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Abstract

In this article we will focus on the reduced-1 cohomology spaces of
locally compact connected groups with coefficients in unitary repre-
sentations. The vanishing of these spaces for every unitary irreducible
representation characterizes the Kazhdan’s property (T). The main
theorem state that for a connected locally compact group, there are
only a finite number of unitary irreducible representation for which
the reduced 1-cohomology does not vanish. Moreover, a description
of these representations is given.
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1 Introduction

The vanishing of the reduced-1 cohomology spaces for every unitary irre-
ducible representation characterizes the Kazhdan’s property (T) (see Y.Shalom
[15]) for a compactly generated group (in particular a connected group). For
the connected solvable Lie groups, P. Delorme established the following the-
orem ([4]):

Theorem 1.1. (Delorme) For every irreducible representations of a con-
nected solvable Lie group of degree at least 2, the reduced-1 cohomology van-
ishes. Moreover there are only finitely many characters for which the reduced-
1 cohomology is not zero.

As (non compact) solvable Lie groups do not have property (T) we can in-
terpret this result by saying that the lack of property (T) of such groups
is, from a cohomological point of view, concentrated in the 1-dimensional
representations.
The main goal of this paper is to understand for connected Lie groups where
the lack of property (T) is concentrated. Delorme’s theorem provides the
answer for connected solvable Lie groups. This is done by enlarging the class
of solvable groups in several steps

First, in section 3, we treat the class of amenable groups. We show that if
G is an amenable connected locally compact group then the only irreducible
representations π of G which carry reduced 1-cohomology are finite dimen-
sional and there are only finitely many such representations. It shows in
particular that such a group has the property (HFD) (defined by Y.Shalom
in [14]).

Theorem 3.4 Let G a locally compact almost connected amenable group. The
unitary irreducible representations with non vanishing reduced 1-cohomology
are all finite dimensional and there are only finitely many such representa-
tions.

A nice corollary of this fact is the vanishing of H1(G, L2(G)) for these groups.
As this vanishing result is also true for discrete amenable groups (see [12]),
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we conjecture that H1(G,L2(G)) is zero for every amenable locally compact
group.

In section 4, we are interested in a much larger class of groups, namely the
groups having the Haagerup property. Recall that a locally compact group
G has the Haagerup property if there exists a proper conditionally negative
definite function on G. For such connected locally compact groups, we show
that there are only finitely many irreducible representations which charac-
terize the lack of property (T). However these representations are not finite
dimensional in general.
Finally we give a description of the irreducible representations of a locally
compact connected group for which the associated 1-cohomology space is not
trivial:

Theroem 6.4 Let G be a almost connected locally compact group. Then
there are only finitely many irreducible unitary representations with non van-
ishing H1(G, π).
Moreover, if G does not have property (T) (which implies the existence of
an irreducible unitary representation π of G with H1(G, π) 6= 0), any such
non trivial representation π factors through an irreducible unitary represen-
tation σ of a group H isomorphic to PO(n, 1), PU(m, 1) or to a non-compact
amenable non-nilpotent group H such that H1(H, σ) ∼= H1(G, π) 6= 0.

The study of irreducible representations π of a group G for which H1(G, π) 6=
0 is motivated by the Vershik-Karpushev theorem (see [17] and [11]). Let
us recall that the support of a representation π of a group G is the set of
irreducible representations of G which are weakly contained in π and that
the cortex of the group, Cor (G), is the set of all irreducible representation
which are not separated from the trivial representation for the Fell-Jacobson
topology on the dual space Ĝ (see [11] for a nice presentation of this). The
Vershik-Karpushev theorem is:

Theorem 1.2. If πis a unitary factorial representation of a second count-
able locally compact group G with H1(G, π) 6= 0 then supp π ⊂ Cor (G).

We can interpret this result by saying that the lack of property (T) is topolog-
ically concentrated in the cortex of the group. Here we are rather interested
in a more algebraic characterization of these representations, but for reduced
cohomology.
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Another motivation is given by Guichardet’s property (P) (see [6]):

A locally compact group G has property (P) if the set of irreducible uni-
tary representations π for which H1(G, π) 6= 0 is finite and all its elements

are closed points in Ĝ.

In the original definition of this property, we also want these representa-
tions to be non-separated from the trivial representation. As this condition
is a direct consequence of the Vershik-Karpushev’s theorem we omitted it
from the definition.

In the last section, we apply these vanishing results to the study of smooth
µ-harmonic Dirichlet finite functions on smooth manifold which are homo-
geneous spaces of connected unimodular Lie groups. We show that if G is a
unimodular connected Lie group acting transitively on a smooth connected
non-compact manifold M with H1(G, L2(M)) = 0, and if µ is a symmetric
probability measure on G whose support is a compact generating set of G,
then the only smooth Dirichlet-finite µ-harmonic functions on M are the
constant functions. In [12], the authors proved the analogous result in the
case where the groups are discrete. In [1], G.Alexopoulos proved this kind of
result for the bounded functions on discrete polycyclic groups.

2 1-cohomology and reduced-1 cohomology

Let G be a locally compact σ-compact separable group and let (π,Hπ) be a
strongly continuous unitary representation of G.

Definition 2.1.

1) A continuous map b : G → Hπ is a 1-cocycle with respect to π if it
satisfies the following relation:

b(gh) = b(g) + π(g)b(h) (∗)

for all g, h ∈ G.
The space of cocycles endowed with the topology of uniform convergence
on compact sets of G is a Fréchet space, denoted by Z1(G, π).

2) A cocycle b is a coboundary if there exists an element ξ ∈ Hπ such
that b(g) = π(g)ξ− ξ. The set of coboudaries is a subspace of Z1(G, π)
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denoted by B1(G, π). The closure of the coboundaries in Z1(G, π) will
be denoted by B1(G, π). An element of this space is called an almost
coboundary.

3) The 1-cohomology of G with coefficients in π is the quotient space

H1(G, π) = Z1(G, π)/B1(G, π).

4) The 1- reduced-cohomology of G with coefficient in π is the Hausdorff
quotient space

H1(G, π) = Z1(G, π)/B1(G, π).

We have a nice geometrical interpretation of these spaces in terms of affine
isometric actions of the group G.

Definition 2.2. Let H be an affine Hilbert space. An affine isometric ac-
tion of G on H is a strongly continuous group homomorphism α : G → Is(H)
to the group of affine isometries of H.

The next lemma establishes a relationship between affine isometric actions,
unitary representations and 1-cocycles.

Lemma 2.3. Any affine isometric action α : G → Is(H) can be written
as α(g)v = π(g)v + b(g) (v ∈ H) where π is an unitary representation of
G on the underlying Hilbert space of H and b : G → H is a 1-cocycle.The
representation π is called the linear part of α and b is the translation part
of α. Conversely, given π an unitary representation of G on a Hilbert space
H and b : G → H a 1-cocycle, we can define an affine isometric action by
setting α(g)ξ = π(g)ξ + b(g), ∀ξ ∈ Hπ.

For the proof, we refer to [10]. It is an easy exercise to show that, given an
unitary representation π of G, the coboundaries b ∈ B1(G, π) correspond to
affine isometric actions with linear part π which have fixed points. Moreover,
almost coboundaries b ∈ B1(G, π) correspond to those actions α which almost
have fixed points in the sense that for every ε > 0 and for every compact
subset K of G, there exists an element ξ ∈ Hπ such that

max
k∈K

‖α(k)ξ − ξ‖ < ε

Hence the following interpretations:

- The 1-cohomology space H1(G, π) classifies the affine isometric actions
of G with linear part π which have a fixed point.
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- The reduced-1 cohomology space H1(G, π) classifies the affine isometric
actions of G with linear part π which almost have fixed points.

2.1 Some properties

For a given unitary representation π of a locally compact group G, one can
ask if the associated 1-cohomology and reduced-1 cohomology coincide. The
answer is given by A.Guichardet in [5]:

Proposition 2.4. Let π be a unitary representation of G without non zero
invariant vectors. The following are equivalent:

i) π does not almost have invariant vectors (i.e. there exists ε > 0,a
compact subset K of G, such that max

k∈K
‖π(k)ξ − ξ‖ ≥ ε‖ξ‖) for all

ξ ∈ Hπ;

ii) B1(G, π) is closed in Z1(G, π);

iii) H1(G, π) = H1(G, π).

In the case where π has a non zero invariant vector, one can decompose it
as an orthogonal direct sum of the form π0 ⊕ 1 where π0 doesn’t have non
zero invariant vectors and where 1 denote the trivial action of G on Hπ. As
H1(G, 1) = H1(G, 1) = Z1(G, 1), one can compare the 1-cohomology with
the reduced-1 cohomology spaces by using the following property (see for
example [7]):

Lemma 2.5. Let π1, ..., πn be a finite set of unitary representations of a
group G. Then

H1(G,⊕n
i=1πi) = ⊕n

i=1H
1(G, πi)

Remark that this statement is no longer true in general for an infinite family
of unitary representations. However, we have:

Lemma 2.6. ([2]) If π is a unitary representation of a locally compact
group G, then

H1(G, π) = 0 ⇔ H1(G,∞ · π) = 0

If we deal with reduced-1 cohomology these kind of properties behave quite
nicely (see [5]):
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Proposition 2.7. Let (X,µ) be a measured space and (πx)x∈X a measurable
field of unitary representations of a locally compact group G. If H1(G, πx) = 0
for µ-almost every x ∈ X, then

H1(G,

∫ ⊕

X

πx dµ(x)) = 0.

2.2 Normal subgroups

The aim of this section is to study rigidity phenomenon of the following type:
Let α be an affine isometric action of a locally compact group G and N a
closed normal subgroup of G. If the restriction of the action to N admits a
fixed point (resp. almost fixed points) what can be said about the existence
of a G-fixed point (resp. almost fixed points for α)?
How does the behaviour of an affine isometric action on a normal subgroup
influence the global behaviour of the action? What is the link between affine
isometric actions of the group G and those of the normal subgroup N?

Lemma 2.8. Let N be a closed normal subgroup of a locally compact group
G and α an affine isometric action of G whose linear part doesn’t have non
zero N-invariant vectors. If the restriction of α to N has a fixed point, then
α has a fixed point.

We can give a short geometrical proof if this fact:
Let α be an affine isometric action with linear part π,whose restriction to N
has a fixed point. Let HN be the set of α(N)-fixed points. If ξ, η ∈ HN ,
then ξ − η = α(n)ξ − α(n)η = π(n)(ξ − η). But we assume π not to have
N -invariant non zero vectors; so we conclude that HN is reduced to a single
point. On the other hand, HN is α(G)-invariant by normality of N in G.

The preceding lemma can be also stated as : Let N be a closed normal
subgroup of G and π a unitary representation of G without non zero N-
invariant vectors. Then the restriction map induced by restriction of cocycles
from G to N , Res : H1(G, π) → H1(N, π) is injective.

The analogous statement of lemma 2.8 in the context of non-reduced coho-
mology is not true in general (see [12]). Under cocompactness condition on
the normal subgroup, we can state:
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Proposition 2.9. Let G be a locally compact group and N a closed, normal,
cocompact subgroup of G. Let π be a unitary representation of G. Then the
restriction map Res : H1(G, π) → H1(N, π|N) is injective.
In particular if H1(N, π|N) = 0 then H1(G, π) = 0.

Proof. By [9], there exists a Borel regular section s : G/N → G whose
image is relatively compact. For all x ∈ G/N , and all g ∈ G, gs(x), s(gx)
has the same image in G/N . Let us define a cocycle (”à la Zimmer”) σ :
G/N × G → N ; σ(x, g) = (s(gx)−1gs(x))−1. So that σ(x, g) is the unique
element of N satisfying gs(x)σ(x, g) ∈ s(G/N). Remark that σ(G/N, K) is
relatively compact whenever K is a compact subset of G.
Let α be an affine action of G such that α|N almost has fixed points and let
us show that it almost has fixed points.
Let K be a compact subset of G, it is contained in a compact subset of
the form K0 s(G/N), where K0 is a compact subset of N . Let KX be the
compact subset (by normality of N) of N defined by:

KX = AdhN{s(x)−1ns(x)σ(x, x−1
0 ) |n ∈ K0, x ∈ G/N, x0 ∈ s(G/N)}.

Then for ε > 0 fixed, there exists by assumption a point ξ such that

sup
n∈KX

‖ α(n)ξ − ξ ‖< ε.

Denote by dx the finite G-invariant normalized measure (for the action g ·
s(x) = gs(x)σ(x, g)) induced by the Haar measure on G/N .
For g0 ∈ G, there exists a unique x0 ∈ s(G/N) and a unique n0 ∈ N such
that g0 = n0x0. For g0 ∈ K, we have:

‖ α(g0)

∫

G/N

α(s(x))ξdx−
∫

G/N

α(s(x))ξdx ‖

= ‖ α(n0x0)

∫

G/N

α(s(x))ξdx−
∫

G/N

α(s(x))ξdx ‖

= ‖ α(n0)

∫

G/N

α(x0s(x)σ(x, x0)σ(x, x0)
−1)ξdx−

∫

G/N

α(s(x))ξdx ‖

= ‖ α(n0)

∫

G/N

α(x0 · s(x)σ(x, x0)
−1)ξdx−

∫

G/N

α(s(x))ξdx ‖

8



= ‖ α(n0)

∫

G/N

α(s(x)σ(x−1
0 · x, x0)

−1)ξdx−
∫

G/N

α(s(x))ξdx ‖

= ‖ α(n0)

∫

G/N

α(s(x)σ(x, x−1
0 ))ξdx−

∫

G/N

α(s(x))ξdx ‖

= ‖
∫

G/N

α(n0s(x)σ(x, x−1
0 ))ξdx−

∫

G/N

α(s(x))ξdx ‖

= ‖
∫

G/N

α(n0s(x)σ(x, x−1
0 ))ξ − α(s(x))ξdx ‖

≤ sup
x∈G/N

‖ α(n0s(x)σ(x, x−1
0 ))ξ − α(s(x))ξ ‖

= sup
x∈G/N

‖ α(s(x)−1n0s(x)σ(x, x−1
0 ))ξ − ξ ‖ .

So,

sup
g0∈K

‖ α(g0)

∫

G/N

α(s(x))ξdx−
∫

G/N

α(s(x))ξdx ‖≤ sup
n∈KX

‖ α(n)ξ − ξ ‖< ε.

¥

Corollary 2.10. Let G and N be as in the previous proposition. Then for
every unitary representation π of N :

H1(N, π) = 0 ⇒ H1(G, IndG
N π) = 0.

Proof. This follows from the weel known fact that (IndG
Nπ)|N = [G : H] π.

So if H1(N, π) = 0, then by the proposition, H1(N, (IndG
Nπ)|N) = 0 and we

conclude by proposition 2.9. ¥

The remaining part of this section is devoted to recalling some results of
Guichardet ([5]) which describe the relationship between the 1-cohomology
(resp. reduced) of a group G and the 1-cohomology (resp. reduced 1-
cohomology) of a quotient by a closed normal subgroup, with value in a
unitary representation of G which is trivial on this normal subgroup .
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Theorem 2.11. Let G be a locally compact group, N a closed normal sub-
group of G and π a unitary representation of G such that π|N = 1.
Then:

i) Let A(G,N, π) be the image of the restriction map from Z1(G, π) to
Z1(N, 1), we have the isomorphisms:

H1(G, π) ∼= H1(G/N, π̇)⊕ A(G,N, π);

H1(G, π) ∼= H1(G/N, π̇)⊕ A(G,N, π).

notice that A(G, N, π) is contained in HomG(N, π), the space of G-
equivariant homomorphisms from N to the additive group Hπ.

ii) If G is the semi-direct product N oH for some H, then A(G,N, π) =
HomG(N, π).

As an immediate corollary, we have:

Corollary 2.12. Let K be a compact normal subgroup of a locally compact
group G and let π a unitary representation of G which is trivial on K. Then:

H1(G, π) ∼= H1(G/K, π)

and
H1(G, π) ∼= H1(G/K, π).

Let K be the closed normal subgroup of N/[N, N ] generated by the closure
of the union of the compact subgroups, and set V = (N/[N, N ])/K. The
group G acts by conjugation on N and this give rise to an action of G on V .
The latter factors through an action of G/N on V which will be denoted by
σ. Every continuous morphism f from N to Hπ factor through a continuous
morphism f̃ from V to Hπ, and f belongs to HomG(N, π) if and only if f̃
satisfies

f̃(σ(g)(v)) = π(g)(f̃(v))

for all g ∈ G/N and all v ∈ V .

If moreover N is a connected Lie group, N/[N,N ] can be identified to Rn ×
Tk for some n, k. Consequently V = Rn, and in this case, σ is a real
finite dimensional representation (non unitary in general) of G/N . Hence
the following ([5]):
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Proposition 2.13. Let N be a connected Lie group; HomG(N, π) is iso-
morphic to the space of R-linear maps from V to Hπ which intertwine σ and
π.
If (σC, V C) is the complexified representation obtained from (σ, V ), the space
HomG(N, π) can be identified with the space of C-linear maps from V C to
Hπ which intertwine σC and π.

So we deduce:

Lemma 2.14. Let π be a unitary irreducible representation of a connected
Lie group N ; then HomG(N, π) does not vanish if and only if π is a subrep-
resentation of σC. In particular there are only finitely many such represen-
tations and there are all of dimension at most dim(σ) ≤ dim(N/[N : N ]).

In the case where N is a central subgroup, we have ([5]):

Lemma 2.15. Let π a non trivial irreducible unitary representation of G
and let C be a closed central subgroup of G. If H1(G, π) 6= 0, then π|C = 1
and H1(G, π) ∼= H1(G/C, π̇).

3 H1(G, π) of connected amenable locally com-

pact groups

3.1 Amenability and reduced-1 cohomology of unitary
irreducible representations

In this section we will establish an analogue of Delorme’s theorem (thm 1.1.)
for connected amenable locally compact groups. More precisely, we will show
that the reduced-1 cohomology of such a group is zero for all irreducible
unitary representation except a finite number of finite dimensional ones.
We first establish the result for a connected amenable Lie group:

Theorem 3.1. Let G be a connected amenable Lie group.
Up to unitary equivalence, there are finitely many irreducible unitary repre-
sentations π of G with H1(G, π) 6= 0. Moreover all these representations are
finite dimensional and their dimensions are less than the (real) dimension of
the radical of G.
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Proof. Let π be an irreducible unitary representation of G such that
H1(G, π) 6= 0.
First let us show that π is finite dimensional.
Consider the Lévi decomposition of G, RS, where R is the radical and S is
semisimple (hence compact by amenability of G).
Claim: The restriction π|R has a finite dimensional subrepresentation.

Indeed, assume by contradiction that this is not the case. Then, as R is
a connected solvable Lie group, H1(R, π|R) = 0 by Delorme’s theorem and
proposition 2.7. Proposition 2.9 implies H1(G, π) = 0, contradicting our as-
sumption. this proves the claim
Let χ be a finite dimensional subrepresentation of π|R. Then we have π|R ⊗
χ ⊃ 1 which imply that IndG

R(π|R ⊗ χ) = π ⊗ IndG
Rχ ⊃ λG/R = IndG

R 1. But
the quasi-regular representation λG/R contains the trivial representation by
compactness of G/R. So π must be finite dimensional.

Now let us show that there are only finitely many finite-dimensional irre-
ducible representations of G with H1(G, π) 6= 0.

Let G̃ be the universal cover of G. If π is a unitary representation of G
and if π̃ denotes the G̃-representation obtained by pulling π back , then
H1(G, π) ∼= H1(G̃, π̃) (see [4]).
So we can assume G to be simply connected. The Lévi decomposition of G
is then a semi-direct product Ro S.
Let π be a finite dimensional irreducible unitary representation of G. By
Lie’s theorem, π|[R,R] = 1 and because [R,R] is a closed normal subgroup of
G (see [8] Chap. XII Thm. 2.2), theorem 2.11 applies and gives

H1(G, π) ∼= H1(G/[R, R], π̇)⊕ A(G, [R,R], π).

By lemma 2.14, A(G, [R, R], π) is non zero only for finitely many represen-
tations π, of dimension at most dim(R) .
So we will show that H1(G/[R, R], π̇) is non zero only for finitely many irre-
ducible unitary representations.
By connectedness of R, G/[R, R] = (Rn × Tk) o S for some n, k. If π̇ does
not have non-zero (Rn × Tk)-invariant vectors, then by proposition 2.9 and
by the vanishing of the space H1(Rn × Tk, σ) for all unitary representations
without non-zero invariant vectors (see [5]), we have H1(G/[R,R], π̇) = 0.

If π̇ has non-zero (Rn × Tk)-invariant vectors, we get by irreducibility that
π̇|(Rn×Tk) = 1.
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So by applying theorem 2.11 i):

H1(G/[R, R], π̇) ∼= H1(S, π̇)⊕ A(G/[R, R], (Rn × Tk), π̇).

But S is compact, so H1(S, π̇) = 0 and we apply lemma 2.14 to conclude
that the space A(G/[R,R], (Rn × Tk), π̇) is non zero for only finitely many
irreducible finite dimensional unitary representations, whose dimensions are
less than the (real) dimension of the radical of G. ¥

Example 3.2. Let G = Cn o U(n) be the rigid motion group of Cn; and
let π be the unitary irreducible representation of G in Cn given by

π(x, g) = g.

Define a cocycle in Z1(G, π) by setting b(x, g) = x. The corresponding affine
action is the tautological one on the affine space underlying Cn. This cocycle
is not almost a coboundary, so H1(G, π) 6= 0.
This exemple shows that in the previous theorem the upper bound on the
dimension of irreducible unitary representations with non vanishing reduced-
1 cohomology, is optimal.

We will then use the well-known Montgomery-Zippin’s theorem (see [13]):

Theorem 3.3. (Montgomery-Zippin)
Let G be a connected locally compact group. Then for every neighborhood
of the neutral element V there exists a normal compact subgroup KV of G
contained in V , such that G/KV is a real Lie group.

We then obtain

Theorem 3.4. Let G a locally compact almost connected amenable group.
The unitary irreducible representations with non vanishing reduced 1-cohomology
are all finite dimensional and there are only finitely many such representa-
tions.

Proof. By corollary 2.12, we can assume that G is connected. By theorem
3.3, there exists a normal compact subgroup K of G such that G/K is a Lie
group. If π is a unitary irreducible representation of G, then:

i) Either π|K doesn’t have non zero invariant vectors and then lemma 2.8
implies that H1(G, π) = 0 which implies H1(G, π) = 0.
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ii) Or π|K has non zero invariant vectors, and by irreducibility, π|K = 1.
So by corollary 2.12, H1(G, π) = H1(G/K, π̇), and the previous theo-
rem applies.

¥

Recently, Y. Shalom introduced the property (HFD) for a locally compact
group (see [14]):
A locally compact group G has the property (HFD) if for all irreducible rep-
resentation π, H1(G, π) 6= 0 implies that π is finite dimensional. He shows
in particular that this property is a quasi-isometry invariant among the class
of finitely generated amenable groups.

Hence, a consequence of the preceding theorem is:

Corollary 3.5. A locally compact almost connected amenable group has the
property (HFD).

3.2 H1(G,L2(G)) and amenability

In this section, we will prove the conjecture mentioned in the introduction
for amenable connected locally compact groups. We will need the following
preliminary lemma:

Lemma 3.6. Let G be a locally compact group. If for all neighborhood V
of the identity , there exists a normal compact subgroup K contained in V
such that H1(G/K, λG/K) = 0, then H1(G, λG) = 0.

Proof. Let b ∈ Z1(G, λG). For any compact normal subgroup K let us
define a cocycle in Z1(G,L2(G)K) (where L2(G)K is the space of (right)
K-invariant vectors in L2(G)) by:

(bK(g))(h) =

∫

K

b(g)(hk) dk

(dk is the normalized Haar measure on K). So we have:

‖ bK(g)− b(g) ‖2
2 =

∫

G

| bK(g)(h)− b(g)(h) |2 dh
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=

∫

G

|
∫

K

(b(g)(hk)− b(g)(h))dk |2 dh

≤
∫

G

∫

K

| b(g)(hk)− b(g)(h) |2 dkdh

=

∫

K

∫

G

| b(g)(hk)− b(g)(h) |2 dhdk

=

∫

K

‖ ρ(k)b(g)− b(g) ‖2
2 dk.

Finally as the right regular representation ρ is strongly continuous at the
neutral element, there exists for every ε > 0, every compact subset Q of G,
a neighborhood V of e such that ‖ ρ(k)b(g) − b(g) ‖2≤ ε, ∀g ∈ Q, ∀k ∈ V .
We easily conclude by using the cohomological assumption.

¥

Theorem 3.7. Let G be a locally compact separable almost connected group.
If G is amenable, then H1(G,L2(G)) = 0.

Proof. Let us recall that if N is a closed subgroup of G, then λG|N = [G :
N ] · λN and so H1(N, λG|N) = 0 ⇔ H1(N, λN) = 0 (see e.g. [12]). So by
proposition 2.9, we can replace G by its connected component of 1; i.e. we
can assume that G is connected and non compact.

By theorem 3.3, for every neighborhood V of the identity in G, there ex-
ists a compact normal subgroup KV , such that G/KV is a Lie group. So
G/KV is an amenable connected Lie group. Since G/KV is non-compact a
finite set of finite dimensional representations cannot appear discretely in the
direct integral decomposition into irreducible representations of the regular
representation of G/KV . So by theorem 3.4, H1(G/KV , λG/KV

) = 0 and by

lemma 3.5, H1(G, λG) must vanish. ¥

4 H1(G, π) and the Haagerup property

In [3], the authors classify connected Lie groups having the Haagerup prop-
erty. They show that such a group is necessarily locally isomorphic to a prod-
uct M×SO(n1, 1)× ...×SO(nk, 1)×SU(m1, 1)× ...×SU(ml, 1), where M is
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an amenable Lie group. By using Delorme’s theorem [4] on the 1-cohomology
of the groups SO(n, 1) and SU(m, 1), we will classify the irreducible unitary
representations of a connected group having Haagerup property that give rise
to non zero first reduced cohomology space.

Delorme’s theorem that we will need is the following:

Theorem 4.1. Let G be a connected Lie group with Lie algebra so(n, 1) or
su(n, 1). Then there exists at least one irreducible unitary representation and
at most two with non trivial 1-cohomology. Moreover, these representations
are infinite dimensional.

From this and the previous theorem, we deduce:

Theorem 4.2. Let G be a connected Lie group with Haagerup property.
There are finitely many irreducible unitary representations with non vanish-
ing H1(G, π).

Proof. As in the proof of theorem 3.1, we can assume G to be simply
connected. Because G has the Haagerup property, it is isomorphic to a
product ([3], thm 4.0.1)

M × ˜SO(n1, 1)× ...× ˜SO(nk, 1)× ˜SU(m1, 1)× ...× ˜SU(ml, 1).

where M is amenable.
Let us show the result by induction on the number of factors in the preceding
direct product. If there is only one factor, then the result follows from theo-
rem 3.1 and 4.1. Let us assume that there are n factors in the direct product
decomposition of G and let π be an irreducible unitary representation of G.

If π doesn’t have non zero invariant vectors for each factors, then H1(G, π) =
0 (see [15]). If π has a non zero invariant vector by at least one factor, set
N to be the product of those factors where π has non zero invariant vectors.
By, π|N = 1 so by theorem 2.11

H1(G, π) = H1(G/N, π̇)⊕HomG(N, π).

then we conclude, by the induction assumption and lemma 2.14. ¥

Again by using theorem 3.3, we obtain a similar result for connected locally
compact groups having the Haagerup property.
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Theorem 4.3. Let G be a almost connected locally compact group with the
Haagerup property. There are finitely many irreducible unitary representa-
tions with non vanishing H1(G, π).

Proof. Argue similarly as in the proof of theorem 3.4. ¥

5 H1(G, π) and the relative property (T)

In this section we will study 1-cohomology and the reduced-1 cohomology
with values in an irreducible unitary representation of a locally compact
group G having a closed normal subgroup N such that the pair (G,N) has
the relative property (T).

Proposition 5.1. Let G be a locally compact and N a closed normal sub-
group such that (G,N) has relative property (T). Let π be an irreducible
unitary representation of G. We have the following alternative :

i) either π|N does not have non zero invariant vectors, and then
H1(G, π) = H1(G, π) = 0;

ii) or π|N = 1 and we have the isomorphisms H1(G, π) ∼= H1(G/N, π̇),
H1(G, π) ∼= H1(G/N, π̇).

Proof. By definition of relative property (T), the restriction map Res :
H1(G, π) → H1(N, π|N) is identically zero. So if π|N does not have non zero
invariant vectors, H1(G, π) = 0, by lemma 2.8.
If π|N has non zero invariant vectors then by irreducibility, π|N = 1, and we
apply theorem 2.11 to get the isomorphisms:

H1(G, π) ∼= H1(G/N, π)⊕ Im(Res : H1(G, π) → H1(N, 1))

H1(G, π) ∼= H1(G/N, π)⊕ Im(Res : H1(G, π) → H1(N, 1)).

But by the relative property (T), the second summand is zero. ¥
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6 H1(G, π) of locally compact connected groups

To study reduced-1 cohomology of connected locally compact groups, we
will investigate first the case of connected Lie groups, and then apply the
”Montgomery-Zippin” argument of the previous sections. Let us recall the
following theorem ([3], thm 4.0.1)

Theorem 6.1. Let G be a non compact connected Lie group. Then either
G has the Haagerup property, or there exists a closed non compact connected
normal subgroup N such that the pair (G, N) has the relative property (T)
(these properties are mutually exclusive).

Remark 6.2. In [3] theorem 4.0.1, when G does not have the Haagerup
property, it is not mentioned that the closed subgroup N such that (G,N)
has the relative property (T) is normal and connected. But looking closely
at the proof (section 4.1.3.) shows that the constructed subgroup is indeed
normal and connected.

We obtain:

Theorem 6.3. Let G be a connected Lie group. Then there are only finitely
many irreducible unitary representations with non vanishing H1(G, π).

Proof. If G is compact then it has property (T) and the result is clear.
Assume that G is non-compact and let us show the result by induction on
the dimension of G. If G has the Haagerup property, we use theorem 4.2.
If it is not the case, by theorem 6.1, there exists a non compact connected
closed normal subgroup N such that (G,N) has the relative property (T).
By proposition 5.1, the irreducible unitary representations π of G that have
non vanishing reduced-1 cohomology satisfy π|N = 1 and then proposition
5.1 applies to give :

H1(G, π) ∼= H1(G/N, π).

We conclude by using the induction hypothesis. ¥

More precisely, we have:

Theorem 6.4. Let G be a almost connected locally compact group. Then
there are only finitely many irreducible unitary representations with non van-
ishing H1(G, π).
Moreover, if G does not have property (T) (which implies the existence of
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an irreducible unitary representation π of G with H1(G, π) 6= 0), any such
non trivial representation π factors through an irreducible unitary represen-
tation σ of a group H isomorphic to PO(n, 1), PU(m, 1) or to a non-compact
amenable non-nilpotent group H such that H1(H, σ) ∼= H1(G, π) 6= 0.

Proof. The first statement is a direct consequence of the theorem 6.3 and
the argument used in the proof of the theorem 3.4. If G does not have the
property (T), then the existence of a irreducible unitary representation with
non vanishing H1(G, π) is given by proposition in [15].

If the only irreducible representation having non trivial reduced-1 cohomol-
ogy is the trivial representation there is nothing to prove. Let π be a non
trivial unitary representation of G with H1(G, π) 6= 0. By theorem 3.3, there
exists a compact normal subgroup K of G such that G0

.
= G/K is a Lie group.

As H1(G, π) 6= 0, π factors through G0 and H1(G, π) ∼= H1(G0, π̇) 6= 0.

Claim: There exists a non compact closed connected subgroup N such that
GN

.
= G0/N has the Haagerup property, π|N = 1, and H1(GN , π) ∼= H1(G0, π) 6=

0.
Indeed if G0 has the Haagerup property, we end here. If not there exists a
closed connected normal subgroup N0 of G0 such that (G0, N0) has relative
property (T). By proposition 5.1, π|N0 = 1 and H1(G0/N0, π) ∼= H1(G0, π) 6=
0. If G0/N0 has the Haagerup property, we are done. If not as G0/N0 doesn’t
have property (T), we apply again the same arguments. As the dimension of
the Lie group strictly decrease at each step(N0 is connected), the procedure
ends and the final quotient cannot have property (T), and in particular is
not compact. This prove the claim.
Let π̃ be the representation defined canonically on the universal cover G̃N of
GN . By [4], H1(G̃N , π̃) ∼= H1(GN , π) 6= 0. Applying the classification theo-

rem of [3], G̃N is a product of (simply connected) groups ˜SO(n, 1), and/or
˜SU(n, 1) and/or amenable groups. By proposition 3.2 of [15], π is trivial on

at least one factor. But then, by proposition 2.13 (applied to σC = 1), and
as π̃ is not trivial, π̃ is trivial on all factors except one, that we will denote
by H̃. Moreover we have H1(G, π) ∼= H1(H̃, π̃) 6= 0. However, π̃ is trivial on

the center of H̃. So if we denote by H the quotient H̃/Z(H̃), we have that

H1(H, π̃) ∼= H1(H̃, π̃) 6= 0. Notice that as π̃ is irreducible and non trivial, H
cannot be nilpotent.
By construction, G maps onto H, π is trivial on the kernel of this surjection,
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and π = π̃ on H. So H1(GN , π) ∼= H1(H, π) 6= 0 and by construction, H is
isomorphic to either PO(n, 1) or PU(n, 1) or an amenable group. ¥

Remark 6.5. There is no analogue of the theorem 6.5 for non-connected
groups. To see it, consider the free group G = F2 on 2 generators. A.Guichardet
[5] observed that H1(G, π) 6= 0 for every unitary representation π of G. Now,
if π is finite dimensional, we even have H1(G, π) 6= 0. In particular, for ev-
ery character χ of G, H1(G,χ) 6= 0, so we get a continuum of irreducible
representations carrying reduced 1-cohomology.

7 Application to harmonic analysis

Let G be a connected unimodular Lie group and let (M, ν) a smooth non
compact connected manifold on which G acts transitively by diffeomorphisms
and respecting a measure (σ-finite) ν. If µ is a probability measure on G, we
say that a smooth function f on M is µ-harmonic if f(x) =

∫
G

f(q−1 ·x) dµ(q)
(where · denote the action of G on M).
Recall that if (X1, . . . , Xn) is a Hörmander system of smooth G-invariants
vector fields (i.e. a family of smooth vector fields such that the Lie alge-
bra they generates is the whole tangent space at each point), the gradient
of a function f ∈ C∞(M) is defined by ∇f = (X1f, . . . , Xnf) and that

|∇f | = (
n∑

i=1

|Xif |2) 1
2 .

On G, a G-invariant (for the right multiplication) Hörmander system always
exists. Consequently as G acts transitively by diffeomorphisms, we obtain
a G-invariant Hörmander system on M . Fix once and for all a Hörmander
system on G.
Finally, f ∈ C∞(M) is said to be Dirichlet finite, if
||∇f ||L2(M,ν) < ∞. We will denote by π the action of G on C∞(M) defined
by π(g)f(x) = f(g−1 · x).

With these definitions and notations, we will establish in this section a link
between the existence of Dirichlet-finite functions on M and the reduced-1
cohomology of G with values in L2(M).
First some technical lemmas
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Lemma 7.1. Let M be a manifold, (X1, . . . , Xn) a Hörmander system and
γ : [0, a] → M a differentiable path on M tangent to the Hörmander system
with ‖γ′(t)‖2 ≤ 1. For f ∈ C∞(M), we have the following inequality:

|f(γ(a))− f(γ(0))| ≤
∫ a

0

|∇f(γ(t))|dt.

Proof. For t ∈ [0, a] we have:

|f(γ(a))− f(γ(0))| = |
∫ a

0

d

dt
f(γ(t)) dt|

≤
∫ a

0

|dfγ(t)(γ
′(t))| dt.

Moreover if we write γ′(t) =
k∑

i=0

ai(t)Xi(γ(t)), we have as dfγ(t)(Xi(γ(t))) =

Xif(γ(t)), using the Cauchy-Schwartz inequality:

|dfγ(t)(γ
′(t))| = |

k∑
i=0

ai(t)Xif(γ(t))|

≤ ‖γ′(t)‖|∇f(γ(t))|
≤ |∇f(γ(t))|

Hence the claimed inequality. ¥

Lemma 7.2. Let f be a smooth Dirichlet finite function on M . Then for
all h ∈ G, there exists a = a(h) > 0 such that

‖π(h)f − f‖L2(M,ν) ≤ a · ||∇f ||L2(M,ν).

Proof. Let h ∈ G and let γ : [0, a] → G be an absolutely continuous

path such that γ(0) = e, γ(a) = h, and γ′(t) =
n∑

i=1

ai(t)Xi(γ(t)) a.e. with
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n∑
i=1

a2
i (t) ≤ 1 (it always exists, see [16] III.4). As the action is smooth and the

Hörmander system is invariant, we apply the preceding lemma to the path
t 7→ γ(t)−1 · x and we get:

|f(h−1 · x)− f(x)| ≤
∫ a

0

|∇f(γ(t)−1 · x)|dt.

So by Cauchy-Schwarz, |f(h−1 · x)− f(x)|2 ≤ a

∫ a

0

|∇f(γ(t)−1 · x)|2dt.

Let (Kn)n≥1 be an increasing sequence of compact subsets of M such that⋃
n≥1

Kn = M .For all n we have:

∫

Kn

|f(h−1 · x)− f(x)|2dx ≤ a

∫

Kn

∫ a

0

|∇f(γ(t)−1 · x)|2dtdν(x)

≤ a

∫

M

∫ a

0

|∇f(γ(t)−1 · x)|2dtdν(x)

= a

∫ a

0

∫

M

|∇f(γ(t)−1 · x)|2dν(x)dt

= a

∫ a

0

∫

M

|∇f(x)|2dν(x)dt

= a2‖∇f‖2
2.

hence we conclude that ‖π(h)f − f‖2 ≤ a · ||∇f ||2. ¥

Here is the main theorem of this section:

Theorem 7.3. Let G be a connected unimodular Lie group acting smoothly
and transitively on a non-compact connected smooth manifold M endowed
with a G-invariant (σ-finite) measure ν and let µ be a probability measure
on G with compact symmetric support generating G.
If H1(G,L2(M, ν)) = 0, then every Dirichlet-finite µ-harmonic smooth func-
tion on M is constant.

Proof. Set L2(M) = L2(M, ν) and let D(M) be the following quotient
space: {f ∈ C∞(M) | ||π(g)f − f ||2 < ∞∀g ∈ G}/C.
Consider the pre-Hilbert structure on D(M) given by ||f ||2D(M) =

∫
G
||π(q)f−

f ||2L2(M)dµ(q). Notice that D(M) is Hausdorff because ||f ||2D(M) = 0 iff
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π(g)f = f , ∀g ∈ supp(µ), which is equivalent to π(g)f = f , ∀g ∈ G (because
supp(µ) generates G) and which is also equivalent to the fact that f is con-
stant (this follows from the transitivity of the action).
Let i be the canonical embedding of C∞(M) ∩ L2(M) in D(M). For all
f ∈ D(M), denote by θ(f) the algebraic cocycle given by g 7→ π(g)f − f .
This cocycle is weakly measurable, so by [5], it is continuous for the topology
of uniform convergence on compact subsets (we use here the fact that G is
separable).
By assumption θ(f) is almost a coboundary. As C∞(M)∩L2(M) is || ||2−dense
in L2(M), there exists a sequence (ξn)n≥1 in C∞(M) ∩ L2(M) such that
θ(f)(g) = limn→∞ π(g)ξn − ξn uniformly on compact subsets of G. Hence∫

G
||π(q)(f − ξn)− (f − ξn)||2L2(M)dµ(q)

n 7→∞−→ 0 since µ has compact support.

This shows that i(ξn)
n 7→∞
−→ f in D(M). In other words, i(C∞(M)∩L2(M)) is

dense in D(M).
So i(C∞(M) ∩ L2(M))⊥ = 0, because D(M) is Hausdorff.

Let us compute this orthogonal complement :

f ∈ i(C∞(M) ∩ L2(M))⊥

⇔ ∫
G

< ρ(q)f − f | ρ(q)ξ − ξ >2 dµ(q) = 0 , ∀ξ ∈ C∞(M) ∩ L2(M)

⇔
∫

G
< ρ(q)f − f | ρ(q)ξ >2 dµ(q)− ∫

G
< ρ(q)f − f | ξ >2 dµ(q) = 0 ,

∀ξ ∈ C∞(M) ∩ L2(M)

⇔
∫

G
< f − ρ(q−1)f | ξ >2 dµ(q)− ∫

G
< ρ(q)f − f | ξ >2 dµ(q) = 0 ,

∀ξ ∈ C∞(M) ∩ L2(M)

⇔ −2
∫

G
< ρ(q)f − f | ξ >2 dµ(q) = 0 , ∀ξ ∈ C∞(M) ∩ L2(M)(as µ is symmetric )

⇔ <
∫

G
(ρ(q)f − f)dµ(q) | ξ >2= 0 , ∀ξ ∈ C∞(M) ∩ L2(M)

⇔ ∫
G
(ρ(q)f − f)dµ(q) = 0

⇔ ∫
G

ρ(q)fdµ(q) = f

⇔ ∫
G

f(q−1 · x)dµ(q) = f(x) , ∀x ∈ M

So the orthogonal complement of i(C∞(M)∩L2(M)) is nothing else than the
space of µ-harmonic functions in D(M).

Now, let f be a smooth Dirichlet finite function. By the preceding lemma,

||π(g)f − f ||L2(M) ≤ a(g)||∇f ||L2(M), ∀g ∈ G.
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So such a f is (modulo constant functions) in D(M). So if f is µ-harmonic
and Dirichlet finite, then it is constant. ¥

We get immediately the following corollary

Corollary 7.4. Let G be a connected Lie group having property (T). If G
acts smoothly and transitively on a non-compact connected smooth manifold
M endowed with a G-invariant (σ-finite) measure ν and if µ is a proba-
bility measure on G with compact symmetric support generating G, then a
Dirichlet-finite µ-harmonic smooth function on M is constant.

In the case where G acts by translation on itself, we obtain immediately:

Corollary 7.5. Let G be a connected unimodular Lie group such that
H1(G,L2(G)) = 0 and let µ be a probability measure on G with compact
symmetric support generating G.
Then a Dirichlet-finite µ-harmonic smooth function on G is constant.

By theorem 3.6, we also have

Corollary 7.6. Let G be a amenable connected unimodular Lie group and
let µ be a probability measure on G with compact symmetric support gener-
ating G.
Then a finite Dirichlet µ-harmonic smooth function on G is constant.
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1977.

[7] A. Guichardet. Cohomologie des groupes topologiques et des algèbres
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groupes localement compacts. Number 175 in Astérisque. 1989.
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