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Abstract

We obtain a new result concerning harmonic functions on Cayley
graphs X: either every nonconstant harmonic function has large radial
variation (in a certain sense), or there is a nontrivial hyperbolic bound-
ary at infinity of X. In the latter case, relying on a theorem of Woess,
it follows that the Dirichlet problem is solvable with respect to this
boundary. Certain relations to group cohomology are also discussed.

1 Introduction

Let X be an connected, locally finite, infinite, oriented graph with no loops
and with countable vertex set V (X) and edge set E(X). Two vertices x and
y are adjacent, denoted x ∼ y, if they are connected by an edge, and denote
by deg(x) the number of neighbours of x. The combinatorial laplacian acting
on {f : V (X) → R} is

(∆f)(x) = deg(x)f(x)−
∑
y∼x

f(y).

This yields a notion of harmonic functions on X, namely those f satisfying

∆f ≡ 0,

which amounts to a mean value property for f .
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The laplacian and corresponding harmonic functions are basic and im-
portant objects associated to a graph. As in classical potential theory it is
intimately connected with an associated random walk, namely, the Markov
chain defined by transition probabilities

P (x → y) =
1

deg(x)

whenever y ∼ x and 0 otherwise. For example, suppose that X is compacti-
fied with a boundary ∂X (see section 2) and that almost every trajectory of
the random walk converges to some point in ∂X. Then a Poisson formula
gives harmonic functions h on X from any boundary value f ∈ L∞(∂X, R):

h(x) :=
∫

∂X
f(ξ)dλx(ξ),

where λx are the exit measures from the converging random trajectories
starting at x.

These consideration are for example relevant to electrical network theory:
Let the edges correspond to 1 Ohm resistances. Then by Kirchoff’s laws the
passive currents are exactly the gradients df for f harmonic belonging to
the space of Dirichlet finite functions

{f : V (X) → R such that df ∈ l2(E(X), R)},

(which physically means finiteness of energy). We refer to Soardi’s book
[So 94] for a nice mathematical exposition on this topic.

The main result in the present note is the following:

Theorem 1 Let X = X(Γ, S) be the Cayley graph of a group Γ generated
by a finite set S. Either ∑

r>0

sup
|x|≥r

|dh(x)| = ∞

for every nonconstant harmonic function h, or X has a nontrivial boundary
∂F X. In the latter case, the Dirichlet problem is solvable with respect to
∂F X, which moreover (together with a suitable measure) can be identified
with the Poisson boundary.

This theorem is the combination of Theorems 2 and 5 below. Groups
for which the first alternative in the theorem holds include groups not con-
taining a free noncommutative subgroups, SLn(Z), n ≥ 3, as well as most
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Artin braid groups and mapping class groups. Groups for which the sec-
ond alternative in the theorem holds include groups with infinitely many
ends, nonelementary hyperbolic groups and nonelementary geometrically fi-
nite Kleinian groups.

2 Hyperbolic compactifications of infinite graphs

We consider X as a geodesic metric space (X, d) in a standard way: we
realize X geometrically by for each edge assign a copy of the unit interval
with the standard metric, glue them to their associated vertices and let d
denote the induced path metric on all of X. Fix a base point x0 ∈ X. Let
|x| = d(x0, x) and |A| = infa∈A d(x0, a).

We now describe the compactification of X (basically) following [Fl 80].
Let F be a Floyd admissible function, i.e. a monotonically decreasing func-
tion N → R>0 which is summable:

∞∑
j=0

F (r) < ∞.

Assume in addition that there is a constant L > 0 such that F (r + 1) ≤
F (r) ≤ LF (r + 1) for all r. The new length of an edge connecting x and y
is

F (|{x, y}|)

(instead of 1). A path is a sequence of vertices {xi} such that every xi and
xi+1 are adjacent. We define the dF -length LF of a path α = {xi} in the
graph:

LF (α) =
∑

i

F (|{xi, xi+1}|)

and the new distance is

dF (z, w) := inf
α

LF (α),

where the infimum is taken over all paths α connecting z and w. It is straight-
forward to verify that dF satisfies the axioms of a metric. In particular, since
(X, d) is a geodesic space any two points z, w can be joined by a geodesic
β, so d′(z, w) ≤ Lf (β) < ∞. (When we speak about geodesics it will always
refer to the distance d.) Note also that X has finite dF -diameter because F
is summable.

We now define X
F to be the completion of (X, dF ) in the sense of metric

spaces and the boundary is ∂F X = X
F \ X, which we refer to as a Floyd
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boundary of X. It is simple to see that this completion is compact, see
[Fl 80].

The Cayley(-Dehn) graph of a group. Let Γ be an infinite, finitely
generated group. Choose a finite generating set S and fix the corresponding
Cayley graph X = X(Γ, S): the vertex set is Γ and the oriented edges are
[x, xs] where s ∈ S and x ∈ Γ.

A remark on an alternative compactification. One can instead
of choosing one F as above, take all such functions F bounded by 1 (or
some larger class of bounded functions) and construct the corresponding
Stone-Cech compactification by embedding X via the evaluation map to
the Cartesian product [0, 1]F . Compare with [R91] or [Gr 93, Ch. 8].

3 The Dirichlet problem

One says that the Dirichlet problem is solvable if every continuous function
on ∂X has a continuous extension to X which is harmonic on X.

Let X be as in the introduction and assume that |∂F X| > 2 for some
Floyd-admissible F . It is established in [K 02] that the convergence and
projectivity axioms of Woess are satisfied and that the action of Aut(X)
extends continuously to an action by homeomorphism of X

F . In other
words, X

F is a contractive Aut(X)-compactification in the sense of [Wo 00].
Assume now that X is a Cayley graph as in section 2 of an infinite,

finitely generated group Γ. Since it is clear that Γ acts transitively on itself
by translation on the left as graph automorphisms and moreover it is proved
in [K 02] that if |∂F X| > 2 then |∂F X| = ∞ and that Γ does not have a
global fixpoint in ∂F X. We can therefore invoke Woess’ Theorem 20.13 in
[Wo 00] and [K 01] (which uses work of Kaimanovich) to obtain that:

Theorem 2 Let X = X(Γ, S) be the Cayley graph of a group Γ generated
by a finite set S and assume that ∂F X is a Floyd boundary containing more
than 2 points. Then the Dirichlet problem with respect to X

F is solvable
and ∂F X with the induced harmonic measure is isomorphic to the Poisson
boundary.

This generalizes previous works on the space of ends and the standard
boundary of Gromov hyperbolic graphs, see the notes and references in
[Wo 00].

In order to give some intuition behind this theorem we give a simple
argument in a special case to prove how random trajectories converg: Let
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F (r) = 1/(1+ r2) for simplicity and suppose yn is a sequence of points in X
such that d(yn, yn+1) = 1 and d(x0, yn) ≥ An for some A > 0. Then since it
is readily checked that

dF (yn, ym) ≤
∑

n≤k≤m

1
1 + (Ak)2

it follows that yn is a dF -Cauchy sequence and hence converges to a point
in ∂F X.

4 Constructing hyperbolic compactification from
certain harmonic functions

We want to construct a compactification as in the previous section start-
ing from a harmonic function of a certain type and begin by recalling the
maximum principle:

Proposition 3 Suppose that h is a harmonic function such that h(x) → 0
as x →∞. Then h ≡ 0.

Proof. Since h tends to 0 at infinity we may assume it has a maximum
(or minimum) at some point x. But then by the mean value property (∆h ≡
0) it holds for all neighbours y of x that h(x) = h(y). As X is connected
this equation propagates everywhere and we get that h must be constant.

Given a function f : Γ → R the differential df is the function on E(X)
defined by

df([x, xs]) = f(xs)− f(x).

Suppose that h is a nonconstant harmonic function such that∑
r>0

sup
|x|≥r

|dh(x)| < ∞.

Note that it follows that
lim

n→∞
h(γ(n))

exists for any geodesic ray γ.
The preliminary candidate for a Floyd admissible function is

H(r) := sup
d(x,x0)≥r

|dh(x)|,
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since this function is clearly monotonically decreasing, positive and summable.
It remains to prove the existence of L > 0 such that H(r + 1) ≤ H(r) ≤
LH(r + 1) for all r. This technical property, or something similar, is used
to show that the isometric action of Γ on the Cayley graph continuously
extends to an action by homeomorphisms of the completion X

H
, cf. [K 02].

To guarantee this property we modify H as given in the following technical
lemma:

Lemma 4 There is a summable function F such that F (r) ≥ H(r) and
F (r + 1) ≤ F (r) ≤ 2F (r + 1) for every r.

Proof. Let ri be times when

H(ri) = εiH(ri − 1)

and εi < 1/2. If these occur often, say with positive density then H decreases
exponentially, and we can for example set F (r) = H(r) + C/(1 + rα) for a
suitable constant C > 0 and α > 1. Otherwise, if H decreases a lower than
some 1/(1 + rα), for some α > 0, then we can at a time ri let F (ri + k) =
1
2k H(ri − 1) for k ≥ 0 as long as it is larger than H(ri + k). Because of the
slow growth of H the times ri occur seldom (the more seldom, the smaller
εi), which implies that the new F, which most of the time is equal to H, is
summable.

Now we show that |∂F X| ≥ 2. To see this note that for any (edge) path
connecting two points x, y ∈ X we have

|h(x)− h(y)| = |h(x)− h(x1) + h(x1)− h(x2) + ...− h(y)|

≤
∑

i

|h(xi)− h(xi+1)| =
∑

i

H(|{xi, xi+1}|)

≤ LF ({xi}).

Since this estimate holds for any path {xi} connecting x and y we get that

|h(x)− h(y)| ≤ dF (x, y).

Therefore, as f is a nonconstant harmonic functions it has at least two
distinct limiting values (Proposition 3), there are two geodesic rays which
converge to (end at) two different points in ∂F Γ.
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5 Radial variation

The radial variation of (ordinary) harmonic functions were studied by Fatou,
Zygmund, Rudin, Bourgain and others. See [CFPR 01] and [KW 00] for
analogous results for harmonic functions on trees. The following result is
perhaps of a new type for harmonic functions on graphs/groups:

Theorem 5 Assume Γ is an infinite, finitely generated group not admitting
an infinite Floyd boundary. If h is a harmonic function on Γ (with respect
to some generators) such that∑

r>0

sup
|x|≥r

|dh(x)| < ∞,

then h is constant.

Proof. It is well known that if |∂F X| = 2 then Γ is virtually Z and it
does not admit any nonconstant harmonic functions. In view of section 4
the theorem now follows.

The above result can be viewed as an anti-Fatou-type or Liouville-property
statement.

In [K 02], it is proved that if Γ does not contain a free nonabelian sub-
group then every ∂F Γ. Moreover groups, such as SLn(Z), for n ≥ 3, most
Artin braid groups, mapping class groups and automorphism groups of free
groups, are shown in [KN 02] not to admit any nontrivial Floyd boundary.
Same is true if Γ has an infinite, amenable (or, more generally, does not
contain a nonabelian free subgroup) normal subgroup. On the other hand it
is known that any nonamenable group admits many nonconstant bounded
harmonic functions. We may therefore for example formulate:

Theorem 6 Let Γ be SLn(Z) for n ≥ 3 or a group containing an infinite,
amenable normal subgroup. Choose some finite generating set S. Then for
any nonconstant harmonic function h it holds that∑

r>0

sup
|x|≥r

|dh(x)| = ∞.

6 Some group cohomology

It is possible to relate Floyd admissible functions which gives nontrivial
boundaries to a certain reduced first cohomology group: Let L1C0 denote
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the functions on Γ whose supremum outside balls is integrable as in section
4. Define moreover

L1C0(X) = {f ∈ C0(X) : df ∈ L1C0(E(X)}

and finally

H
1(Γ, L1C0) ∼= {f : Γ → R such that df ∈ L1C0(EΓ)}/(R+L1C0(Γ)).

(This is just one possible way of defining these objects.)

Theorem 7 Let Γ be an infinite, finitely generated group. The maximal
number of points in a Floyd boundary of Γ equals

1 + dim H
1(Γ, L1C0).

This is in analogy with a standard result essentially due to Specker
[Sp 49]:

Theorem 8 Let Γ be an infinite, finitely generated group. The number of
ends equals

1 + dim H1(Γ, Cc).

(Here Cc denotes the finitely supported real valued functions on a finitely
generated group Γ, also called the group algebra and denoted RΓ. Note also
that as in the previous theorem, by ”equal” is meant that, if both numbers
are finite then there are equal, otherwise both are infinite.) As expected,

H1(Γ, Cc) � H
1(Γ, L1C0)

in a natural way. These statements can be proved by making sutiable mod-
ifications of [BV 97].

Since L2-cohomology (see [CG 86] and [BV 97]) is particularly important
(for example for the theory of electrical networks), it make sense to raise:

Question. Given a finitely generated infinite group Γ with nontrivial
first L2-Betti number, what properties does the action of Γ on the associated
compactification have?
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