

x ∈ X, there exists a unique i ∈ I and γ ∈ Γ such that x = γsi. For

b ∈ Z1(Γ,F(X)), define then f(x) = (b(γ−1))(si). It is readily verified that

γf − f = b(γ) for every γ ∈ Γ. �

2.2 Reduced 1-cohomology

Since G is a topological group and V is a topological G-module, we may en-

dow Z1(G, V ) with the topology of uniform convergence on compact subsets

of G. We denote by B1(G, V ) the closure of B1(G, V ) for this topology, and

by

H1(G, V ) = Z1(G, V )/B1(G, V )

the quotient space, called the reduced first cohomology of G with coefficients

in V . We will use the abuse of notation H1(G, V ) = H1(G, V ) to mean ”the

canonical epimorphism H1(G, V ) → H1(G, V ) is an isomorphism”. We recall

without proof the following result of Guichardet (Théorème 1 in [Gui72]):

Proposition 2.3 Let G be a locally compact, second countable group and let

V be a Banach module such that V G = 0. The following are equivalent:

i) H1(G, V ) = H1(G, V );

ii) V does not have almost invariant vectors ( this means that there exists

a compact subset K of G and ε > 0 such that supK ‖π(g)v−v‖ ≥ ε‖v‖,
for every v ∈ V ). �
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Let λG denote the left regular representation of G on Lp(G) (1 ≤ p <

∞). Since λG has almost invariant vectors if and only if G is amenable (see

[Eym72]), we immediately deduce (see Corollaire 1 in [Gui72]):

Corollary 2.4 Fix 1 ≤ p < ∞. Let G be a locally compact, non compact,

second countable group. The following are equivalent:

i) H1(G, Lp(G)) = H1(G, Lp(G));

ii) G is not amenable. �

Reduced 1-cohomology behaves well with respect to inductive limits:

Lemma 2.5 Let G be a locally compact group which is the union of a directed

system of open subgroups (Gi)i∈I . Let (V, π) be a Banach G-module, with

b ∈ Z1(G, V ). If b|Gi
∈ B1(Gi, V |Gi

) for all i ∈ I, then b ∈ B1(G, V ). In

particular, if H1(Gi, V |Gi
) = 0 for all i ∈ I, then H1(G, V ) = 0.

Proof: Let K be a compact subset of G, and ε > 0. By compactness

K is covered by a finite union Gi1 ∪ ... ∪ Gin ; with i ≥ i1, ..., in, we get

K ⊂ Gi. Since b|Gi
∈ B1(Gi, V |Gi

), we find a vector v ∈ V such that

supK ‖b(g) − (π(g)v − v)‖ < ε, i.e. b ∈ B1(G, V ). �
Next result will be used to characterize vanishing of the first Lp-characterization

in Corollary 3.2.

Proposition 2.6 Fix 1 ≤ p < ∞. Let H be a subgroup of the countable,

discrete group Γ. Consider the following properties:

i) H1(H, �p(H)) = 0;

ii) H1(H, �p(Γ)|H) = 0;

i’) H1(H, �p(H)) = 0;

ii’) H1(H, �p(Γ)|H) = 0.

Then i) ⇔ ii) and i′) ⇔ ii′)

Proof: Choosing representatives (sn)n≥1 for the right cosets of H in Γ,

we may identify �p(Γ)|H , in an H-equivariant way, with the �p-direct sum of

[Γ : H ] copies of �p(H).
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ii) ⇒ i) and ii′) ⇒ i′): The continuous map Z1(H, �p(H)) → Z1(H, �p(Γ)|H),

b 
→ (b, 0, 0, ...) induces inclusions H1(H, �p(H)) → H1(H, �p(Γ)|H) and

H1(H, �p(H)) → H1(H, �p(Γ)|H).

i) ⇒ ii): The result is obvious for [Γ : H ] < ∞, so we assume [Γ : H ] =

∞. For b ∈ Z1(H, �p(Γ)|H), let bn ∈ Z1(H, �p(H)) be its projection

on the n-th factor �p(Hsn). So, for h ∈ H , one has b(h) = ⊕bn(h).

Fix K a finite subset of H , and ε > 0. Let N > 0 be such that∑
n>N ‖bn(h)‖p < ε

2
for every h ∈ K. For i = 1, . . . , N , using the

assumption we find a function vi ∈ �p(H) such that ‖bi(h) − (λH(h)vi−
vi)‖p < ε

2N
for every h ∈ K. Set vn = 0 for n > N , and define

v = ⊕vn ∈ �p(Γ). Then by construction ‖b(h) − [λΓ(h)(h)v−v]‖p < ε

for every h ∈ K, i.e. b is a limit of 1-coboundaries.

i′) ⇒ ii′): We consider two cases:

a) If H is finite then H1(H, �p(H)) = H1(H, �p(Γ)|H) = 0.

b) If H is infinite then the assumption H1(H, �p(H)) = 0 implies, by

Corollary 2.4, that H is not amenable. By lemma 2 in [BMV05],

this implies that �p(Γ)|H does not almost have invariant vectors.

By Proposition 2.3, we have H1(H, �p(Γ)|H) = H
1
(H, �p(Γ)|H), so

that the result follows from the implication i) ⇒ ii). �

Remark: Let G be a locally compact second countable group and let V

be a Banach G-module with V G = 0. Fix p ∈]1, +∞[, and denote by ∞pV

the �p-direct sum of countably many copies of V . Consider the following

properties:

i) H1(G, V ) = 0;

ii) H1(G,∞pV ) = 0;

i’) H1(G, V ) = 0;

ii’) H1(G,∞pV ) = 0.

Then the same proof as in Proposition 2.6 shows that i) ⇔ ii) and ii′) ⇒ i′).
However, the implication i′) ⇒ ii′) is not clear in general (as lemma 2 in

[BMV05] is very special to �p-spaces). A proof of that implication, using a

different approach and assuming that V is a uniformly convex Banach space,

has been communicated to us by N. Monod.
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3 First Lp-cohomology

3.1 p-Dirichlet finite functions

Let Γ be a finitely generated group; fix a finite generating set S. Let Γ act

on a set X. Denote by λX the permutation representation of Γ on F(X).

Fix p ∈ [1,∞[.

The space of p-Dirichlet finite functions on X (relative to the Γ-action)

is
Dp(X) = {f ∈ F(X) | ‖λX(g)f − f‖p < ∞∀g ∈ Γ}

= {f ∈ F(X) | ‖λX(s)f − f‖p < ∞∀s ∈ S}.
Then Dp(X)Γ is the space of functions on X which are constant on Γ-

orbits of X (it does not depend on p). Define a semi-norm on Dp(X) by

‖f‖Dp(X) =

[∑
s∈S

‖λX(s)f − f‖p
p

] 1
p

.

The kernel of this semi-norm is precisely Dp(X)Γ, and the quotient Dp(X) =

Dp(X)/Dp(X)Γ is a Banach space (the norm on Dp(X) depends on the choice

of S, but the underlying topology does not).

Define a linear map α̃ : Dp(X) → Z1(Γ, �p(X)) by α̃(f)(γ) = λX(γ)f −f .

The kernel of this map is Dp(X)Γ, so α̃ descends to a continuous injection

α : Dp(X) → Z1(Γ, �p(X)).

Let ĩ : �p(X) → Dp(X) be the canonical inclusion. Clearly �p(X)Γ is

the space of �p-functions which are constant on Γ-orbits, and zero on infinite

orbits. Set lpΓ(X) = �p(X)/�p(X)Γ (so that lpΓ(X) = �p(X) if all orbits are

infinite). The map ĩ induces a continuous inclusion i : lpΓ(X) → Dp(X). Note

that the image of α ◦ i is exactly the space B1(Γ, �p(X)) of 1-coboundaries.

This shows that:

• if i is not onto, then H1(Γ, �p(X)) 	= 0;

• if the image of i is not dense, then H1(Γ, �p(X)) 	= 0

Theorem 3.1 Let X be a free Γ-space. Then α : Dp(X) → Z1(Γ, �p(X)) is

a topological isomorphism, and consequently:
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H1(Γ, lp(X)) � Dp(X)/i(lpΓ(X));

H1(Γ, �p(X)) � Dp(X)/i(lpΓ(X)).

Proof: We already know that α is continuous and injective. Since the

Γ-action on X is free, we have H1(Γ,F(X)) = 0 by lemma 2.2. So for

b ∈ Z1(Γ, �p(X)) there exists f ∈ F(X) such that b(g) = λX(g)f − f for

every g ∈ Γ. Clearly f belongs to Dp(X), so that α̃(f) = b, and α is onto.

It is then clear that α−1 is continuous. �

When Γ is infinite and X = Γ, we have lpΓ(X) = �p(Γ) and Dp(X) =

Dp(X)/C. It was already observed (see lemma 1 in [BMV05]; end of section

2 in [Pul]) that:

• H1(Γ, �p(Γ)) is isomorphic to Dp(Γ)/(�p(Γ) + C);

• the first �p-cohomology H
1

(p)(Γ) is isomorphic to Dp(Γ)/(�p(Γ) + C).

So we get, using Proposition 2.6:

Corollary 3.2 Let Γ be an infinite, finitely generated group. The following

are equivalent:

i) H
1

(p)(Γ) = 0;

ii) �p(Γ) is dense in Dp(Γ)/C;

iii) H1(Γ, �p(Γ)) = 0;

iv) H1(Γ, �p(H)|Γ) = 0 for every group H containing Γ as a subgroup. �

From this and Corollary 2.4, we get immediately:

Corollary 3.3 Let Γ be an infinite, finitely generated group. The following

are equivalent:

i) H1(Γ, �p(Γ)) = 0;

ii) H
1

(p)(Γ) = 0 and Γ is non-amenable.
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3.2 p-harmonic functions (after M. Puls)

This section is essentially borrowed from section 3 in Puls’paper [Pul]. We

chose to include it mainly for the sake of completeness, but also to make sure

that Puls’ results hold for any Γ-action (not only for simply transitive ones).

Our presentation, emphasizing the role of Gâteaux-differentials, is slightly

different from the one in [Pul].

So we come back to the general setting of a finitely generated group Γ

(with a given, finite, symmetric, generating set S) acting on a countable set

X. For f ∈ F(X) and p > 1, define

(Δpf)(x) =
∑
s∈S

|f(s−1x) − f(x)|p−2(f(s−1x) − f(x))

with the convention, if p < 2, that |f(s−1x) − f(x)|p−2(f(s−1x) − f(x)) = 0

if f(s−1x) = f(x). Say that f is p-harmonic if Δpf = 0, and denote by

HDp(X) the set of p-harmonic functions in Dp(X). For p 	= 2, the set

HDp(X) is not necessarily a linear subspace in Dp(X). Note however that

it contains the linear subspace Dp(X)Γ.

For f ∈ Dp(Γ), define a linear form on Dp(X) by

df(g) =
∑
x∈X

∑
s∈S

|f(s−1x) − f(x)|p−2(f(s−1x) − f(x))(g(s−1x) − g(x))

(where g ∈ Dp(X); but clearly df(g) only depends on the image of g in Dp(Γ),

and df only depends on the image of f in Dp(Γ)). Let q be the conjugate

exponent of p (so that 1
p

+ 1
q

= 1); by Hölder’s inequality, we get

|df(g)| ≤
[

s∈S∑
x∈X

|f(s−1x) − f(x)|(p−1)q

] 1
q
[∑

x∈X

∑
s∈S

|g(s−1x) − g(x)|p
] 1

p

≤ ‖f‖p−1
Dp(X)‖g‖Dp(X),

proving continuity of df as a linear form on Dp(X).

This linear form df can be understood as follows. Let us identify a func-

tion f ∈ Dp(X) with its image in Dp(X). Consider the strictly convex,

continuous, non-linear functional on Dp(X) given by:

F (f) = ‖f‖p
Dp(X).
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The Gâteaux-differential of F at f ∈ Dp(X) (see [ET74], Def. 5.2 in Chapter

I) is given by

F ′
f (g) = lim

t→0+

F (f + tg) − F (f)

t

(g ∈ Dp(X)). An easy computation shows that:

F ′
f = p df .

The following lemma extends lemma 3.1 in [Pul].

Lemma 3.4 For f1, f2 ∈ Dp(X), the following are equivalent:

i) f1 − f2 ∈ Dp(X)Γ;

ii) df1(f1 − f2) = df2(f1 − f2).

Proof: If f1 − f2 ∈ Dp(X)Γ, then df(f1 − f2) = 0 for every f ∈ Dp(X),

in particular df1(f1 − f2) = 0 = df2(f1 − f2).

Conversely, if f1 − f2 /∈ Dp(X)Γ, then f1, f2 define distinct elements in

Dp(X). As F is strictly convex on Dp(X), by Proposition 5.4 in Chapter I

of [ET74], we have

F (f1) > F (f2) + F ′
f2

(f1 − f2) = F (f2) + p df2(f1 − f2).

Similarly:

F (f2) > F (f1) + F ′
f1

(f2 − f1) = F (f1) − p df1(f1 − f2).

So df1(f1 − f2) > df2(f1 − f2). �.

Next lemma generalizes lemma 3.2 and Proposition 3.4 in [Pul].

Lemma 3.5 For f ∈ Dp(X), the following are equivalent:

1. f is p-harmonic;

2. df(δy) = 0 for every y ∈ X;

3. df(g) = 0 for every g ∈ i(lpΓ(X)) (where the closure is in Dp(X)).
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Proof: (i) ⇔ (ii) We compute:

df(δy) =
∑

s∈S |f(y) − f(sy)|p−2(f(y)− f(sy))
− ∑

s∈S |f(s−1y) − f(y)|p−2(f(s−1y) − f(y))
= −2(Δpf)(y)

as S is symmetric.

(ii) ⇔ (iii) The linear span of the δy’s (y ∈ X) is dense in �p(X). By

continuity of i : lpΓ(X) → Dp(X), the linear span of the δy’s is dense in

i(lpΓ(X)). This shows the desired equivalence. �
The following result extends Theorem 3.5 in [Pul].

Theorem 3.6 Every f ∈ Dp(X) can be decomposed as f = g + h, where

g ∈ ĩ(�p(X)) and h ∈ HDp(X). This decomposition is unique, up to an

element of Dp(X)Γ.

Proof: We start with uniqueness. So assume that f = g1+h1 = g2+h2.

Then dh1(h1 − h2) = dh1(g2 − g1) = 0 by appealing to lemma 3.5 (since h1

is p-harmonic). Similarly dh2(h1 − h2) = 0. By lemma 3.4, it follows that

h1 − h2 is in Dp(X)Γ.

To prove existence, we denote by g the projection of f on the closed

convex subset i(lp(X)) in Dp(X) (this projection is well-defined by uniform

convexity and reflexivity of Dp(X), see Theorem 2.8 in [BL00] or lemma 6.2

in [BFGM]). Setting h = f − g, we must show that h is p-harmonic. For

every j ∈ i(lp(X)), consider the smooth function

Gj : R → R : t 
→ ‖f − g + tj‖p
Dp(X).

Since g minimizes the distance between f and i(lp(X)), the function Gj(t)

assumes its minimal value at t = 0, hence G′
j(0) = 0. The same computation

as for the Gâteaux-differential of F , shows that G′
j(0) = p dh(j) = 0. Since

this holds for every j ∈ i(lp(X)), we conclude that h is harmonic, by lemma

3.5. �
Comparing Theorem 3.6 with Theorem 3.1, we immediately get:

Corollary 3.7 Let X be a free Γ-space. Then H1(Γ, �p(X)) identifies with

HDp(X)/Dp(X)Γ (where two functions in HDp(X) are identified if and only

if they differ by an element in Dp(X)Γ). �
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4 Vanishing of first Lp-cohomology

4.1 Groups acting on trees

Theorem 4.1 Fix p ∈ [1, +∞[. Let G be a finitely generated group act-

ing (without inversion) on a tree with non-amenable vertex stabilizers, and

infinite edge stabilizers. If all vertex stabilizers have vanishing first Lp-

cohomology, then so does G.

Proof: By Bass-Serre theory (see [Ser77]), G is the fundamental group

of a graph of groups (G, Y ). So Y is a graph and G is a system of groups

attached to edges and vertices of Y , in such a way that the edge groups

are infinite and the vertex groups are non-amenable and have vanishing first

Lp-cohomology. Consider the following cases:

1) If Y is a segment, then G is an amalgamated product G = Γ1 	A Γ2

with A infinite, and Γ1, Γ2 non-amenable. The first cohomology of a

G-module V is computed by means of the Mayer-Vietoris sequence (see

[Bro82], formula (9.1)):

0 → V G → V Γ1 ⊕ V Γ2 → V A →

H1(G, V ) → H1(Γ1, V |Γ1)⊕H1(Γ2, V |Γ2)
RestAΓ1

−RestAΓ2−→ H1(A, V |A) −→ ...

(4)

We apply this to V = �p(G). By Corollary 3.3, we have H1(G, �p(G)) =

0. Therefore H
1

(p)(G) = 0.

2) If Y is a loop, then G is a HNN -extension G = HNN(Γ, A, θ), with

A infinite and Γ non-amenable. The first cohomology of a G-module

V is computed by means of the Mayer-Vietoris sequence (see [Bro82],

formula (9.2)):

0 → V G → V Γ → V A → H1(G, V ) → H1(Γ, V |Γ) → H1(A, V |A) −→ ...

We apply this to V = �p(G). By Corollary 3.3, we have H1(G, �p(G)) =

0, so again H
1

(p)(G) = 0.

14



3) If Y is finite, we can argue by induction on the number n of edges. If

n = 1, the result follows from the first two cases. For arbitrary n, we

choose an edge and contract it. If this edge is a segment with vertex

groups Γ1, Γ2 and edge group A, we replace it by a vertex whose group

is Γ1 ∗A Γ2; if the edge is a loop with vertex group Γ, and edge group A,

we replace it by a vertex whose group is HNN(Γ, A, θ). This operation

does not change the fundamental group and we obtain a graph with

n − 1 edges, so the induction assumption applies.

4) In the general case, Y is the increasing union of finite subgraphs, so we

may apply lemma 2.5. �

The converse of Theorem 4.1 fails. We give two examples for p = 2, one

for amalgamated products, one for HNN -extensions.

Example 1 Let q be a prime, and consider Γ = SL2(Z[1
q
]). It follows from

example 4 below that H
1

(2)(Γ) = 0. But (see [Ser77]):

Γ = SL2(Z) 	A SL2(Z)

(with A = {
(

a b
c d

)
∈ SL2(Z) : c ≡ 0 mod q}); and H

1

(2)(SL2(Z)) 	= 0.

Example 2 Let M be a closed, hyperbolic 3-manifold fibering over S1; the

fiber is a hyperbolic surface Σg. Then Γ = π1(M) is a semi-direct product

(hence a particular case of an HNN-extension):

Γ = π1(Σg) � Z;

then H
1

(2)(Γ) = 0 but H
1

(2)(π1(Σg)) 	= 0.

4.2 Normal subgroups with large commutant

Theorem 4.2 Let N be a normal, infinite, finitely generated subgroup of a

finitely generated group Γ. Assume that N is non-amenable, and that its

centralizer ZΓ(N) is infinite. Then H
1

(p)(Γ) = 0, for 1 < p < +∞. If p = 2,

this holds without the non-amenability assumption on N .

Proof: We consider Γ as a free N -space. Let Dp(Γ) be the space of p-

Dirichlet finite functions with respect to N on Γ, and Dp(Γ) = Dp(Γ)/Dp(Γ)N

15



as in the previous section. It is clear that Dp(Γ) is a Banach ZΓ(N)-module,

where ZΓ(N) acts by left translations.

Claim: Dp(Γ)ZΓ(N) = 0

Indeed, let a class [f ] ∈ Dp(Γ)ZΓ(N) be represented by the function f ∈
Dp(Γ); then λΓ(g)f − f ∈ Dp(Γ)N for every g ∈ ZΓ(N). This means that,

for every n ∈ N :

λΓ(n)(λΓ(g)f − f) = λΓ(g)f − f ;

or else (using gn = ng):

λΓ(g)(λΓ(n)f − f) = λΓ(n)f − f.

Since f ∈ Dp(Γ), we have λΓ(n)f − f ∈ �p(Γ), hence

λΓ(n)f − f ∈ �p(Γ)ZΓ(N).

As ZΓ(N) is infinite, this shows that λΓ(n)f − f vanishes identically, so that

f ∈ Dp(Γ)N , hence [f ] = 0. This proves the Claim.

Consider the map α : Dp(Γ) → Z1(N, �p(Γ)|N) from Theorem 3.1. Let

Γ act by translations on Dp(Γ), and let it act on Z1(N, �p(Γ)|N) by the

action of formula (1) in section 2.1. A simple computation shows that α

is Γ-equivariant. In view of Corollary 3.7, α induces a ZΓ(N)-equivariant

bijection between HDp(Γ)/Dp(Γ)N and H1(N, �p(Γ)|N). We now separate

two cases:

i) N∩ZΓ(N) is infinite. Since we know that the action of N on H1(N, �p(Γ)|N)

is trivial (by equation (2)), every element of H1(N, �p(Γ)|N) is (N ∩
ZΓ(N))-fixed. So every element of HDp(Γ)/Dp(Γ)N is (N ∩ ZΓ(N))-

fixed. Now by the Claim (noticing that we may replace there ZΓ(N) by

N∩ZΓ(N), since the latter is infinite), the only (N∩ZΓ(N))-fixed point

in Dp(Γ) is 0. So HDp(Γ)/Dp(Γ)N = {0}, hence H1(N, �p(Γ)|N) = 0.

By Corollary 3.2, we get H
1

(p)(N) = 0. By Theorem 1 in [BMV05]

(which uses non-amenability of N) we conclude that H
1

(p)(Γ) = 0.

ii) N∩ZΓ(N) is finite. Since N is non-amenable, we have H1(N, �p(Γ)|N) =

H1(N, �p(Γ)|N). By the Claim, there is no fixed point in HDp(Γ)/Dp(Γ)N

under ZΓ(N)/(N∩ZΓ(N)). So we have H1(N, �p(Γ)|N)ZΓ(N)/(N∩ZΓ(N)) =

0. In particular H1(N, �p(Γ)|N)Γ/N = 0. By equation (3), we have

H1(Γ, �p(Γ)) = 0, so H
1

(p)(Γ) = 0 by Corollary 3.2.
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If p = 2, we may assume that N is amenable. Then Γ contains an infinite,

amenable, normal subgroup, so by the Cheeger-Gromov vanishing theorem

[CG86], all the L2-cohomology of Γ does vanish. �
Remarks:

a) It was observed by Marc Bourdon that part (ii) in the above proof can

be obtained differently in case ZΓ(N) contains an element z of infinite

order. Indeed let H be the subgroup generated by N ∪ {z}. Then z is

central in H , so H
1

(p)(H) = 0 by the Corollary on p. 221 in [Gro93].

The result then follows from Theorem 1 in [BMV05].

b) Among the recent vanishing results for L2-cohomology, the most strik-

ing is probably Gaboriau’s (Théorème 6.8 in [Gab02]): assume that

Γ contains a normal subgroup N which is infinite, has infinite index,

and is finitely generated (as a group): then H
1

(2)(Γ) = 0. To prove this,

Gaboriau needs a substantial part of his theory of L2-Betti numbers for

measured equivalence relations and group actions. It is very tempting

to try to get a simpler proof of that result, and this is what motivated

this section. More precisely, one possible line of attack for Gaboriau’s

result is the following: if the normal subgroup N is amenable, then

all of the L2-cohomology of Γ does vanish, by the Cheeger-Gromov

vanishing theorem [CG86]. So we may assume that N , hence also Γ,

is non-amenable. We must then prove that H1(Γ, �2(Γ)) = 0; by the

exact sequence (3), this is still equivalent to H1(N, �2(Γ)|N)Γ/N = 0.

Although a proof of Gaboriau’s result along these lines remains elu-

sive so far, this line of attack opened the possibility of replacing L2-

cohomology by Lp-cohomology, which resulted in Theorem 4.2 above.

Theorem 4.3 Let Γ be a finitely generated group. If the centre of Γ is

infinite, then H
1

(p)(Γ) = 0 for 1 < p < ∞.

Proof: We apply the first case of the proof of Theorem 4.2, with N = Γ.

It yields H
1

(p)(Γ) = 0, in full generality (i.e. without appealing to non-

amenabilility). �

The following example, kindly provided by M. Bourdon, shows that the

previous Theorem 4.3 does not hold for p = 1.
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Example 3 One has H
1

(1)(Z) 	= 0. To see it, first observe that every function

f ∈ D1(Z) admits a limit at +∞ and −∞. Indeed, the sequence (f(n))n≥1

is Cauchy, since for n > m:

|f(n) − f(m)| = |
n−1∑
k=m

(f(k + 1) − f(k))| ≤
n−1∑
k=m

|(f(k + 1) − f(k))|

and the RHS goes to zero for m, n → +∞ as f ∈ D1(Z). Similarly, the

sequence (f(−n))n≥1 is Cauchy.

Next consider the linear form τ on D1(Z) defined by

τ(f) = ( lim
n→+∞

f(n)) − ( lim
n→−∞

f(n))

(f ∈ D1(Z)). The form τ is continuous on D1(Z) because

|τ(f)| = | lim
n→+∞

(f(n)− f(−n))| = | lim
n→+∞

n−1∑
k=−n

(f(k + 1)− f(k))| ≤ ‖f‖D1(Z).

Since τ is a continuous non-zero linear form on D1(Z) which vanishes on

C + �1(Z), we conclude that H
1

(1)(Z) 	= 0.

4.3 Wreath products

Lemma 4.4 Let G1, G2 be non-compact, locally compact groups. Let N �
G1×G2 be a closed normal subgroup such that N∩(G1×{1}) (resp. N∩({1}×
G2)) is not co-compact in G1 ×{1} (resp. {1}×G2). Set G = (G1 ×G2)/N .

Then:

1) H1(G, L2(G)) = 0;

2) If moreover G is non-amenable, then H1(G, Lp(G)) = 0 for 1 < p < ∞.

Proof:

1) We appeal to a result of Shalom ([Sha00a], Theorem 3.1): if (V, π)

is a unitary (G1 × G2)-module, and b ∈ Z1(G1 × G2, V ), then b is

cohomologous in H1(G1 ×G2, V ) to a sum b0 + b1 + b2, where b0 takes

values in V G1×G2 and, for i = 1, 2, bi factors through Gi and takes

values in a (G1 × G2)-invariant subspace on which π factors through

Gi. This implies the following alternative: either H1(G1 × G2, V ) = 0,

or there exists in V a non-zero vector fixed by some restriction π|Gi
.
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We apply this to the regular representation λG, viewed as a repre-

sentation of G1 × G2. Our assumption ensures that the restriction

λG|Gi
(i = 1, 2) does not have non-zero invariant vectors. So H1(G1 ×

G2, L
2(G)) = 0, hence also H1(G, L2(G)) = 0.

2) We replace Shalom’s result by a recent result of Bader-Furman-Gelander-

Monod ([BFGM], Theorem 7.1): let (V, π) be a Banach (G1 × G2)-

module, with V uniformly convex, such that π does not almost have

invariant vectors, and H1(G1 × G2, V ) 	= 0; then for some i ∈ {1, 2},
there exists a non-zero π(Gi)-fixed vector.

We apply this to the regular representation λG on Lp(G), viewed as a

representation of G1×G2. Our assumptions ensures that the restriction

λG|Gi
(i = 1, 2) does not have non-zero invariant vectors, and that λG

does not almost have invariant vectors. So H1(G1 × G2, L
p(G)) = 0,

hence also H1(G, Lp(G)) = 0. �

Lemma 4.5 Fix n ≥ 2. Let G1, . . . , Gn be non-compact, locally compact

groups. Assume that at least one Gi is non-amenable. Set G = G1× . . .×Gn.

Then H1(G, Lp(G)) = 0 for 1 < p < ∞.

Proof: Re-numbering the groups if necessary, we may assume that G1 is

non-amenable. The result then follows from lemma 4.4, by induction over n

(the case n = 2 being lemma 4.4, with N = {1}). �
As an application, we show the vanishing of the first Lp-cohomology for

wreath products. For p = 2, that fact can also be deduced from Theorem

7.2.(2) in [Lue02].

Theorem 4.6 Let H, Γ be (non trivial) finitely generated groups. Then

1) H
1

(2)(H � Γ) = 0;

2) If H is non-amenable, then H
1

(p)(H � Γ) = 0 for 1 < p < ∞.

Proof: Let N =
⊕

Γ H . Note that N is amenable exactly when H is.

We separate two cases:

i) Proof of (1) when N is amenable. If N is finite, then so are H , Γ, H �Γ
and the result is clear. If N is infinite, then the result follows from the

Cheeger-Gromov vanishing theorem [CG86].
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ii) Proof of (1) + (2) when N is non-amenable. Then N can be written

as the direct product of two infinite groups. By lemma 4.5, we have

H1(N, �p(N)) = 0, hence also H1(N, �p(H � Γ)|N) = 0 by Proposition

2.6. The result then follows from equation (3). �

4.4 Lattices in products

Theorem 4.7 Let G = G1 × . . . × Gn be a direct product of non-compact,

second countable locally compact groups (n ≥ 2). Let Γ be a finitely generated,

cocompact lattice in G. Then:

i) H
1

(2)(Γ) = 0;

ii) if Γ is non-amenable (equivalently, if some Gi is non-amenable), then

H
1

(p)(Γ) = 0 for 1 < p < ∞.

Proof: By the version of Shapiro’s lemma proved in Proposition 4.5

of [Gui80], since Γ is cocompact, there exists a topological isomorphism

H1(Γ, �p(Γ)) � H1(G,p IndG
Γ �p(Γ)), where pIndG

Γ V denotes the induced mod-

ule in the Lp-sense, i.e. pIndG
Γ V = (Lp(G, V ))Γ. But pIndG

Γ �p(Γ) is G-

isomorphic to Lp(G), so we get H1(Γ, �p(Γ)) � H1(G, Lp(G)) = 0 by lemma

4.5. �

Theorem 4.8 Fix n ≥ 2. For i = 1, . . . , n, let Gi be the group of ki-rational

points of some ki-simple, ki-isotropic linear algebraic group, for some local

field ki. Let Γ be an irreducible lattice in G1 × . . . × Gn. Then H
1

(p)(Γ) = 0

for 1 < p < ∞.

Proof: We need some terminology: a lattice Λ in a locally compact group

G is p-integrable if either it is cocompact, or it is finitely generated and for

some finite generating set S ⊂ Λ, there is a Borel fundamental domain D ⊂ G

such that ∫
D

|χ(g−1h)|pS dh < ∞

for every g ∈ G; here | · |S denotes word length, and χ : G → Γ is defined by

χ(γg) = γ for γ ∈ Γ, g ∈ G.

We then appeal to a result of Bader-Furman-Gelander-Monod (see section

8.2 in [BFGM], especially the few lines preceding Proposition 8.7): if Λ is
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a p-integrable lattice in G, and V is a Banach Λ-module, then there is a

topological isomorphism

H1(Λ, V ) � H1(G,p IndG
ΛV ).

In our case, set G = G1 × . . . × Gn. Then Γ is p-integrable for every

p ≥ 1, by a result of Shalom (section 2 in [Sha00a]). With V = �p(Γ), we get

pIndG
Γ V � Lp(G), so the result follows using lemma 4.5. �

Example 4 Let q be a prime; Γ = SL2(Z[1
q
]) is an irreducible non-uniform

lattice in SL2(R) × SL2(Qq). Theorem 4.8 applies to give H
1

(p)(Γ) = 0.

5 Application to amenable groups

Proposition 5.1 Let Γ be a finitely generated group. If Γ has an infinite

amenable normal subgroup (in particular if Γ is infinite amenable), then

H1(Γ, �2(Γ)) = 0.

Proof: By the Cheeger-Gromov vanishing result [CG86], the assumptions

imply H
1

(2)(Γ) = 0. So the result follows from Corollary 3.2. �
When Γ is itself amenable, the finite generation assumption can be re-

moved:

Corollary 5.2 Let Γ be an amenable discrete group. Then H1(Γ, �2(Γ)) = 0.

Proof: Let (Γi)i∈I be the directed system of finitely generated subgroups

of Γ (so that Γ =
⋃

i∈I Γi). By Proposition 5.1, we have H1(Γi, �
2(Γi)) = 0,

for every i ∈ I. By Proposition 2.6, this implies H1(Γi, �
2(Γ)|Γi

) = 0 for

every i ∈ I. The conclusion then follows from lemma 2.5. �

We also get a new characterization of amenability for finitely generated,

infinite groups:

Proposition 5.3 Let Γ be an infinite, finitely generated group. The follow-

ing are equivalent:

i) Γ is amenable;

ii) �2(Γ) is a dense, proper subspace of D2(Γ)/C.
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Proof: In view of Theorem 3.1, �2(Γ) is a dense, proper subspace of

D2(Γ)/C if and only if H1(Γ, �2(Γ)) 	= 0 and H1(Γ, �2(Γ)) = 0. If this

happens, then Γ is amenable by Corollary 3.3. Conversely, if Γ is amenable,

then H1(Γ, �2(Γ)) 	= H1(Γ, �2(Γ)) by the converse of Corollary 3.3, and the

latter space is zero by Proposition 5.1. �

6 Appendix: A result of D. Gaboriau, and a

conjecture

Recall that Cheeger and Gromov defined L2-Betti numbers bi
(2)(Γ) (taking

values in [0,∞]) for any countable group Γ (see formula (2.8) in [CG86]). The

definition of the first L2-Betti number b1
(2)(Γ) will be recalled in the course

of the proof of Proposition 6.1 below.

Conjecture 1 Let Γ be a countable group. A necessary and sufficient con-

dition for b1
(2)(Γ) = 0 is H1(Γ, �2(Γ)) = 0.

For finitely generated groups, this is Corollary 3.2. The next result shows

that the necessity is true in general.

Proposition 6.1 (D. Gaboriau) Let Γ be a countable group. If b1
(2)(Γ) = 0,

then H1(Γ, �2(Γ)) = 0.

Proof: Write Γ as the union Γ =
⋃∞

n=1 Γn of an increasing family of

finitely generated subgroups. Let Sn be a finite generating subset of Γn, with

Sn ⊂ Sn+1. Let Γn = 〈Sn|Rn〉 be a presentation of Γn; clearly we may arrange

so that Rn ⊂ Rn+1. Let Kn be the presentation 2-complex associated with

this presentation of Γn.

Set then S∞ =
⋃∞

n=1 Sn and R∞ =
⋃∞

n=1 Rn, so that 〈S∞|R∞〉 is a pre-

sentation of Γ. Let K be the presentation 2-complex associated with this

presentation, and let p : K̃ → K be its universal cover. By construction

Kn is a subcomplex of K. Set Ln = p−1(Kn): this is a (non-connected)

Γ-invariant subcomplex of K̃.

We now recall how b1
(2)(Γ) is defined. For each n, we have the first L2-

cohomology H
1

(2)(Ln), which is a unitary Γ-module. For m < n, the inclusion

Lm ⊂ Ln induces, by contravariance, a Γ-module map:

jm,n : H
1

(2)(Ln) → H
1

(2)(Lm).
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Since Im(jm,n+1) ⊂ Im(jm,n), the Γ-dimension dimΓ Im(jm,n) is decreasing

as a function of n; moreover limn→∞ dimΓ Im(jm,n) is now increasing as a

function of m, and we define

b1
(2)(Γ) = lim

m→∞
lim

n→∞,n>m
dimΓ Im(jm,n)

= sup
m∈N

inf
n>m

dimΓ Im(jm,n).

It is checked in [CG86] that b1
(2)(Γ) does not depend on the choice of the

exhaustive sequence of Γ-co-compact subcomplexes Ln in K̃.

We are going to use the following fact (explained e.g. in section 1 of

[BMV05]): if H is a finitely generated group, and X̃ is the universal cover

of a presentation complex for H , then there is a natural isomorphism be-

tween H1(H, �2(H)) and the first �2-cohomology H
1

(2)(X̃). In particular, if

L0
m is any connected component of Lm, we have a natural isomorphism be-

tween H1(Γm, �2(Γm)) and H
1

(2)(L
0
m). As a consequence, we have a natural

isomorphism

αm : H1(Γm, �2(Γ)) → H
1

(2)(Lm).

With this we can really start the proof of the Proposition. If b1
(2)(Γ) = 0,

from the second definition of b1
(2)(Γ) above, we get

inf
n>m

dimΓ Im(jm,n) = 0

for every m, i.e. ⋂
n>m

Im(jm,n) = 0

which implies ⋂
n>m

Im(jm,n) = 0

for every m.

Take now b ∈ Z1(Γ, �2(Γ)) and consider the class [bm] of b|Γm in H1(Γm, �2(Γ)).

By naturality, for n > m, we have jm,n(αn[bn]) = αm[bm]. So, for fixed m,

we have αm[bm] ∈ ⋂
n>m Im(jm,n), i.e αm[bm] = 0.

Since αm is an isomorphism, we have [bm] = 0, i.e. b|Γm ∈ B1(Γm, �2(Γ)).

By lemma 2.5, we deduce b ∈ B1(Γ, �2(Γ)); since b was arbitrary, this means

that H1(Γ, �2(Γ)) = 0. �
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