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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR LINEAR
CONSERVATIONS LAWS WITH VELOCITY FIELDS IN  L°°.
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Abstract. A Space-Time Integrated Least Squares (STILS) method igadEfor solving the linear conservation
law with a velocity field inL>°. An existence and unigueness result is given for the soldfathis equation. A
maximum principle is established and finally a comparisath wenormalized solution is presented.
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1. Introduction. Many works are dedicated to linear conservation laws, andrding
to the regularity of datum, different points of view have besed. The semi-group approach
first developed in [7] requires@' regularity for the velocity field. Moreover this vector field
has to be extendable by zero outside a neighborhood of thmlspamain(2. The charac-
teristic flow generated by the velocity can be defined for less regular fields. In [18] for
a velocity field inL'(0, 7; W(Q)) with div u € L'(0,T; L°°(Q)) the notion of renor-
malized solution is introduced allowing to handle initiahclitions with very low regularity.
When the velocity field: belongs toH /2 with a divergence free existence and uniqueness
has been proved in [14] and when the velocity fieldelongs taBV/, results of existence and
unigueness of solutions ih*° is provided in [3, 13], see also [9]. For doma#fisncluded
in R? and for a time independent velocity fieldn L7, . with a divergence free a solution to
the linear conservation laws is presented in [23] and compmarenormalized solutions. The
guestion of uniqueness for weak solutiond.itf to linear conservation laws is discussed in
[16] for a velocity fieldu in L> with a divergence free and a domain includedh
In this paper, the question of existence and uniquenesdigsskd for linear conservation
laws on a domaif2 with Lipchitz boundary that satisfy the cone property. Inm oase the
velocity fieldw is only bounded. i.eu € L*° anddiv u € L*. The proposed method does
not deal with the characteristic flow generated by the veldald, but uses the functional
setting of anisotropic Sobolev’s spaces in the same way @2]rcombined with a formula-
tion of the problem in the time-space least squares senbe saime spirit as in [20] and [2].
In [18], the velocity field is required to be more regular tharour formulation ¢ € L°°,
anddiv u € L®°). This allow them to handle boundary conditions with veny fegularity.
In our method we must assume that the boundary conditioresg@me regularity.
The least squares method is widely used to solve partiaréiftial equations, see [19] and
[20] for elasticity and fluid mechanics problems. Few geherathematical results have
been obtained for this method in the case of first order tinpedéent conservation laws.
It seems that the STILS method (Space-Time Integrated [Sspsares) is originated to [11]
and [26]. In [11, 28], a least squares method is used to so®B atationary first order
conservation equation with regularity assumptions on theeetion velocity. Other results
have been obtained in [4, 5, 6]. In this paper, a general madkieal analysis of this method
is given for the linear conservation law when the advectigogity u has low regularity, more
precisely wheny € L*°, anddiv v € L. The solution obtained in this way is compared
with renormalized solutions [18].
In section 2 a description of the problem is given. In secB@wariational formulation of the
problem is given. The section 4 is dedicated to the proof efetkistence and uniqueness of
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solutions to the variational formulation described in ggtB. Moreover a comparison with
renormalized solution is given.

2. The problem description. Let Q ¢ R? be a domain with a Lipschitz boundad{?
satisfying the cone property. F > 0 is given, set) = Qx]0,T[. Consider an advection
velocityu : Q — R%andf : Q — R a given source term. In all this paper, the velocitiyas
the following regularity

uwe L¥(Q)¢ and divu € L¥(Q). (2.1)
Let
. ={xe€dQ: (u(zx,t)|n(x)) <0}

wheren(z) is the outer normal toS at pointz. For the sake of the presentation, it is assumed
thatI’_ do not depend on

The problem consists in finding a function Q — R satisfying the following partial differ-
ential equation

Oc+div(cu)=f inQ, (2.2)
and the initial and inflow boundary conditions

c(x,0) = co(x) for z in Q (2.3)
c(x,t) =c1(z,t) for z onT_. (2.4)

As usual, wherm;, ¢, andu are sufficiently regular, changing the source tgrihnecessary,
one can assume that = 0 onT'_, andcyg = 0 on 2. A similar result will be given later,
using a suitable trace theorem.

3. Functional Setting. In this section the functional setting for a variationalfardation
of the problem (2.2-2.4) will be settled, (see also [4, 5, B]breover a trace operator is given
in this context.

3.1. The Hilbert spaces.Foru € L>(Q)?, with div u € L>(Q), defineu as
U= (1,U1,U2, . ,Ud)t (S LOO(Q)d+1

and for a sufficiently regular functiop defined onQ, set

= dp dp Oy dp \'
v(p: b) b AR | b
ot 8:1:1 8:1:2 8517d

and

— o L 9
div(u ¢) = T ; oz, (u; ).

Finally n denotes the outward unit vector 61). The following theorem is proved in [12].

THEOREM 3.1. Under the assumption € L>°(Q)4, anddiv u € L*°(Q), the normal trace
ofu, (u|n)isin L>®(9Q).



Let now

0Q_ = {(x,t) € 9Q, (u|7) < 0}
=T_x(0,T) U Qx {0},

and set

co() if  (z,t) € 2 x{0}
cb(@;?) :{ olet) it (od) T X (0.T). (3.1)

We will assume that

c € L*(0Q).

) 1/2
+ Qi) e ds |
o 1D )

(see also [4, 5, 6, 8]) and then define the spH¢e, Q) as the closure dP(Q) for this norm:

Hw Q) =D@Q)

If u is regular enough, it can be seen that
H(u,Q) = {p € L*(Q), div(ii p) € L*(Q), plog_ € L*0Q-,| (@|7)| d5) }

(see e.g. [25, 22]). We now give a trace result for functiosl®hging toH (u, Q). Let us
start with the well known normal trace operatpdefined fromH (div, Q) with values in
H~2(dQ) (see [21, 10])

Fory € D(Q), consider the norm

div(ii ¢)

2
Il i) = <|90||L2<Q> + ‘

v (n]v) log,

Yv € H(div, @), with the associated Green formula:
/Qdiv(v)w + <U|V1/)) de dt =< (v|n),y > 4} 00).13 (50)’
Vi € HY(Q). Pluggingv = wp in the previous formula, we have:
/Qdiv(up)w + (u|V¢) pdrdt =<p(u|n),y > -3 (0053 (00)’

Vi € HY(Q). Let us now consider the bilinear forf : D(Q) x D(Q) C H(u,Q) x

H(u, Q) — R defined for allp, 1 € D(Q) by:
Low) = [ dvG@os+ (790 ) pdode+ [ (@17 100 .
Q 0Q-
Accounting for theorem 3.1 we have

191l 2 )

&ivV(ﬂw)‘

L(e, s\
Lo, ) o

+ [[divia) - div@|

£2(Q) ||<PHL2(Q)

+ el 200 1717)14) 1V 200 (@ 17)) @) -
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And the following estimate holds true
L, )l < (1 + [[dv(u)ll Lo () 10 o) 191 ) -

Since it is straightforward to check tha{y, o) = |\<p||iz(aQ+_,‘(a|ﬁ)|d5), if we extend by
continuity the bilinear forn. to H (u, Q) x H(u, Q) we have:

PROPOSITION3.2. Under the assumption € L>(Q)9, anddiv v € L>(Q) there exists a
linear continuous trace operator

Vi : H(u,Q) — L*(0Q, | (u|n)|do)
¥ = TaP = Plago
which can be localized as:

Yyt H(u,Q) — L*(0Q,| (u|n) |do)
P e = Plogy -

Finally define the space

HO = H()(U,Q,(?Qf) = {p € H(qu)a p= 0 OHan}
= H(u,Q) N Kerv;_.

3.2. Curved Poincag inequality. We now give an extension of treurved Poincag
inequalityobtained in [4, 5].

THEOREM3.3.If u € L*(Q)? anddiv v € L>(Q), the semi-norm ol (u, Q) defined by

1/2
Pl = ( /Q (div(@p)2de dt + /6 I d%) (32)

is a norm, equivalent to the norm given &f(u, Q).

Proof. We have to show that there is a constarguch that
||80||L2(Q) <C-loliu
for all p € D(Q). We have
[ [@v@e)-c+o- (a1%¢)|awde— | eoamas= [ colama
Q 0Q - 0Q+
(3.3)
for all regular enough functiof. Fora : (0,7) — R, choos€ = « - ¢, then

98 _ (9 ;o (oe o ,
at+(u|V§)—a(8t+(u|Vg0))+a<p—a(at—l—dlv(u(p) <pd1vu)—|—a<p.

Letv € L>(0,T) be defined by
v(t) = sup | div(u(t, z))|.

zeQ
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With the above choices, equation (3.3) has the form
/ {(o/ +av —alv+divu)) p? + 2ap - c/l\l;/(ﬂ @)} dx dt—
Q
/ g (|71) d& = / a? (i|7)d5 (3.4)
0Q_

0Q+

Let « be the solution of the differential equation
o +av=-2 «oT)=0.

An easy computation gives
T
a(t) = Qefw(t)/ e ds >0,
t
with w(t) = [; ¢*(*)ds. Introducing this value in equation (3.4) we obtain
/ {—2(,02 — a(v 4 divu)p? + 2ap &Rf(ﬂ 99)} dx dt—
Q

/ a<p2(ﬂ|ﬁ)d5:/ ap? (u|n)de > 0.
80—

Q4+
Hence
— 1

/502dzdt§/aga~div(ﬂ<p)dzdt——/ ap® (u|n)ds <
Q Q 2 8Q_
1 2 1 2 Qi (N2 1 2~ g
— [ *dedt+ = | o*div(uy)’dedt — = ap” (u|n)do
2 Jo 2 Jo 2 Jaq-

SO

/@Qdmdtg/a2-&§7(ﬂg0)2dxdt—/ ap?® (1)) ds.
Q Q 0Q_

2
If A=maz(||af ], |lall,~), we get

/chdxdtgA(/ c/l\i;/(ﬂgo)dedt—/ <p2(ﬂ|ﬁ)d5>,
Q Q 0Q-

and the theorem is proved. d
Henceforth the spacH (u, Q) is equipped with the norrfy|; .
REMARK 1. a) Using the above result, i, = 0, the semi-norm

1/2
o= ([ (Apac ar)
Q

in a norm onH, which is equivalent to the usual norm éf(u, Q).
b) As an easy consequence of the above arguments, fgr an¥/ (u, Q), the norm defined
by:
) 1/2
2 ~ |~ 2 4~
ol =1 llel7zioy + —/ uln)(T —t)p°do
ol <| IZ20) + 5 6Q+( [n) (T —1)
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verifies

Il 20y < el < VAlplia-

3.3. Aweak formulation. In L2(Q)), a solution of equation (2.2) corresponds to a zero
of the following convex, positive functional

J(e) = % </Q (diveie) - ) dmdt—/aQ(c—cb)Q(ﬂW)d&)

The Gateau derivative of is
DJ(c)p = / (cfv(ac) - f) div(@ ) de dt 7/ (c— ep)p (T|71)do
Q 0Q

So a sufficient condition to get the least squares solutiq®.@f- 2.4) is the followingveak
formulation Findc € H(u, @) such that

/cﬁv(ac)-&iv(w)dxdﬁ—/ ¢ (ii]7)d7 =

Q

f~cﬁ;f(ﬂgp)dxdt7/ e (t|n)ds (3.5)
Q-

forall p € H(u,Q) (see [4,5, 6, 8, 15, 17]).

3.4. Stampacchia’s theoremsin this section, we assume that the donfaiis bounded.
Later we will use the following versions of Stampacchiasdrems (see [27, 24]).

THEOREM3.4.Letp € H(u,Q), then

ﬁz(ﬂ p) =0 a.e. onthe set{(x,t) € Q; p(x.t) = 0} (3.6)

THEOREM3.5.Let f : R — R be a Lipschitz continuous function.

a)lf p € H(u,Q), thenf(p) € H(u, Q).
b) If f is differentiable except at a finite number of points, §ay.. . ., 2, }, then

&R@ flp)) = { f'(p) C/ﬁ;’(a p) it p(x,t) ¢ {z1,..., 2} (3.7)

0 elsewere.

For the proof of these theorems the following lemma is used.
LEMMA 3.6.Letp € H(u, Q) then|p| € H(u,Q) and

div(@ |p|) = sgn(p) - div(i p) (3.8)
where

+1 if p(x,t) >0
sgn(p(z,t)) = { 0 if pz,t)=0
-1 if  p(z,t) <0

7



Proof. (see [24]). Foe > 0, let f.(t) = Vt? +e. If p € H(u,Q), thenf.(p) € H(u,Q)
and

T~ 1Y T~
div(u fe(p)) = div(u p).
(@ £:(p) =~ A )
We have
[ 110 dz de =100+ [ (oPddt = [plagq, i =0
Q Q
and

2

/Q(fé(p)dTv(ﬂ p))2 de dt = /Q P div(@ p)2dz dt

—>/ div(ﬂp) de dt if e =0
Q

So the se{ f.(p)}->0 is bounded inf (u, @) and there exists a sequer(eg) — 0 such that
fa_n(P)Anin H(u, Q). ) _

sincel /-, (0)ll w0y — 1l s1u) i 7 — o0 @ndfe(t) — o if = — 0, we havey = ||
and|p| € H(u, Q).

Let nowy € D(Q), then

/Qfe/(P)&Rf(ﬂp)godxdt:/Q&R,@fa(p))wdxdt
H/ d

div(@ |p]) ¢ da dt

But
FL(p) div(i p) p — sgn(p) div(ii p) ¢ a.e.
and
[F2(p) div(@ p) ¢| < sgn(p) div(@ p) ¢
and we get the second result. |

Proof of theorem 3.4.This is a consequence of lemma 3.6. Indeed when0 then|p| = p
and

div(d |p|) = div(@ p) = sgn(p) div(a p).

If p = 0, thensgn(p) = 0, SOle(u = 0 a.e. on the subse{t(:c t) € Q, p(:c,t) =
Letnowp € H(u,Q), thenp™ = 3(|p| + p) € H(u, Q). p~ = 3(p| — p) € H(u,Q), &
p=pT —p~.But

{(z,t) € Q,p(x,t) =0} = {(z,t) € Q,p"(2,t) = 0} N {(w,1) € Q,p (,t) = 0},

SO

0}.
nd

c,ﬁ;f(ﬂer) =0 on {(z,t) €Q,pt(z,t) = 0},
8



and
div(@p~) =0 on {(x,t) € Q,p (z,t) =0},
and we get
div(ip) =0 on{(z,1) € Q. plx.t) = 0},
and the theorem is proved. O

The proof of theorem 3.5 is similar to the proof given in [24].

4. Study of the least squares formulation . This section is devoted to the study of
equation (3.5). More precisely, an existence and uniqusgthesrem for the solution of equa-
tion (3.5) is given. Then a maximum principle is deduced ftbm Stampacchia’s theorems.
With the notations and hypothesis of section 3 we have

THEOREM4.1. For afixedu € L>(Q)? with divu € L>(Q), the problem (3.5):
/cﬁ;/(ﬂc)m,ﬁ;f(ﬂgp)dxdtf/ c-p(u|n)de =
Q 2Q-

/f-dTv(w)dmdt—/ e (t|n)ds
Q 0Q_

forall ¢ € H(u, @), has a unique solution. Moreover
2

i 1/2
i = - A(u|n)ds < 200 -
el <\ I RG] B P

This solution is thepace-time least squares solutafr{2.2).

div(a ¢)

Proof. This assertion is a consequence of the Curved Poincag@atity (theorem 3.3) and
of the Lax-Milgram theorem (see also [4, 5]).

REMARK 2. For the numerical solution of equation (3.5), a time marchapproach can be
used to avoid the consideration of the all@f(see e.g. [8, 15, 17]).

COROLLARY 4.2. The solutior: of equation (3.5) belongs to the space
X = LX(Q) N L*(0Q4, (| 7) d5)
equipped with the norti|c|||.

The following theorem is a maximum principle for the solutiaf problem (3.5).

THEOREM 4.3. Assume that the domain is bounded, that the functioh = 0 in equation
(3.5) and that the function, € L>(0Q_). If div u = 0, the solution of equation (3.5)
satisfies

infcp, < ¢ < supcp.

Proof. The solutiore verifies

/&Tv(ac)-cﬁ’v(w)dmdﬁ—/ c-@(mﬁ)d&:—/ e - (|7 d5
Q 0Q - 0Q
9



forallp € H(u,Q). Let

M = sup ¢
oQ

and put
¥ = (CiM)+7 Ql = {(‘Tat) G@,C*M > 0}; El :8Q* le
Then, using the Stampacchia’s lemma,

/div(ﬂc)-c/l\i;/(ﬂ(c—M))dxdt—/Ec-(c—M)(ﬂW)d&:

—/Zlcb-(c—M)(ﬁm)d&.

Sincediv u = 0, we get

/(cfv(a(c—M))fdmdﬁ—/ ((c— M))?2 (@ |7) d =

1 3

_/E (cy — M)-(c— M) (@|7i)ds <o0.

Hence, using theorem 3.3, the gt has a zero measure, 8a< M. We show in the same
way thatc > inf ¢. a

Fianlly, let us do the following

REMARK 3. The reduction of problem (2.2-2.4) to an homogeneous DOatgbroblem on
0Q@Q_, i.e. assume that, = 0 can be done as follows.

Letc be the solution of (2.2):

/Qcﬁv(ac)-&iv(w)dxdﬁ—/ ¢ o (il]7)d7 =

f~cﬁ;f(ﬂgp)dxdt7/ - (t|n)ds,

Q 0Q-

forall ¢ € H(u, @), and letn the solution of
/cﬁf(ﬂn)-c/l\i;/(ﬂ@dzdt—/ n-w(am)d&:f/ e (|n)de
Q 0Q_ 0Q_

forall p € H(u,Q). Thenp = ¢ — nis the unique solution of

/Q&Tv(ap)-cfv(azp)dm dt:/ (f—ciTv(an)) - div(T ) da dt (4.1)

Q
forall v € Hy = Hy(u,Q,0Q_). Moreover the solution of problem (4.1) is equivalent to
the solution of (2.2).

Therefore, modifying the source term if necessary, it ificeft to only deal with homoge-
neous Dirichlet boundary conditions @it) _.

10



5. Comparison with renormalized solutions.. This section is devoted to the compari-
son between the least squares solution of equation (2)&2d4the renormalized solution of
these equations in the sense of [18].

More precisely, let € L>°(Q)4, with divu = 0, and(u|n) = 0 on 9. Let¢ € L>=(Q)
be the space-time least square solution of

o+ div(pu)=0 inQ,
with the boundary condition

¢=d¢dp, ondQ-,
andg, € L*>(0Q-).
Now lety = —div(u ¢) € L?(Q); as we have seen in remark 3, the space time least squares
solutionp € L>°(Q) of
Op +div (pu) =1 nQ, (5.1)
p=0 ondQ_, (5.2)
gives an equivalent solution to the previous problem.
DEFINITION 5.1. [18]Foru € L>=(Q)%, div u € L>®(Q), c;, € L>®(0Q-), andf € L*(Q),
the functiorc € L*>°(Q) is a renormalized solution of
c,ﬁ;f(ﬂ ¢)=f with ¢=¢ ondQ-_
if for any 3 € C1(R), 3(0) = 0, 3(c) is a weak solution of

div(@ B(c)) = B'(c)f,

and

B(c) = Blep) ondQ-.

where the equations are understood in distributions sense.

In this section we will show that is a renormalized solution of equations (5.1)- (5.2).
Let us first prove the following result which is a sort of Meg«Serrin theorem.
THEOREM 5.2. Letu € H(Q)? with dive = 0, and letp € L>(Q) with div(ip) €
L?*(Q), andp(z,0) = 0. Thenp € Hy(u, Q).

Proof. Lete > 0 be given and sufficiently small. Set
Qe=0x(e,T) D.=Qx(0,¢),

and defing, = plq. *w., wherew, is the usual mollifier. Thep. € D(Q), andp.(z,0) = 0.
Let us show that

0
=o.

div(ip) — div(ipe) || | (Q)

We have

div(@i p) — div(@i pe) = div (i p) — div (i p) * we
+cﬁ;/(ﬂp)*w57cﬁ;/(ﬂp*we)
+ div(@ p * we) — div(a pe).
11



Itis clear that

e—0

div(@ p) — div(d p) * We — 0;
’ (up) (up) 20)
moreover, from [18, 9], we have
T~ T~ e—0
div(u p) * we — div(u p * we — 0.
|diviip) CYETEs]

Finally, let

he = div(d p * we) — div (i pe)
= div(u (p - plg.) * we)-

If B, is the ball of cente(x, t) and radiug in R4+, then

he(z,t) = /B p(y,8)1p. (y,s) (ﬂ(ac, t)| ﬁwg(ac —y,t— s)) dy ds.

Since

[ o0 910.009) (1.5) | Dl = 0= ) ) dyds =0,
we get
et = [ oo, (0:5) (o 0) = o 5)) e ol =yt =) ) dys.
Hence, using the Cauchy-Schwartz inequality we get

2 2
1hellzzq) < llollLz(q) -

/Q [ 109 ) ~ )/l *dydsdet,

Vwe(z —y,t —s)

sinceeVw, is bounded, we get, asin[18, 9]
2 2 2
lell} gy < M2 19 [Ipl72(g) 1Vull 32 gy -

O
Letu™ be the following regularization of the velocity fieldgiven by the unique solution of
the following space-time stationary Stokes problem.

1 ~
——Au"4+u"+Vp=u inQ
m

divu™ =0 inQ
u™ =0 ondQ

with



Thenu™ € H}(Q) N L*°(Q), andu™ — w in L*(Q) whenm — oc.
Let nown™ be the renormalized solution of
o™ +divin™u™) = inQ,
with the initial condition
n™(x,0) = 0.

Sincey € L2(Q) we havediv(u™n™) € L*(Q). Asn™ € L>(Q), we deduce from
theorem 5.2 thay™ € Hy(u™, Q). Therefore;™ is also the space-time least squares solution
of dw(um ™) =4 in Hyo(u™, @), and we have

v y™)| |

o 9122

||77mHL2(Q) <C H"/JHLZ(Q)

Hence, extracting a subsequence if necessary, one caneatsaim

™ —=n inL*Q),

div(w™n™) = & in L*(Q).

Moreover, since:™ — u in L?(Q), we obtain

div(um ™) — div(an) in HY(Q),

and sox = div(an) € L2(Q).
Let us now prove that

div(um n™) — div(an) inL*Q).

For this it is sufficient to show that

div(w ™)

cﬁ/V(ﬁn)‘

- )
L*(Q) ‘ L*(Q)

but
2

div(a 77)‘

L*(Q)

/Q(&R/(ﬂn) dlv(um )) div(un) dz dt +
/div(lﬁ/nnm)c/l\i;/(ﬂn)dxdt

Q

/ dlv(u n) — dlv(um )) div(un) dx dt +
Q
/ O div(un) dz dt

:/Q(&\i;z(ﬂn) div(u™n )) div(iin) dz dt +

lim dlv(um ™2 dx dt,

m— 00 Q

13



and so

|

As a consequence of the above resujtss the least squares solution &lfﬁvv(ﬁn) = 1, SO

n € Ho(u, Q). Indeed, letw € D(Q) with w = 0 ondQ _, then for allm, w € Hy(u™, Q),
and we have

div(u ™)

-

cﬁ/V(ﬂn)}

L2(Q) L2(Q)

/ div(u™ ™) - div(u™ w) dz dt = / ¢ - div(u™ w) da dt.
Q Q
So, passing to the limit
/ div(an) - div(d w) dz dt = / ¢ - div(Tw) dz dt,
Q Q

and this equation remains true for all € Hy(u, Q). Thereforen € Hy(u, @), and is the

least squares solution 6fvv(ﬁn) =, and sop = p € L™(Q).
Now we can show that the sequenge strongly converges tg. Sincediv u™ = div u =0
andn™ € Hy(u™, Q), with the same idea as in theorem 3.3, we have

/Q[clTv@nm)-unm-clTv(ﬁ&)}dxdtz/ e (|7 d

Q4+
for all regular enough functiog. If we choose = (T' — t)n™, then
/ (™)? da dt = 2/ div(u™ n™) p™(T — t)dz dt. (5.3)
Q Q
But

/ dAl;/(uA’/” n™) ™ (T — t)dz dt — / c,l\l;/(ﬂ n) (T — t)dx dt = / n? dx dt,
Q Q Q

whenm — oo, since(u|n) = 00nd; son™ — nwhenm — oco.
Finally, let us show that is a renormalized solution. Let € C!(R),3(0) = 0, then
B(n™) — B(n). Moreover

(@ ) = 96m) - (15 ).

but
Bn™) — B(n) inLP(Q)
and
(ﬁlﬁnm) — (ﬂl%) in L*(Q),
SO

div(u™ f(5™)) — div(@B(n) inL'(Q),
thusn is a renormalized solution. We have proved the following

THEOREM5.3. If u € L>(Q)4, div u = 0, andc, € L>=(9Q_), the least squares solution
of

c,ﬁ;f(ﬂ ¢)=0 with ¢=c¢ ondQ-_ (5.4)
is a renormalized solution.
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6. Conclusions and remarks .We have shown in this paper that the conservation law
Oic+div(cu)=f inQ, (6.1)

can be solved for irregular vector fields, using a very sinajpleroach compared to the meth-
ods like e.g. [18, 3, 9].

Our method leads to some numerical schemes which are mughesita use than the usual
one (like the stream-line diffusion method, the charasties method, the discontinuous finite
element method with flux limiter, etc ...). Some numericarmples are presented in [15, 8,
17].

In [7], it is proved that the solution of equation 6.1 givesismmorphism onZ.?(Q) when

u € C1() is independent of. Our method still gives an isomorphism, but in some unusual
spaces. It allows to solve equations 6.1 with an irregulboorty field u. This situation where
not known until now.
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