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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR LINEAR
CONSERVATIONS LAWS WITH VELOCITY FIELDS IN L∞.

OLIVIER BESSON∗ AND JÉRÔME POUSIN†

Abstract. A Space-Time Integrated Least Squares (STILS) method is derived for solving the linear conservation
law with a velocity field inL

∞. An existence and uniqueness result is given for the solution of this equation. A
maximum principle is established and finally a comparison with renormalized solution is presented.
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1. Introduction. Many works are dedicated to linear conservation laws, and according
to the regularity of datum, different points of view have been used. The semi-group approach
first developed in [7] requires aC1 regularity for the velocity field. Moreover this vector field
has to be extendable by zero outside a neighborhood of the spatial domainΩ. The charac-
teristic flow generated by the velocityu can be defined for less regular fields. In [18] for
a velocity field inL1(0, T ;W 1,1(Ω)) with div u ∈ L1(0, T ;L∞(Ω)) the notion of renor-
malized solution is introduced allowing to handle initial conditions with very low regularity.
When the velocity fieldu belongs toH1/2 with a divergence free existence and uniqueness
has been proved in [14] and when the velocity fieldu belongs toBV , results of existence and
uniqueness of solutions inL∞ is provided in [3, 13], see also [9]. For domainsΩ included
in R

2 and for a time independent velocity fieldu in L2
loc with a divergence free a solution to

the linear conservation laws is presented in [23] and compare to renormalized solutions. The
question of uniqueness for weak solutions inL∞ to linear conservation laws is discussed in
[16] for a velocity fieldu in L∞ with a divergence free and a domain included inR

2.
In this paper, the question of existence and uniqueness is addressed for linear conservation
laws on a domainΩ with Lipchitz boundary that satisfy the cone property. In our case the
velocity fieldu is only bounded. i.e.u ∈ L∞ anddiv u ∈ L∞. The proposed method does
not deal with the characteristic flow generated by the velocity field, but uses the functional
setting of anisotropic Sobolev’s spaces in the same way as in[22] combined with a formula-
tion of the problem in the time-space least squares sense in the same spirit as in [20] and [2].
In [18], the velocity field is required to be more regular thanin our formulation (u ∈ L∞,
anddiv u ∈ L∞). This allow them to handle boundary conditions with very few regularity.
In our method we must assume that the boundary conditions have some regularity.
The least squares method is widely used to solve partial differential equations, see [19] and
[20] for elasticity and fluid mechanics problems. Few general mathematical results have
been obtained for this method in the case of first order time dependent conservation laws.
It seems that the STILS method (Space-Time Integrated LeastSquares) is originated to [11]
and [26]. In [11, 28], a least squares method is used to solve a2D stationary first order
conservation equation with regularity assumptions on the advection velocity. Other results
have been obtained in [4, 5, 6]. In this paper, a general mathematical analysis of this method
is given for the linear conservation law when the advection velocityu has low regularity, more
precisely whenu ∈ L∞, anddiv u ∈ L∞. The solution obtained in this way is compared
with renormalized solutions [18].
In section 2 a description of the problem is given. In section3 a variational formulation of the
problem is given. The section 4 is dedicated to the proof of the existence and uniqueness of
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solutions to the variational formulation described in section 3. Moreover a comparison with
renormalized solution is given.

2. The problem description. Let Ω ⊂ R
d be a domain with a Lipschitz boundary∂Ω

satisfying the cone property. IfT > 0 is given, setQ = Ω×]0, T [. Consider an advection
velocityu : Q→ R

d andf : Q→ R a given source term. In all this paper, the velocityu has
the following regularity

u ∈ L∞(Q)d and div u ∈ L∞(Q). (2.1)

Let

Γ− = {x ∈ ∂Ω : ( u(x, t) |n(x) ) < 0}

wheren(x) is the outer normal to∂Ω at pointx. For the sake of the presentation, it is assumed
thatΓ− do not depend ont.
The problem consists in finding a functionc : Q → R satisfying the following partial differ-
ential equation

∂tc+ div (c u) = f in Q, (2.2)

and the initial and inflow boundary conditions

c(x, 0) = c0(x) for x in Ω (2.3)

c(x, t) =c1(x, t) for x on Γ−. (2.4)

As usual, whenc1, c0, andu are sufficiently regular, changing the source termf if necessary,
one can assume thatc1 = 0 on Γ−, andc0 = 0 on Ω. A similar result will be given later,
using a suitable trace theorem.

3. Functional Setting. In this section the functional setting for a variational formulation
of the problem (2.2-2.4) will be settled, (see also [4, 5, 6]). Moreover a trace operator is given
in this context.

3.1. The Hilbert spaces.Foru ∈ L∞(Q)d, with div u ∈ L∞(Q), defineũ as

ũ = (1, u1, u2, . . . , ud)
t ∈ L∞(Q)d+1

and for a sufficiently regular functionϕ defined onQ, set

∇̃ϕ =

(
∂ϕ

∂t
,
∂ϕ

∂x1
,
∂ϕ

∂x2
, . . . ,

∂ϕ

∂xd

)t

,

and

d̃iv(ũ ϕ) =
∂ϕ

∂t
+

d∑

i=1

∂

∂xi
(ui ϕ).

Finally ñ denotes the outward unit vector on∂Q. The following theorem is proved in [12].

THEOREM 3.1. Under the assumptionu ∈ L∞(Q)d, anddiv u ∈ L∞(Q), the normal trace
of u, ( ũ | ñ ) is inL∞(∂Q).
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Let now

∂Q− = {(x, t) ∈ ∂Q, ( ũ | ñ ) < 0}
= Γ− × (0, T ) ∪ Ω × {0},

and set

cb(x, t) =

{
c0(x) if (x, t) ∈ Ω × {0}
c1(x, t) if (x, t) ∈ Γ− × (0, T ).

(3.1)

We will assume that

cb ∈ L2(∂Q−).

Forϕ ∈ D(Q), consider the norm

‖ϕ‖H(u,Q) =

(
‖ϕ‖2

L2(Q) +
∥∥∥d̃iv(ũ ϕ)

∥∥∥
2

L2(Q)
+

∫

∂Q−

| ( ũ | ñ ) |ϕ2 dσ̃

)1/2

,

(see also [4, 5, 6, 8]) and then define the spaceH(u,Q) as the closure ofD(Q) for this norm:

H(u,Q) = D(Q)
H(u,Q)

If u is regular enough, it can be seen that

H(u,Q) =
{
ρ ∈ L2(Q), d̃iv(ũ ρ) ∈ L2(Q), ρ|∂Q−

∈ L2(∂Q−, | ( ũ | ñ ) | dσ̃)
}

(see e.g. [25, 22]). We now give a trace result for functions belonging toH(u,Q). Let us
start with the well known normal trace operatorγ defined fromH(div,Q) with values in
H− 1

2 (∂Q) (see [21, 10])

v 7→ ( ñ | v ) |∂Q,

∀v ∈ H(div,Q), with the associated Green formula:
∫

Q

d̃iv(v)ψ +
(
v | ∇̃ψ

)
dx dt =< ( v | ñ ) , ψ >

H− 1
2 (∂Q);H

1
2 (∂Q)

,

∀ψ ∈ H1(Q). Pluggingv = ũρ in the previous formula, we have:
∫

Q

d̃iv(ũρ)ψ +
(
ũ | ∇̃ψ

)
ρ dx dt =< ρ ( ũ | ñ ) , ψ >

H− 1
2 (∂Q);H

1
2 (∂Q)

,

∀ψ ∈ H1(Q). Let us now consider the bilinear formL : D(Q) × D(Q) ⊂ H(u,Q) ×
H(u,Q) −→ R defined for allϕ, ψ ∈ D(Q) by:

L(ϕ, ψ) =

∫

Q

d̃iv(ũϕ)ψ +
(
ũ | ∇̃ψ

)
ϕ dx dt+

∫

∂Q−

| ( ũ | ñ ) |ϕψ dσ̃.

Accounting for theorem 3.1 we have

|L(ϕ, ψ)| ≤
∥∥∥d̃iv(ũϕ)

∥∥∥
L2(Q)

‖ψ‖L2(Q)

+
∥∥∥d̃iv(ũψ) − d̃iv(ũ)ψ

∥∥∥
L2(Q)

‖ϕ‖L2(Q)

+ ‖ϕ‖L2(∂Q−,|( eu | en )|deσ) ‖ψ‖L2(∂Q−,|( eu | en )| deσ) .
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And the following estimate holds true

|L(ϕ, ψ)| ≤ (1 + ‖div(u)‖L∞(Q)) ‖ϕ‖H(u,Q) ‖ψ‖H(u,Q) .

Since it is straightforward to check thatL(ϕ,ϕ) = ‖ϕ‖2
L2(∂Q+,|( eu | en )|deσ), if we extend by

continuity the bilinear formL toH(u,Q) ×H(u,Q) we have:

PROPOSITION3.2. Under the assumptionu ∈ L∞(Q)d, anddiv u ∈ L∞(Q) there exists a
linear continuous trace operator

γen : H(u,Q) −→ L2(∂Q, | ( ũ | ñ ) |dσ̃)

ϕ 7→ γenϕ = ϕ|∂Q
,

which can be localized as:

γen±
: H(u,Q) −→ L2(∂Q±, | ( ũ | ñ ) |dσ̃)

ϕ 7→ γen±
ϕ = ϕ|∂Q±

.

Finally define the space

H0 = H0(u,Q, ∂Q−) = {ρ ∈ H(u,Q), ρ = 0 on ∂Q−}
= H(u,Q) ∩ Ker γen−

.

3.2. Curved Poincaŕe inequality. We now give an extension of thecurved Poincaŕe
inequalityobtained in [4, 5].

THEOREM 3.3. If u ∈ L∞(Q)d anddiv u ∈ L∞(Q), the semi-norm onH(u,Q) defined by

|ρ|1,u =

(∫

Q

(d̃iv(ũρ)2dx dt+

∫

∂Q−

| ( ũ | ñ ) |ρ2 dσ̃

)1/2

(3.2)

is a norm, equivalent to the norm given onH(u,Q).

Proof. We have to show that there is a constantC such that

‖ϕ‖L2(Q) ≤ C · |ϕ|1,u

for all ϕ ∈ D(Q). We have
∫

Q

[
d̃iv(ũ ϕ) · ξ + ϕ ·

(
ũ | ∇̃ξ

)]
dx dt−

∫

∂Q−

ξϕ ( ũ | ñ ) dσ̃ =

∫

∂Q+

ξϕ ( ũ | ñ ) dσ̃

(3.3)
for all regular enough functionξ. Forα : (0, T ) → R, chooseξ = α · ϕ, then

∂ξ

∂t
+(u | ∇ξ ) = α·

(
∂ϕ

∂t
+ (u | ∇ϕ )

)
+α′ ϕ = α·

(
∂ϕ

∂t
+ div (u ϕ) − ϕ div u

)
+α′ ϕ.

Let v ∈ L∞(0, T ) be defined by

v(t) = sup
x∈Ω

| div(u(t, x))|.
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With the above choices, equation (3.3) has the form
∫

Q

[
(α′ + αv − α(v + div u))ϕ2 + 2αϕ · d̃iv(ũ ϕ)

]
dx dt−

∫

∂Q−

αϕ2 ( ũ | ñ ) dσ̃ =

∫

∂Q+

αϕ2 ( ũ | ñ ) dσ̃ (3.4)

Letα be the solution of the differential equation

α′ + αv = −2, α(T ) = 0.

An easy computation gives

α(t) = 2e−w(t)

∫ T

t

ew(s)ds ≥ 0,

with w(t) =
∫ t

0 e
v(s)ds. Introducing this value in equation (3.4) we obtain

∫

Q

[
−2ϕ2 − α(v + div u)ϕ2 + 2αϕ d̃iv(ũ ϕ)

]
dx dt−

∫

∂Q−

αϕ2 ( ũ | ñ ) dσ̃ =

∫

∂Q+

αϕ2 ( ũ | ñ ) dσ̃ ≥ 0.

Hence
∫

Q

ϕ2dx dt ≤
∫

Q

αϕ · d̃iv(ũ ϕ) dx dt− 1

2

∫

∂Q−

αϕ2 ( ũ | ñ ) dσ̃ ≤

1

2

∫

Q

ϕ2 dx dt+
1

2

∫

Q

α2d̃iv(ũ ϕ)2 dx dt− 1

2

∫

∂Q−

αϕ2 ( ũ | ñ ) dσ̃

so
∫

Q

ϕ2dx dt ≤
∫

Q

α2 · d̃iv(ũ ϕ)2 dx dt−
∫

∂Q−

αϕ2 ( ũ | ñ ) dσ̃.

If A = max(‖α‖2
L∞ , ‖α‖L∞), we get

∫

Q

ϕ2dx dt ≤ A

(∫

Q

d̃iv(ũ ϕ)2 dx dt−
∫

∂Q−

ϕ2 ( ũ | ñ ) dσ̃

)
,

and the theorem is proved.

Henceforth the spaceH(u,Q) is equipped with the norm|ϕ|1,u.

REMARK 1. a) Using the above result, ifcb = 0, the semi-norm

|ρ|1,u =

(∫

Q

(Aρ)2dx dt
)1/2

in a norm onH0 which is equivalent to the usual norm onH(u,Q).
b) As an easy consequence of the above arguments, for anyρ ∈ H(u,Q), the norm defined
by:

|||ρ||| =

(
‖ρ‖2

L2(Q) +
1

2

∫

∂Q+

( ũ | ñ ) (T − t)ρ2dσ̃

)1/2
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verifies

‖ρ‖L2(Q) ≤ |||ρ||| ≤
√
A |ρ|1,u.

3.3. A weak formulation. In L2(Q)), a solution of equation (2.2) corresponds to a zero
of the following convex, positive functional

J(c) =
1

2

(∫

Q

(
d̃iv(ũ c) − f

)2

dx dt−
∫

∂Q−

(c− cb)
2 ( ũ | ñ ) dσ̃

)

The Gâteau derivative ofJ is

DJ(c)ϕ =

∫

Q

(
d̃iv(ũ c) − f

)
d̃iv(ũ ϕ) dx dt−

∫

∂Q−

(c− cb)ϕ ( ũ | ñ ) dσ̃

So a sufficient condition to get the least squares solution of(2.2 - 2.4) is the followingweak
formulation: Find c ∈ H(u,Q) such that

∫

Q

d̃iv(ũ c) · d̃iv(ũ ϕ) dx dt−
∫

∂Q−

c · ϕ ( ũ | ñ ) dσ̃ =

∫

Q

f · d̃iv(ũ ϕ) dx dt−
∫

∂Q−

cb · ϕ ( ũ | ñ ) dσ̃ (3.5)

for all ϕ ∈ H(u,Q) (see [4, 5, 6, 8, 15, 17]).

3.4. Stampacchia’s theorems.In this section, we assume that the domainΩ is bounded.
Later we will use the following versions of Stampacchia’s theorems (see [27, 24]).

THEOREM 3.4. Letρ ∈ H(u,Q), then

d̃iv(ũ ρ) = 0 a.e. on the set{(x, t) ∈ Q; ρ(x.t) = 0} (3.6)

THEOREM 3.5. Letf : R → R be a Lipschitz continuous function.
a) If ρ ∈ H(u,Q), thenf(ρ) ∈ H(u,Q).
b) If f is differentiable except at a finite number of points, say{z1, . . . , zn}, then

d̃iv(ũ f(ρ)) =

{
f ′(ρ) d̃iv(ũ ρ) if ρ(x, t) /∈ {z1, . . . , zn}
0 elsewere.

(3.7)

For the proof of these theorems the following lemma is used.

LEMMA 3.6. Letρ ∈ H(u,Q) then|ρ| ∈ H(u,Q) and

d̃iv(ũ |ρ|) = sgn(ρ) · d̃iv(ũ ρ) (3.8)

where

sgn(ρ(x, t)) =





+1 if ρ(x, t) > 0
0 if ρ(x, t) = 0
−1 if ρ(x, t) < 0

7



Proof. (see [24]). Forε > 0, let fε(t) =
√
t2 + ε. If ρ ∈ H(u,Q), thenfε(ρ) ∈ H(u,Q)

and

d̃iv(ũ fε(ρ)) =
ρ√
ρ2 + ε

d̃iv(ũ ρ).

We have
∫

Q

|fε(ρ)|2 dx dt = εT |Ω|+
∫

Q

|ρ|2dx dt→ ‖ρ‖2
L2(Q) if ε→ 0

and
∫

Q

(
f ′

ε(ρ) d̃iv(ũ ρ)
)2

dx dt =

∫

Q

ρ2

ρ2 + ε
d̃iv(ũ ρ)2dx dt

→
∫

Q

d̃iv(ũ ρ)2dx dt if ε→ 0

So the set{fε(ρ)}ε>0 is bounded inH(u,Q) and there exists a sequence(εn) → 0 such that
fεn

(ρ) ⇀ η in H(u,Q).
Since‖fεn

(ρ)‖H(u,Q) → ‖ρ‖H(u,Q) if n → ∞ andfε(t) → |ρ| if ε → 0, we haveη = |ρ|
and|ρ| ∈ H(u,Q).
Let nowϕ ∈ D(Q), then

∫

Q

f ′
ε(ρ) d̃iv(ũ ρ)ϕdx dt =

∫

Q

d̃iv(ũ fε(ρ))ϕdx dt

→
∫

Q

d̃iv(ũ |ρ|)ϕdx dt

But

f ′
ε(ρ) d̃iv(ũ ρ)ϕ→ sgn(ρ) d̃iv(ũ ρ)ϕ a.e.

and

|f ′
ε(ρ) d̃iv(ũ ρ)ϕ| ≤ sgn(ρ) d̃iv(ũ ρ)ϕ

and we get the second result.

Proof of theorem 3.4.This is a consequence of lemma 3.6. Indeed whenρ ≥ 0 then|ρ| = ρ
and

d̃iv(ũ |ρ|) = d̃iv(ũ ρ) = sgn(ρ) d̃iv(ũ ρ).

If ρ = 0, thensgn(ρ) = 0, so d̃iv(ũ ρ) = 0 a.e. on the subset{(x, t) ∈ Q, ρ(x, t) = 0}.
Let nowρ ∈ H(u,Q), thenρ+ = 1

2 (|ρ| + ρ) ∈ H(u,Q), ρ− = 1
2 (|ρ| − ρ) ∈ H(u,Q), and

ρ = ρ+ − ρ−. But

{(x, t) ∈ Q, ρ(x, t) = 0} =
{
(x, t) ∈ Q, ρ+(x, t) = 0

}
∩
{
(x, t) ∈ Q, ρ−(x, t) = 0

}
,

so

d̃iv(ũ ρ+) = 0 on
{
(x, t) ∈ Q, ρ+(x, t) = 0

}
,
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and

d̃iv(ũ ρ−) = 0 on
{
(x, t) ∈ Q, ρ−(x, t) = 0

}
,

and we get

d̃iv(ũ ρ) = 0 on {(x, t) ∈ Q, ρ(x, t) = 0} ,

and the theorem is proved.

The proof of theorem 3.5 is similar to the proof given in [24].

4. Study of the least squares formulation .This section is devoted to the study of
equation (3.5). More precisely, an existence and uniqueness theorem for the solution of equa-
tion (3.5) is given. Then a maximum principle is deduced fromthe Stampacchia’s theorems.
With the notations and hypothesis of section 3 we have

THEOREM 4.1. For a fixedu ∈ L∞(Q)d with div u ∈ L∞(Q), the problem (3.5):

∫

Q

d̃iv(ũ c) · d̃iv(ũ ϕ) dx dt−
∫

∂Q−

c · ϕ ( ũ | ñ ) dσ̃ =

∫

Q

f · d̃iv(ũ ϕ) dx dt−
∫

∂Q−

cb · ϕ ( ũ | ñ ) dσ̃

for all ϕ ∈ H(u,Q), has a unique solution. Moreover

|c|1,u =

(∥∥∥d̃iv(ũ c)
∥∥∥

2

L2(Q)
−
∫

∂Q−

c2 ( ũ | ñ ) dσ̃

)1/2

≤ ‖f‖L2(Q) .

This solution is thespace-time least squares solutionof (2.2).

Proof. This assertion is a consequence of the Curved Poincaré inequality (theorem 3.3) and
of the Lax-Milgram theorem (see also [4, 5]).

REMARK 2. For the numerical solution of equation (3.5), a time marching approach can be
used to avoid the consideration of the all ofQ (see e.g. [8, 15, 17]).

COROLLARY 4.2. The solutionc of equation (3.5) belongs to the space

X = L2(Q) ∩ L2(∂Q+, ( ũ | ñ ) dσ̃)

equipped with the norm|||c|||.
The following theorem is a maximum principle for the solution of problem (3.5).

THEOREM 4.3. Assume that the domainΩ is bounded, that the functionf = 0 in equation
(3.5) and that the functioncb ∈ L∞(∂Q−). If div u = 0, the solution of equation (3.5)
satisfies

inf cb ≤ c ≤ sup cb.

Proof. The solutionc verifies
∫

Q

d̃iv(ũ c) · d̃iv(ũ ϕ) dx dt−
∫

∂Q−

c · ϕ ( ũ | ñ ) dσ̃ = −
∫

∂Q−

cb · ϕ ( ũ | ñ ) dσ̃
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for all ϕ ∈ H(u,Q). Let

M = sup
∂Q−

cb

and put

ϕ = (c−M)+, Q1 =
{
(x, t) ∈ Q, c−M > 0

}
, Σ1 = ∂Q− ∩Q1

Then, using the Stampacchia’s lemma,

∫

Q1

d̃iv(ũ c) · d̃iv(ũ (c−M)) dx dt−
∫

Σ1

c · (c−M) ( ũ | ñ ) dσ̃ =

−
∫

Σ1

cb · (c−M) ( ũ | ñ ) dσ̃.

Sincediv u = 0, we get

∫

Q1

(d̃iv(ũ (c−M)))2 dx dt−
∫

Σ1

((c−M))2 ( ũ | ñ ) dσ̃ =

−
∫

Σ1

(cb −M) · (c−M) ( ũ | ñ ) dσ̃ ≤ 0.

Hence, using theorem 3.3, the setQ1 has a zero measure, soc ≤ M . We show in the same
way thatc ≥ inf cb.

Fianlly, let us do the following
REMARK 3. The reduction of problem (2.2-2.4) to an homogeneous Dirichlet problem on
∂Q−, i.e. assume thatcb = 0 can be done as follows.
Let c be the solution of (2.2):

∫

Q

d̃iv(ũ c) · d̃iv(ũ ϕ) dx dt−
∫

∂Q−

c · ϕ ( ũ | ñ ) dσ̃ =

∫

Q

f · d̃iv(ũ ϕ) dx dt−
∫

∂Q−

cb · ϕ ( ũ | ñ ) dσ̃,

for all ϕ ∈ H(u,Q), and letη the solution of

∫

Q

d̃iv(ũ η) · d̃iv(ũ ϕ) dx dt−
∫

∂Q−

η · ϕ ( ũ | ñ ) dσ̃ = −
∫

∂Q−

cb · ϕ ( ũ | ñ ) dσ̃

for all ϕ ∈ H(u,Q). Thenρ = c− η is the unique solution of

∫

Q

d̃iv(ũ ρ) · d̃iv(ũ ψ) dx dt =

∫

Q

(
f − d̃iv(ũ η)

)
· d̃iv(ũ ψ) dx dt (4.1)

for all ψ ∈ H0 = H0(u,Q, ∂Q−). Moreover the solution of problem (4.1) is equivalent to
the solution of (2.2).
Therefore, modifying the source term if necessary, it is sufficient to only deal with homoge-
neous Dirichlet boundary conditions on∂Q−.
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5. Comparison with renormalized solutions.. This section is devoted to the compari-
son between the least squares solution of equation (2.2-2.4) and the renormalized solution of
these equations in the sense of [18].
More precisely, letu ∈ L∞(Q)d, with div u = 0, and(u |n ) = 0 on∂Ω. Let φ ∈ L∞(Q)
be the space-time least square solution of

∂tφ+ div (φ u) = 0 in Q,

with the boundary condition

φ = φb on ∂Q−,

andφb ∈ L∞(∂Q−).
Now letψ = −d̃iv(ũ φ) ∈ L2(Q); as we have seen in remark 3, the space time least squares
solutionρ ∈ L∞(Q) of

∂tρ+ div (ρ u) = ψ in Q, (5.1)

ρ = 0 on ∂Q−, (5.2)

gives an equivalent solution to the previous problem.

DEFINITION 5.1. [18]For u ∈ L∞(Q)d, div u ∈ L∞(Q), cb ∈ L∞(∂Q−), andf ∈ L2(Q),
the functionc ∈ L∞(Q) is a renormalized solution of

d̃iv(ũ c) = f with c = cb on ∂Q−

if for anyβ ∈ C1(R), β(0) = 0, β(c) is a weak solution of

d̃iv(ũ β(c)) = β′(c)f,

and

β(c) = β(cb) on ∂Q−.

where the equations are understood in distributions sense.
In this section we will show thatρ is a renormalized solution of equations (5.1)- (5.2).
Let us first prove the following result which is a sort of Meyers-Serrin theorem.
THEOREM 5.2. Let u ∈ H1

0 (Q)d with div u = 0, and letρ ∈ L∞(Q) with d̃iv(ũ ρ) ∈
L2(Q), andρ(x, 0) = 0. Thenρ ∈ H0(u,Q).

Proof. Let ε > 0 be given and sufficiently small. Set

Qε = Ω × (ε, T ) Dε = Ω × (0, ε),

and defineρε = ρ|Qε
∗ωε, whereωε is the usual mollifier. Thenρε ∈ D(Q), andρε(x, 0) = 0.

Let us show that
∥∥∥d̃iv(ũ ρ) − d̃iv(ũ ρε)

∥∥∥
L2(Q)

ε→0−→ 0.

We have

d̃iv(ũ ρ) − d̃iv(ũ ρε) = d̃iv(ũ ρ) − d̃iv(ũ ρ) ∗ ωε

+ d̃iv(ũ ρ) ∗ ωε − d̃iv(ũ ρ ∗ ωε)

+ d̃iv(ũ ρ ∗ ωε) − d̃iv(ũ ρε).
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It is clear that
∥∥∥d̃iv(ũ ρ) − d̃iv(ũ ρ) ∗ ωε

∥∥∥
L2(Q)

ε→0−→ 0;

moreover, from [18, 9], we have
∥∥∥d̃iv(ũ ρ) ∗ ωε − d̃iv(ũ ρ ∗ ωε)

∥∥∥
L2(Q)

ε→0−→ 0.

Finally, let

hε = d̃iv(ũ ρ ∗ ωε) − d̃iv(ũ ρε)

= d̃iv(ũ (ρ− ρ|Qε
) ∗ ωε).

If Bε is the ball of center(x, t) and radiusε in R
d+1, then

hε(x, t) =

∫

Bε

ρ(y, s)1Dε
(y, s)

(
ũ(x, t) | ∇̃ωε(x− y, t− s)

)
dy ds.

Since
∫

Bε

ρ(y, s)1Dε
(y, s)

(
ũ(y, s) | ∇̃ωε(x− y, t− s)

)
dy ds = 0,

we get

hε(x, t) =

∫

Bε

ρ(y, s)1Dε
(y, s)

(
(ũ(x, t) − ũ(y, s))/ε | ε∇̃ωε(x − y, t− s)

)
dy ds.

Hence, using the Cauchy-Schwartz inequality we get

‖hε‖2
L2(Q) ≤ ‖ρ‖2

L2(Q) ·
∫

Q

∫

Bε

1Dε
(y, s) ‖(ũ(x, t) − ũ(y, s))/ε‖2

∥∥∥ε∇̃ωε(x− y, t− s)
∥∥∥

2

dy ds dx dt,

sinceε∇̃ωε is bounded, we get, as in [18, 9]

‖hε‖2
L2(Q) ≤M2 ε |Ω| ‖ρ‖2

L2(Q) ‖∇u‖2
L2(Q)d2 .

Let um be the following regularization of the velocity fieldu given by the unique solution of
the following space-time stationary Stokes problem.

− 1

m
∆̃um + um + ∇p = u inQ

d̃iv um = 0 inQ

um = 0 on ∂Q

with

∆̃ = ∆ +
∂2

∂t2
.
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Thenum ∈ H1
0 (Q) ∩ L∞(Q), andum → u in L2(Q) whenm→ ∞.

Let nowηm be the renormalized solution of

∂tη
m + div (ηm um) = ψ in Q,

with the initial condition

ηm(x, 0) = 0.

Sinceψ ∈ L2(Q) we haved̃iv(ũm ηm) ∈ L2(Q). As ηm ∈ L∞(Q), we deduce from
theorem 5.2 thatηm ∈ H0(u

m, Q). Thereforeηm is also the space-time least squares solution
of d̃iv(ũm ηm) = ψ in H0(u

m, Q), and we have
∥∥∥d̃iv(ũm ηm)

∥∥∥
L2(Q)

= ‖ψ‖L2(Q)

‖ηm‖L2(Q) ≤ C ‖ψ‖L2(Q)

Hence, extracting a subsequence if necessary, one can assume that

ηm ⇀ η inL2(Q),

d̃iv(ũm ηm) ⇀ κ inL2(Q).

Moreover, sinceum → u in L2(Q), we obtain

d̃iv(ũm ηm) → d̃iv(ũ η) inH−1(Q),

and soκ = d̃iv(ũ η) ∈ L2(Q).
Let us now prove that

d̃iv(ũm ηm) → d̃iv(ũ η) inL2(Q).

For this it is sufficient to show that
∥∥∥d̃iv(ũm ηm)

∥∥∥
L2(Q)

→
∥∥∥d̃iv(ũ η)

∥∥∥
L2(Q)

,

but
∥∥∥d̃iv(ũ η)

∥∥∥
2

L2(Q)
=

∫

Q

(
d̃iv(ũ η) − d̃iv(ũm ηm)

)
d̃iv(ũ η) dx dt +

∫

Q

d̃iv(ũm ηm)d̃iv(ũ η) dx dt

=

∫

Q

(
d̃iv(ũ η) − d̃iv(ũm ηm)

)
d̃iv(ũ η) dx dt +

∫

Q

ψ d̃iv(ũ η) dx dt

=

∫

Q

(
d̃iv(ũ η) − d̃iv(ũm ηm)

)
d̃iv(ũ η) dx dt +

lim
m→∞

∫

Q

d̃iv(ũm ηm)2 dx dt,
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and so ∥∥∥d̃iv(ũm ηm)
∥∥∥

L2(Q)
→
∥∥∥d̃iv(ũ η)

∥∥∥
L2(Q)

.

As a consequence of the above results,η is the least squares solution of̃div(ũ η) = ψ, so
η ∈ H0(u,Q). Indeed, letw ∈ D(Q) with w = 0 on∂Q−, then for allm, w ∈ H0(u

m, Q),
and we have ∫

Q

d̃iv(ũm ηm) · d̃iv(ũm w) dx dt =

∫

Q

ψ · d̃iv(ũmw) dx dt.

So, passing to the limit
∫

Q

d̃iv(ũ η) · d̃iv(ũ w) dx dt =

∫

Q

ψ · d̃iv(ũ w) dx dt,

and this equation remains true for allw ∈ H0(u,Q). Thereforeη ∈ H0(u,Q), and is the
least squares solution of̃div(ũ η) = ψ, and soη = ρ ∈ L∞(Q).
Now we can show that the sequenceηm strongly converges toη. Sincediv um = div u = 0
andηm ∈ H0(u

m, Q), with the same idea as in theorem 3.3, we have
∫

Q

[
d̃iv(ũm ηm) · ξ + ηm · d̃iv(ũm ξ)

]
dx dt =

∫

∂Q+

ξηm ( ũ | ñ ) dσ̃

for all regular enough functionξ. If we chooseξ = (T − t)ηm, then
∫

Q

(ηm)2 dx dt = 2

∫

Q

d̃iv(ũm ηm) ηm(T − t)dx dt. (5.3)

But ∫

Q

d̃iv(ũm ηm) ηm(T − t)dx dt→
∫

Q

d̃iv(ũ η) η(T − t)dx dt =

∫

Q

η2 dx dt,

whenm→ ∞, since(u |n ) = 0 on∂Ω; soηm → η whenm→ ∞.
Finally, let us show thatη is a renormalized solution. Letβ ∈ C1(R), β(0) = 0, then
β(ηm) → β(η). Moreover

d̃iv(ũm β(ηm)) = β′(ηm) ·
(
ũm | ∇̃ηm

)
,

but

β′(ηm) → β′(η) inLp(Q)

and (
ũm | ∇̃ηm

)
→
(
ũ | ∇̃η

)
inL2(Q),

so

d̃iv(ũm β(ηm)) → d̃iv(ũ β(η)) inL1(Q),

thusη is a renormalized solution. We have proved the following

THEOREM 5.3. If u ∈ L∞(Q)d, div u = 0, andcb ∈ L∞(∂Q−), the least squares solution
of

d̃iv(ũ c) = 0 with c = cb on ∂Q− (5.4)

is a renormalized solution.
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6. Conclusions and remarks .We have shown in this paper that the conservation law

∂tc+ div (c u) = f in Q, (6.1)

can be solved for irregular vector fields, using a very simpleapproach compared to the meth-
ods like e.g. [18, 3, 9].
Our method leads to some numerical schemes which are much simpler to use than the usual
one (like the stream-line diffusion method, the characteristics method, the discontinuous finite
element method with flux limiter, etc . . . ). Some numerical examples are presented in [15, 8,
17].
In [7], it is proved that the solution of equation 6.1 gives anisomorphism onL2(Q) when
u ∈ C1(Ω) is independent oft. Our method still gives an isomorphism, but in some unusual
spaces. It allows to solve equations 6.1 with an irregular velocity fieldu. This situation where
not known until now.
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[15] DE MONTMOLLIN , G.: Méthode STILS pour l’équation de transport: comparaisons et analyses. Etude d’un
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