Vanishing and non-vanishing for the first L^p -cohomology of groups

Marc BOURDON, Florian MARTIN and Alain VALETTE 23rd October 2003

Abstract

We prove two results on the first L^p -cohomology $\overline{H}^1_{(p)}(\Gamma)$ of a finitely generated group Γ :

- 1) If $N \subset H \subset \Gamma$ is a chain of subgroups, with N non-amenable and normal in Γ , then $\overline{H}^1_{(p)}(\Gamma) = 0$ as soon as $\overline{H}^1_{(p)}(H) = 0$. This allows for a short proof of a result of Lück [Lÿ7]: if $N \triangleleft \Gamma$, N is infinite, finitely generated as a group, and Γ/N contains an element of infinite order, then $\overline{H}^1_{(2)}(\Gamma) = 0$.
- 2) If Γ acts isometrically, properly discontinuously on a CAT(-1) space X, with at least 3 limit points in ∂X , then for p larger than the critical exponent $e(\Gamma)$ of Γ in X, one has $\overline{H}^1_{(p)}(\Gamma) \neq 0$. As a consequence we extend a result of Shalom [Sha00]: let G be a cocompact lattice in a rank 1 simple Lie group; if G is isomorphic to Γ , then $e(G) \leq e(\Gamma)$.

1 Introduction

Fix $p \in [1, \infty[$. Let Γ be a countable group. Assume first that Γ admits a $K(\Gamma, 1)$ -space which is a simplicial complex X finite in every dimension. Let \tilde{X} be the universal cover of X. Denote by $\ell^p C^k$ the space of p-summable complex cochains on \tilde{X} , i.e. the ℓ^p -functions on the set of k-simplices of \tilde{X} . The L^p -cohomology of Γ is the reduced cohomology of the complex

$$d_k: \ell^p C^k \to \ell^p C^{k+1},$$

where d_k is the simplicial coboundary operator; we denote it by

$$\overline{H}_{(p)}^k(\Gamma) = Ker \, d_k / \overline{Im \, d_{k-1}}.$$

As explained at the beginning §8 of [Gro93], this definition only depends on Γ .

For p=2, the space $\overline{H}_{(2)}^k(\Gamma)$ is a module over the von Neumann algebra of Γ , and its von Neumann dimension is the k-th L^2 -Betti number of Γ , denoted by $b_{(2)}^k(\Gamma)$; recall that $b_{(2)}^k(\Gamma)=0$ if and only if $\overline{H}_{(2)}^k(\Gamma)=0$.

For k=1, it is possible to define the first L^p -cohomology of Γ under the mere assumption that Γ is finitely generated. Denote by $\mathcal{F}(\Gamma)$ the space of all complex-valued functions on Γ , and by λ_{Γ} the left regular representation of Γ on $\mathcal{F}(\Gamma)$. Define then the space of p-Dirichlet finite functions on Γ :

$$D_p(\Gamma) = \{ f \in \mathcal{F}(\Gamma) : \lambda_{\Gamma}(g)f - f \in \ell^p(\Gamma) \text{ for every } g \in \Gamma \}.$$

If S is a finite generating set of Γ , define a norm on $D_p(\Gamma)/\mathbb{C}$ by:

$$||f||_{D_p}^p = \sum_{s \in S} ||\lambda_{\Gamma}(s)f - f||_p^p.$$

Denote by $i: \ell^p(\Gamma) \to D_p(\Gamma)$ the inclusion. The first L^p -cohomology of Γ is

$$\overline{H}_{(p)}^{1}(\Gamma) = D_{p}(\Gamma)/\overline{i(\ell^{p}(\Gamma))} + \mathbb{C}.$$

Let us recall briefly why this definition is coherent with the previous one. If Γ admits a finite $K(\Gamma,1)$ -space X, we can choose one such that the 1-skeleton of \tilde{X} is a Cayley graph $\mathcal{G}(\Gamma,S)$ of Γ . This means that S is some finite generating subset of Γ , that $C^0 = \Gamma$, and that C^1 is the set \mathbb{E}_{Γ} of oriented edges:

$$\mathbb{E}_{\Gamma} = \{(x, sx) : x \in \Gamma, s \in S\}.$$

Then d_0 is the restriction to $\ell^p(\Gamma)$ of the coboundary operator

$$d_{\Gamma}: \mathcal{F}(\Gamma) \to \mathcal{F}(\mathbb{E}_{\Gamma}): f \mapsto [(x,y) \mapsto f(y) - f(x)].$$

Since X is contractible, by Poincaré's lemma any closed cochain is exact, i.e. any element in $Ker\ d_1$ can be written as $d_{\Gamma}f$, for some $f \in D_p(\Gamma)$ defined up to an additive constant. This means that $d_{\Gamma}: D_p(\Gamma) \to \ell^p(\mathbb{E}_{\Gamma})$ induces an isomorphism of Banach spaces $D_p(\Gamma)/\mathbb{C} \to Ker\ d_1$, which maps $i(\ell^p(\Gamma))$ to $Im\ d_0$. This shows the equivalence of both definitions of $\overline{H}^1_{(p)}(\Gamma)$.

Our first result is:

Theorem 1. Let $N \subset H \subset \Gamma$ be a chain of groups, with H and Γ finitely generated, N infinite and normal in Γ .

- 1) If H is non-amenable and $\overline{H}^1_{(p)}(H) = 0$, then $\overline{H}^1_{(p)}(\Gamma) = 0$.
- 2) If $b_{(2)}^1(H) = 0$, then $b_{(2)}^1(\Gamma) = 0$.

We do not know whether part (1) of Theorem 1 holds when H is amenable. As an application of part (2) of Theorem 1, we will give a very short proof of the following result of W. Lück (Theorem 0.7 in [L $\ddot{9}$ 7]):

Corollary 1. Let Γ be a finitely generated group. Assume that Γ contains an infinite, normal subgroup N, which is finitely generated as a group, and such that Γ/N is not a torsion group. Then $b_{(2)}^1(\Gamma) = 0$.

Using his theory of L^2 -Betti numbers for equivalence relations and group actions, D. Gaboriau was able to improve the previous result by merely assuming that Γ/N is infinite (see [Gab02], Théorème 6.8). It is a challenging, and vaguely irritating question, to find a purely group cohomological proof of Gaboriau's result.

As shown by Gaboriau's result, non-vanishing of $\overline{H}_{(2)}^1$ is an obstruction for the existence of finitely generated normal subgroups. We now present a non-vanishing result. Its proof is based on an idea due to G. Elek (see [Ele97], Theorem 2).

Let X be a CAT(-1)-space (see [BH99] for the definitions), and let Γ be an infinite, finitely generated, properly discontinuous subgroup of isometries of X. Recall that the *critical exponent* of Γ is defined as

$$e(\Gamma) = \inf\{s > 0; \sum_{g \in \Gamma} e^{-s|go - o|} < +\infty\},$$

where o is any origin in X, and where |.-.| denotes the distance in X. In many cases, $e(\Gamma) < +\infty$; in particular, this happens when the isometry group of X is co-compact (see Proposition 1.7 in [BM96]).

Theorem 2. Assume that $e(\Gamma)$ is finite. If the limit set of Γ in ∂X has at least 3 points, then for $p > \max\{1, e(\Gamma)\}$ the Banach space $\overline{H}^1_{(p)}(\Gamma)$ is non zero.

When Γ is in addition co-compact, Theorem 2 was already known to Pansu and Gromov (see [Pan89] and page 258 in [Gro93]).

Theorem 2 is optimal for the co-compact lattices in rank one semi-simple Lie group: for those $p > e(\Gamma)$ if and only if $\overline{H}^1_{(p)}(\Gamma) \neq 0$, thanks to a

result of Pansu [Pan89]. Since L^p -cohomology of groups is an invariant of isomorphism, by combining Pansu's result with Theorem 2, we obtain the following generalisation of a result of Shalom (Theorem 1.1 in [Sha00]):

Corollary 2. Let G be a co-compact lattice in a rank one semi-simple Lie group. Assume that G is isomorphic to a properly discontinuous subgroup Γ of isometries of a CAT(-1) space X. Then $e(G) \leq e(\Gamma)$.

Shalom established this by different methods in the special case where X is the symmetric space associated to SO(n,1) or SU(n,1); his result also holds for non-cocompact lattices (when the Lie group is different from SO(2,1)).

2 Group cohomology; proof of Theorem 1

Let V be a topological Γ -module, i.e. a real or complex topological vector space endowed with a continuous, linear representation $\pi : \Gamma \times V \to V : (g,v) \mapsto \pi(g)v$. If H is a subgroup of Γ , we denote by $V|_H$ the space V viewed as an H-module for the restricted action, and by V^H the set of H-fixed points:

$$V^{H} = \{ v \in V \mid \pi(h)v = v, \forall h \in H \}.$$

We now introduce the space of 1-cocycles and 1-coboundaries on Γ , and the 1-cohomology with coefficients in V:

- $Z^1(\Gamma, V) = \{b : \Gamma \to V \mid b(gh) = b(g) + \pi(g)b(h), \forall g, h \in \Gamma\}$
- $\bullet \ B^1(\Gamma,V) = \{b \in Z^1(\Gamma,V) | \ \exists v \in V: \ b(g) = \pi(g)v v, \ \forall g \in \Gamma \}$
- $\bullet \ H^1(\Gamma,V) = Z^1(\Gamma,V)/B^1(\Gamma,V)$

Suppose that V is a Banach space. The space $Z^1(\Gamma, V)$ of 1-cocycles is a Fréchet space when endowed with the topology of pointwise convergence on Γ . The 1-reduced cohomology space with coefficients in V is

$$\overline{H^1}(\Gamma, V) = Z^1(\Gamma, V) / \overline{B^1(\Gamma, V)}.$$

Recall that V almost has invariant vectors if, for every finite subset F in Γ , and every $\epsilon > 0$, there exists a vector v of norm 1 in V, such that $\|\pi(g)v - g\|_{L^{\infty}}$

 $|v|| < \epsilon$ for every $g \in F$. The following result is due to Guichardet (Thm. 1 and Cor. 1 in [Gui72])¹

Proposition 1. Let Γ be a countable group.

- 1) Let V be a Banach Γ -module with $V^{\Gamma}=0$. The map $H^1(\Gamma,V)\to \overline{H^1}(\Gamma,V)$ is an isomorphism if and only if V does not almost have invariant vectors.
- 1. Let $p \in [1, \infty[$. Assume that Γ is infinite. The map $H^1(\Gamma, \ell^p(\Gamma)) \to \overline{H^1}(\Gamma, \ell^p(\Gamma))$ is an isomorphism if and only if Γ is non-amenable. \square

We will prove:

Proposition 2. Let $p \in [1, \infty[$. Let $N \subset H \subset \Gamma$ be a chain of groups, with Γ finitely generated, N infinite and normal in Γ . If $H^1(H, \ell^p(H)) = 0$, then $H^1(\Gamma, \ell^p(\Gamma)) = 0$.

The link between $\overline{H}^1_{(p)}(\Gamma)$ and $H^1(\Gamma, \ell^p(\Gamma))$ has been noticed by several people - see e.g. lemma 3 in [BV97] (for p=2 and Γ non-amenable), or §2 in [Pul03] (in general). We give the easy argument for completeness.

Lemma 1. For finitely generated Γ , there are isomorphisms

$$D_p(\Gamma)/(i(\ell^p(\Gamma)) + \mathbb{C}) \simeq H^1(\Gamma, \ell^p(\Gamma)) \text{ and } \overline{H}^1_{(p)}(\Gamma) \simeq \overline{H^1}(\Gamma, \ell^p(\Gamma)).$$

Proof of lemma 1: The map $D_p(\Gamma) \to Z^1(\Gamma, \ell^p(\Gamma)) : f \mapsto [g \mapsto \lambda_{\Gamma}(g)f - f]$ is continuous, with kernel the space $\mathbb C$ of constant functions, and the image of $i(\ell^p(\Gamma))$ is exactly $B^1(\Gamma, \ell^p(\Gamma))$. Moreover this map is onto because of the classical fact that $H^1(\Gamma, \mathcal F(\Gamma)) = 0$.

Before proving Proposition 2 (for which we will actually give two proofs), we explain how to deduce Theorem 1 from it.

Proof of Theorem 1 from Proposition 2

1) In view of lemma 1, the assumption of Theorem 1 reads $\overline{H^1}(H, \ell^p(H)) = 0$. Since H is non-amenable, by Proposition 1 we have $H^1(H, \ell^p(H)) = 0$. By Proposition 2 we deduce $H^1(\Gamma, \ell^p(\Gamma)) = 0$. By lemma 1 again, we get the conclusion.

¹Strictly speaking, Guichardet proves this result for unitary Γ-modules; but his proof, only appealing to the Banach isomorphism theorem, carries over without change to Banach Γ-modules.

2) If H is non-amenable, the result is a particular case of the first part. If H is amenable, then so is N, and the result follows from the Cheeger-Gromov vanishing theorem [CG86]: if a group Γ contains an infinite, amenable, normal subgroup, then all the L^2 -Betti numbers of Γ are zero.

Important remark: Cheeger and Gromov [CG86] defined L^2 -Betti numbers of a group Γ without any assumption on Γ , in particular not assuming Γ to be finitely generated. Using their definition, D. Gaboriau has shown us (private communication) a proof that $b_{(2)}^1(\Gamma) = 0$ always implies $\overline{H^1}(\Gamma, \ell^2(\Gamma) = 0$. As a consequence, part (2) of Theorem 1 holds without any assumption on the subgroup H.

Our first proof of Proposition 2 will require the following lemma, which is classical for p = 2.

Lemma 2. Let $p \in [1, \infty[$. Let H be a countable group. Let X be a countable set on which H acts freely. The following statements are equivalent:

- i) The permutation representation λ_X of H on $\ell^p(X)$, almost has invariant vectors;
- ii) H is amenable.

Proof of lemma 2: We recall (see [Eym72]) that a group Γ is amenable if and only if it satisfies Reiter's condition (P_p) , i.e. for every finite subset $F \subset \Gamma$ and $\epsilon > 0$, there exists $f \in \ell^p(\Gamma)$ such that $f \geq 0$, $||f||_p = 1$, and $||\lambda_{\Gamma}(g)f - f||_p < \epsilon$ for $g \in F$. In particular $\ell^p(\Gamma)$ almost has invariant vectors.

So if H is amenable, then $\ell^p(X)$ almost has invariant vectors since it contains $\ell^p(H)$ as a sub-module. This proves $(i) \Rightarrow (ii)$.

To prove $(ii) \Rightarrow (i)$, we assume that $\ell^p(X)$ almost has invariant vectors and prove in 3 steps that H satisfies Reiter's property (P_1) , so is amenable. So fix a finite subset $F \subset H$, and $\epsilon > 0$; find $f \in \ell^p(X)$, $||f||_p = 1$, such that $||\lambda_X(h)f - f||_p < \frac{\epsilon}{2p}$ for $h \in F$.

- 1) Replacing f with |f|, we may assume that $f \geq 0$.
- 2) Set $g = f^p$, so that $g \in \ell^1(X)$, $||g||_1 = 1$, $g \ge 0$. For $h \in F$, we have:

$$\|\lambda_X(h)g - g\|_1 = \sum_{x \in X} |f(h^{-1}x)^p - f(x)^p|$$

$$\leq p \sum_{x \in X} |f(h^{-1}x) - f(x)| (f(h^{-1}x)^{p-1} + f(x)^{p-1})$$

$$\leq p \left(\sum_{x \in X} |f(h^{-1}x) - f(x)|^p \right)^{\frac{1}{p}} \left(\sum_{x \in X} (f(h^{-1}x)^{p-1} + f(x)^{p-1})^{\frac{p}{p-1}} \right)^{\frac{p-1}{p}}$$

$$\leq p \|\lambda_X(h)f - f\|_p \left(2^{\frac{1}{p-1}} \sum_{x \in X} (f(h^{-1}x)^p + f(x)^p) \right)^{\frac{p-1}{p}} = 2p \|\lambda_X(h)f - f\|_p < \epsilon$$

where we have used consecutively ² the inequalities

- $|a^p b^p| \le p|a b|(a^{p-1} + b^{p-1})$ for a, b > 0;
- Hölder's inequality;
- $(a+b)^{\frac{p}{p-1}} \le 2^{\frac{1}{p}} (a^{\frac{p}{p-1}} + b^{\frac{p}{p-1}})$ for a, b > 0;

and the fact that $||f||_p = 1$.

3) Let $(x_n)_{n\geq 1}$ be a set of representatives for the orbits of H in X. Define a function g_n on H by $g_n(h) = g(hx_n)$, and set $G = \sum_{n=1}^{\infty} g_n$. Then $G \geq 0$ and $||G||_1 = \sum_{h \in H} \sum_{n=1}^{\infty} g(hx_n) = \sum_{x \in X} g(x) = 1$. Moreover, for $h \in F$:

$$\|\lambda_H(h)G - G\|_1 = \sum_{\gamma \in H} |\sum_{n=1}^{\infty} (g(h^{-1}\gamma x_n) - g(\gamma x_n))| \le \|\lambda_X(h)g - g\| < \epsilon$$

by the previous step. This establishes property (P_1) for H.

First proof of Proposition 2 (homological algebra):

Claim: $H^1(H, \ell^p(\Gamma)|_H) = 0$. Choosing representatives for the right cosets of H in Γ , we identify $\ell^p(\Gamma)|_H$ in an H-equivariant way with the ℓ^p -direct sum $\oplus \ell^p(H)$ of $[\Gamma : H]$ copies of $\ell^p(H)$. Since cohomology commutes with finite direct sums, the claim is clear if $[\Gamma : H] < \infty$. So assume that $[\Gamma, H] = \infty$. If $b \in Z^1(H, \ell^p(\Gamma)|_H)$, write $b = (b_k)_{k \geq 1}$ where $b_k \in Z^1(H, \ell^p(H))$ for every $k \geq 1$. By assumption, for each k, there is a function $f_k \in \ell^p(H)$ such that $b_k(h) = \lambda_H(h) f_k - f_k$ for every $h \in H$. Set

$$B_N(h) = (\lambda_H f_1 - f_1, \dots, \lambda_N(h) f_N - f_N, 0, 0, \dots)$$

The expert will recognize here the argument to pass from property (P_p) to property (P_1) , as in [Eym72].

so that $B_N \in B^1(H, \ell^p(\Gamma)|_H)$ and B_N converges to b pointwise on H, for $N \to \infty$. This already shows that $\overline{H^1}(H, \ell^p(\Gamma)|_H) = 0$. Notice now that, by Proposition 1(2), the assumption $H^1(H, \ell^p(H)) = 0$ implies that H is non-amenable. By lemma 2 applied to $X = \Gamma$, this means that $\ell^p(\Gamma)|_H$ does not almost have invariant vectors. By Proposition 1(1), we get $H^1(H, \ell^p(\Gamma)|_H) = 0$, proving the Claim.

Recall from group cohomology (see e.g. § 8.1 in [Gui80]) that, for any Γ -module V, there is an exact sequence

$$0 \to H^1(\Gamma/N, V^N) \xrightarrow{i_*} H^1(\Gamma, V) \xrightarrow{Rest_\Gamma^N} H^1(N, V|_N)^{\Gamma/N}$$

where $i:V^N\to V$ denotes the inclusion. In particular, if $V^N=0$, then the restriction map

$$Rest^N_\Gamma: H^1(\Gamma, V) \to H^1(N, V|_N)$$

is injective. We apply this with $V = \ell^p(\Gamma)$ (noticing that $V^N = 0$ as N is infinite).

Consider then the composition of restriction maps

$$H^1(\Gamma, \ell^p(\Gamma)) \overset{Rest_{\Gamma}^H}{\to} H^1(H, \ell^p(\Gamma)|_H) \overset{Rest_{H}^N}{\to} H^1(N, \ell^p(\Gamma)|_N);$$

this composition is $Rest_{\Gamma}^{N}$, which is injective as we just saw. On the other hand, by the claim this composition is also the zero map. So $H^{1}(\Gamma, \ell^{p}(\Gamma)) = 0$, as was to be established.

Second proof of Proposition 2 (geometry): This proof works under the extra assumption that H is finitely generated. Fix finite generating sets T for H, S for Γ , with $T \subset S$, and consider the Cayley graph $\mathcal{G}(\Gamma, S)$ and its coboundary operator $d_{\Gamma} : \mathcal{F}(\Gamma) \to \mathcal{F}(\mathbb{E}_{\Gamma})$. Then $D_p(\Gamma) = \{ f \in \mathcal{F}(\Gamma) : d_{\Gamma}f \in \ell^p(\mathbb{E}_{\Gamma}) \}$. Similarly, let d_H be the coboundary operator associated with the Cayley graph $\mathcal{G}(H, T)$.

Fix $f \in D_p(\Gamma)$; the goal is to show that $f \in \ell^p(\Gamma) + \mathbb{C}$. Let $(g_i)_{i \in I}$ be a set of representatives for the right cosets of H in Γ , so that $\Gamma = \coprod_{i \in I} Hg_i$. For $i \in I$, set $f_i(x) = f(xg_i)$ $(x \in H)$. Then

$$\|d_H(f_i)\|_p^p = \sum_{x \in H} \sum_{s \in T} |f(sxg_i) - f(xg_i)|^p \le \sum_{x \in \Gamma} \sum_{s \in S} |f(sx) - f(x)|^p = \|d_{\Gamma}f\|^p < \infty,$$

i.e. $f_i \in D_p(H)$. Using our assumption and lemma 1, we may write

$$f_i = h_i + u_i$$

where $h_i \in \ell^p(H)$ and $u_i \in \mathbb{C}$. Define functions h and u on Γ by $h(xg_i) = h_i(x)$ and $u(xg_i) = u_i$ $(x \in H)$.

First claim: $h \in \ell^p(\Gamma)$.

Indeed, since H is non-amenable (by Proposition 1), there exists a constant C > 0 (depending only on p, H, T) such that for every $i \in I$:

$$||h_i||_p \leq C||d_H(h_i)||_p$$
.

Then summing over i:

$$||h||_{p}^{p} = \sum_{i \in I} ||h_{i}||_{p}^{p} \leq C^{p} \sum_{i \in I} ||d_{H}(f_{i})||_{p}^{p} = C^{p} \sum_{i \in I} \sum_{x \in H} \sum_{s \in T} |h_{i}(sx) - h_{i}(x)|^{p}$$

$$= C^{p} \sum_{i \in I} \sum_{x \in H} \sum_{s \in T} |f_{i}(sx) - f_{i}(x)|^{p} = C^{p} \sum_{x \in \Gamma} \sum_{s \in T} |f(sx) - f(x)|^{p}$$

$$\leq C^{p} \sum_{x \in \Gamma} \sum_{s \in S} |f(sx) - f(x)|^{p} = C^{p} ||d_{\Gamma}(f)||_{p}^{p} < \infty.$$

Second claim: u is constant.

Indeed, since f = h + u, and $d_{\Gamma}(f), d_{\Gamma}(h) \in \ell^{p}(\mathbb{E}_{\Gamma})$, we have $d_{\Gamma}(u) \in \ell^{p}(\mathbb{E}_{\Gamma})$. In particular this implies, for fixed indices $i, j \in I$:

$$\infty > \sum_{x \in N} |u((g_j g_i^{-1}) x g_i) - u(x g_i)|^p = \sum_{x \in N} |u((g_j g_i^{-1}) x g_i) - u_i|^p = \sum_{x \in N} |u(x(g_j g_i^{-1}) g_i) - u_i|^p$$

since N is normal in Γ . The latter sum is equal to

$$\sum_{x \in N} |u_j - u_i|^p < \infty.$$

Since N is infinite, this forces $u_i = u_j$, i.e. u is constant.

The first and the second claim together prove Proposition 2. \Box

3 Some results of W. Lück

The following result was obtained by Lück in [L94], Theorem 2.1. We recall his short, elegant argument.

Lemma 3. Let N be a finitely generated group, and let α be an automorphism of N. Let $H = N \rtimes_{\alpha} \mathbb{Z}$ be the corresponding semi-direct product. Then $b_{(2)}^1(H) = 0$.

Proof: The proof depends on two classical properties of the L^2 -Betti numbers for a finitely generated group Γ :

- $b_2^1(\Gamma) \leq d(\Gamma)$, where $d(\Gamma)$ denotes the minimal number of generators of Γ ;
- if Λ is a subgroup of finite index d in Γ , then $b_{(2)}^k(\Lambda) = d \cdot b_{(2)}^k(\Gamma)$.

Let then $p: H \to \mathbb{Z}$ denote the quotient map; for $n \geq 1$, set $H_n = p^{-1}(n\mathbb{Z})$, a subgroup of index n in H. Then:

$$n \cdot b_{(2)}^1(H) = b_{(2)}^1(H_n) \le d(H_n) \le d(N) + 1.$$

Since this holds for every $n \geq 1$, the lemma follows.

Proof of Corollary 1: Since Γ/N is not a torsion group, we find a subgroup H of Γ , containing N, such that H/N is infinite cyclic. Since N is finitely generated, we have $b_{(2)}^1(H)=0$, by lemma 3. The result follows then immediately from Theorem 1.

Example: We point out that lemma 3 has no analogue in L^p -cohomology, with $p \neq 2$. To see it, let M be a 3-dimensional, compact, hyperbolic manifold which fibers over the circle. Denote by Σ_g the fiber of that fibration: this is a closed Riemann surface of genus $g \geq 2$. Then the fundamental group $\Gamma = \pi_1(M)$ admits a semi-direct product decomposition $\Gamma = \pi_1(\Sigma_g) \rtimes \mathbb{Z}$, so that $\overline{H}^1_{(2)}(\Gamma) = 0$ by lemma 2. However

$$\inf\{p \ge 1 : \overline{H}_{(p)}^1(\Gamma) \ne 0\} = 2,$$

as was proven by Pansu [Pan89].

4 Proof of Theorem 2

Denote by ∂X the (Gromov) boundary of X. Let $\Lambda = \overline{\Gamma o} \cap \partial X$ be the limit set of Γ in ∂X (the closure of Γo is taken in the compact set $X \cup \partial X$).

Since X is a CAT(-1) space, its boundary carries a natural metric d (called a visual metric) which can be defined as follows (see [Bou95], Théorème 2.5.1); for every ξ and η in ∂X :

$$d(\xi,\eta) = e^{-(\xi|\eta)},$$

where (.|.) denotes the Gromov product on ∂X based on o, namely

$$(\xi|\eta) = \lim_{(x,y)\to(\xi,\eta)} \frac{1}{2} (|o-x| + |o-y| - |x-y|).$$

Observe that there exists a constant B such that for every $g \in \Gamma$ there is a point ξ in ∂X with $d(go, [o, \xi)) \leq B$. Indeed this property does not depend on the choice of the origin o. So we choose o on a bi-infinite geodesic (η_1, η_2) . Then go belongs to $(g\eta_1, g\eta_2)$. Now since X is Gromov-hyperbolic, one of the two points $g\eta_1$ or $g\eta_2$ satisfies the claim.

Let u be a Lipschitz function of $(\partial X, d)$ which is non-constant on Λ ; such functions do exist since Λ is not reduced to a point. Following G. Elek [Ele97], let f be the function on Γ defined by $f(g) = u(\xi_g)$, where ξ_g is a point in ∂X such that $d(g^{-1}o, [o, \xi_g)) \leq B$.

Claim: $f \in D_p(\Gamma)$ for $p > \max\{1, e(\Gamma)\}$. Indeed we have

$$||f||_{D_{p}}^{p} = \sum_{s \in S} \sum_{g \in \Gamma} |f(sg) - f(g)|^{p} = \sum_{s \in S} \sum_{g \in \Gamma} |u(\xi_{sg}) - u(\xi_{g})|^{p}$$

$$\leq C \sum_{s \in S} \sum_{g \in \Gamma} [d(\xi_{sg}, \xi_{g})]^{p} \leq D \sum_{g \in \Gamma} \sum_{s \in S} e^{-p(\xi_{sg}|\xi_{g})}$$

$$\leq D \sum_{g \in \Gamma} e^{-p|g^{-1}o - o|} < +\infty,$$

where C, D are constants depending only on u, B and S. The details for the first inequality in the last line are the following. Observe that $|(sg)^{-1}o - g^{-1}o| = |s^{-1}o - o|$ is bounded above by an absolute constant. This implies that if x_g and x_{sg} denote respectively the points on $[o, \xi_g)$ and $[o, \xi_{sg})$ whose distance from o is equal to $|g^{-1}o - o|$, then $|x_g - x_{sg}|$ is bounded above by an absolute constant. Now with the triangle inequality

$$|x - y| \le |x - x_{sg}| + |x_{sg} - x_{g}| + |x_{g} - y|,$$

and from the definition of the Gromov product, it follows that

$$(\xi_{sg}|\xi_g) \ge \frac{1}{2}(|o-x_{sg}|+|o-x_g|-|x_{sg}-x_g|),$$

so that $(\xi_{sg}|\xi_g)$ is bounded below by $|g^{-1}o - o|$ plus an absolute additive constant. This proves the claim.

Since Λ has at least 3 points, the group Γ is non-amenable (namely it is well-known that Λ is a minimal set, and that an amenable group stabilises one or two points in ∂X). So by proposition 1 and by Lemma 1, we must prove that f does not belong to $i(\ell^p(\Gamma)) + \mathbb{C}$. Assume it does, then f(g) tends to a constant number when the length of g in Γ tends to $+\infty$. This contradicts the fact that u is non-constant on Λ .

References

- [BH99] M. Bridson and A. Haefliger. Metric spaces of non-positive curvature. Springer-Verlag, 1999.
- [BM96] M. Burger and S. Mozes. CAT(-1) spaces, divergence groups and their commensurators. J. Amer. Math. Soc., 1:57–93, 1996.
- [Bou95] M. Bourdon. Structure conforme au bord et flot géodésique d'un CAT(-1)-espace. Enseign. Math., 41:63–102, 1995.
- [BV97] B. Bekka and A. Valette. Group cohomology, harmonic functions and the first l^2 -Betti number. *Potential analysis*, 6:313–326, 1997.
- [CG86] J. Cheeger and M. Gromov. L_2 -cohomology and group cohomology. Topology, 25:189–215, 1986.
- [Ele97] G. Elek. The ℓ_p -cohomology and the conformal dimension of hyperbolic cones. Geometriae Dedicata, 68:263–279, 1997.
- [Eym72] P. Eymard. Moyennes invariantes et représentations unitaires. Springer-Verlag, Lect. Notes in Math. 300, 1972.
- [Gab02] D. Gaboriau. Invariants ℓ^2 de relations d'équivalence et de groupes. Publ.Math., Inst. Hautes Etudes Sci., 95:93-150, 2002.
- [Gro93] M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory (G.A. Niblo and M.A. Roller, eds.), London Math. Soc. lect. notes 182, Cambridge Univ. Press, 1993.
- [Gui72] A. Guichardet. Sur la cohomologie des groupes topologiques II. Bull. Sci. Math., 96:305–332, 1972.

- [Gui80] A. Guichardet. Cohomologie des groupes topologiques et des algèbres de Lie. Cedic - F. Nathan, 1980.
- [L $\ddot{9}4$] W. Lück. L^2 -Betti numbers of mapping tori and groups. Topology, 33:203-214, 1994.
- [L97] W. Lück. Hilbert modules and modules over finite von Neumann algebras and applications to L^2 -invariants. Math.Ann., 309:247–285, 1997.
- [Pan89] P. Pansu. Cohomologie L^p des variétés à courbure négative, cas du degré 1. In *PDE and geometry 1988, Rend. sem. mat. Torino, Fasc. spez.*, 95-120, 1989.
- [Pul03] M.J. Puls. Group cohomology and l^p -cohomology of finitely generated groups. Canad. Math. Bull., 46:268–276, 2003.
- [Sha00] Y. Shalom. Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group. *Ann. Math.*, 152:113–182, 2000.

Authors addresses:

Laboratoire d'arithmétique, géométrie, analyse, topologie UMR CNRS 8524 - Université de Lille I F-59655 Villeneuve d'Ascq - FRANCE bourdon@agat.univ-lille1.fr

Institut de Mathématiques - Université de Neuchâtel Rue Emile Argand 11 CH-2007 Neuchâtel - SWITZERLAND florian.martin@unine.ch alain.valette@unine.ch