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Abstract
We prove two results on the first LP-cohomology ﬁzp)(F) of a
finitely generated group I':

1) If N ¢ H C I' is a chain of subgroups, with N non-amenable
and normal in I', then sz)(F) = 0 as soon as sz)(H) = 0. This
allows for a short proof of a result of Liick [1.97]: if N aT', N
is infinite, finitely generated as a group, and I'/N contains an

element of infinite order, then ﬁ(lm(F) =0.

2) If T' acts isometrically, properly discontinuously on a CAT(-1)
space X, with at least 3 limit points in 90X, then for p larger than
the critical exponent e(I') of I' in X, one has sz)(F) #0. As
a consequence we extend a result of Shalom [Sha00]: let G be a
cocompact lattice in a rank 1 simple Lie group; if G is isomorphic

to I', then e(G) < e(I).

1 Introduction

Fix p € [1,00]. Let I' be a countable group. Assume first that I' admits a
K(I',1)-space which is a simplicial complex X finite in every dimension. Let
X be the universal cover of X. Denote by 2C* the space of p-summable
complex cochains on X, i.e. the f’-functions on the set of k-simplices of X.

The LP-cohomology of T' is the reduced cohomology of the complex
dy, : PCF — P CHL

where d, is the simplicial coboundary operator; we denote it by

_k- . -
H(p)(F) = Kerd,/Imdj_;.
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As explained at the beginning §8 of [Gro93], this definition only depends on
I
For p = 2, the space F?Q)(F) is a module over the von Neumann algebra of

I', and its von Neumann dimension is the k-th L?-Betti number of I', denoted

by b’(‘“Q)(F); recall that b](CQ)(F) = 0 if and only if F@)(F) = 0.

For k =1, it is possible to define the first LP-cohomology of I" under the
mere assumption that I' is finitely generated. Denote by F(I') the space of
all complex-valued functions on I', and by Ar the left regular representation
of I on F(I'). Define then the space of p-Dirichlet finite functions on I':

D,(D)y=A{feF): Ar(g)f — f € ?(T) for every g € T'}.

If S is a finite generating set of I', define a norm on D,(I")/C by:

1A, = > IIAc(s)f — f1.

SES

Denote by i : £7(I') — D,(T') the inclusion. The first LP-cohomology of T is
7, (T) = D, (T) /() T C.
Let us recall briefly why this definition is coherent with the previous one.

If I' admits a finite K(I',1)-space X, we can choose one such that the 1-
skeleton of X is a Cayley graph G(I',S) of I'. This means that S is some
finite generating subset of T', that C® = T', and that C' is the set Er of

oriented edges:

Er ={(z,sz): 2z €T,s € S5}
Then dy is the restriction to ¢#(I') of the coboundary operator

dp : F(L') = F(Er) : f e [(z,y) = f(y) = [(z)].

Since X is contractible, by Poincaré’s lemma any closed cochain is exact, i.e.
any element in Ker d; can be written as dr f, for some f € D,(I') defined up
to an additive constant. This means that dr : D,(I') — ¢?(Ep) induces an
isomorphism of Banach spaces D,(I')/C — Ker dy, which maps 7(¢*(T')) to
Imdy. This shows the equivalence of both definitions of F(lp)(F).

Our first result is:

Theorem 1. Let N C H C T be a chain of groups, with H and 1" finitely

generated, N infinite and normal in T
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1) If H is non-amenable and F(lp)(H) =0, then F(lp)(F) =0.

2) ]fb%Q)(H) =0, then 632)(11) =0.

We do not know whether part (1) of Theorem 1 holds when H is amenable.
As an application of part (2) of Theorem 1, we will give a very short proof

of the following result of W. Liick (Theorem 0.7 in [L97]):

Corollary 1. Let I' be a finitely generated group. Assume that T' contains
an infinite, normal subgroup N, which is finitely generated as a group, and
such that I'/N is not a torsion group. Then b(IQ)(F) =0.

Using his theory of L2-Betti numbers for equivalence relations and group
actions, D. Gaboriau was able to improve the previous result by merely
assuming that I'/V is infinite (see [Gab02], Théoreme 6.8). It is a challenging,
and vaguely irritating question, to find a purely group cohomological proof

of Gaboriau’s result.

As shown by Gaboriau’s result, non-vanishing of F(IQ) is an obstruction
for the existence of finitely generated normal subgroups. We now present
a non-vanishing result. Its proof is based on an idea due to G. Elek (see
[Ele97], Theorem 2).

Let X be a CAT(-1)-space (see [BH99| for the definitions), and let I' be
an infinite, finitely generated, properly discontinuous subgroup of isometries
of X. Recall that the eritical exponent of T' is defined as

e(I'") = inf{s > 0; Z e~*lo=0l < foo},

g€l

where o is any origin in X, and where |. — .| denotes the distance in X.
In many cases, e(I') < 4o0; in particular, this happens when the isometry

group of X is co-compact (see Proposition 1.7 in [BM96]).

Theorem 2. Assume that e(I') is finite. If the limit set of I' in X has al
least 3 points, then for p > max{l,e(I')} the Banach space F(lp)(F) is non

ZETO.

When T' is in addition co-compact, Theorem 2 was already known to
Pansu and Gromov (see [Pan89] and page 258 in [Gro93]).
Theorem 2 is optimal for the co-compact lattices in rank one semi-simple

Lie group : for those p > ¢(T') if and only if sz)(F) # 0, thanks to a
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result of Pansu [Pan89]. Since LP-cohomology of groups is an invariant of
isomorphism, by combining Pansu’s result with Theorem 2, we obtain the
following generalisation of a result of Shalom (Theorem 1.1 in [Sha00]) :

Corollary 2. Let G be a co-compact lattice in a rank one semi-simple Lie

group. Assume that GG is isomorphic to a properly discontinuous subgroup T’

of isometries of a CAT(—1) space X. Then e(G) < e(I'). O

Shalom established this by different methods in the special case where
X is the symmetric space associated to SO(n,1) or SU(n,1); his result

also holds for non-cocompact lattices (when the Lie group is different from

SO(2,1)).

2 Group cohomology; proof of Theorem 1

Let V be a topological I-module, i.e. a real or complex topological vector
space endowed with a continuous, linear representation 7 : ' x V. — V :
(g,v) — m(g)v. If H is a subgroup of I', we denote by V|y the space V
viewed as an H-module for the restricted action, and by V¥ the set of H-
fixed points:

VE ={veV|n(h)v=n, Yh € H}.

We now introduce the space of 1-cocycles and 1-coboundaries on I', and
the 1-cohomology with coefficients in V:

o 7Y, V)={b:T = V|b(gh) =b(g) + n(g)b(h), Vg,h € T}
o B, V)={be ZYT,V)|TFv e V: b(g) = m(g9)v — v, Vg € T}
« H\(T,V) = Z'(I,V)/B'(,V)

Suppose that V' is a Banach space. The space Z'(T', V) of 1-cocycles is a
Fréchet space when endowed with the topology of pointwise convergence on

I'. The 1-reduced cohomology space with coefficients in V' is
HYT, V)= ZYT,V)/BY(T,V).

Recall that V' almost has invariant vectors if, for every finite subset F in I’

and every € > 0, there exists a vector v of norm 1 in V, such that ||7(g)v —



v|| < € for every g € F. The following result is due to Guichardet (Thm. 1
and Cor. 1 in [Gui72])!

Proposition 1. Lel I' be a countable group.

1) Let V be a Banach T-module with V' = 0. The map HYT,V) —
HY(T,V) is an isomorphism if and only if V does nol almost have

nvariant vectors.

1. Let p € [1,00[. Assume that T is infinite. The map H'(T',¢*(T')) —
HY(T',¢7(1)) is an isomorphism if and only if I' is non-amenable. O

We will prove:

Proposition 2. Let p € [1,00[. Let N C H C T be a chain of groups, with
' finitely generated, N infinite and normal in T. If H'(H,(?(H)) =0, then
HY(T, 7(T)) = 0.

The link between sz)(F) and H'(T,¢?(T')) has been noticed by several
people - see e.g. lemma 3 in [BV97] (for p = 2 and I' non-amenable), or §2

in [Pul03] (in general). We give the easy argument for completeness.

Lemma 1. For finitely generated 1", there are isomorphisms
D,(T)/G(7(T)) +C) ~ H'(T,#(T)) and sz)(F) ~ HY(T,°(T)).

Proof of lemma 1: The map D,(I') — ZYT,7(T)) : f — [g —
Ar(g)f — f] is continuous, with kernel the space C of constant functions,
and the image of ¢(/7(T')) is exactly B'(I", #(I")). Moreover this map is onto
because of the classical fact that H'(T', F(I')) = 0. O

Before proving Proposition 2 (for which we will actually give two proofs),

we explain how to deduce Theorem 1 from it.

Proof of Theorem 1 from Proposition 2

1) In view of lemma 1, the assumption of Theorem 1 reads H'(H, (*(H)) =
0. Since H is non-amenable, by Proposition 1 we have H'(H,(?(H)) =
0. By Proposition 2 we deduce H'(T',¢?(T')) = 0. By lemma 1 again,

we get the conclusion.

IStrictly speaking, Guichardet proves this result for unitary T-modules; but his proof,
only appealing to the Banach isomorphism theorem, carries over without change to Banach
-modules.



2) If H is non-amenable, the result is a particular case of the first part. If
H is amenable, then so is IV, and the result follows from the Cheeger-
Gromov vanishing theorem [CGS86]: if a group I' contains an infinite,
amenable, normal subgroup, then all the L?-Betti numbers of I' are

Zero. O

Important remark: Cheeger and Gromov [CG86] defined L2-Betti num-
bers of a group I' without any assumption on I', in particular not assum-
ing I' to be finitely generated. Using their definition, D. Gaboriau has
shown us (private communication) a proof that 632)@) = 0 always implies

HY(T, (') = 0. As a consequence, part (2) of Theorem 1 holds without any

assumplion on the subgroup H.

Our first proof of Proposition 2 will require the following lemma, which

is classical for p = 2.

Lemma 2. Leltp € [1,00[. Let H be a countable group. Lel X be a countable

set on which H acts freely. The following statements are equivalent:

i) The permutation representation Ax of H on (?(X), almost has invari-

anl veclors;
ii) H is amenable.

Proof of lemma 2: We recall (see [Eym?72]) that a group I' is amenable
if and only if it satisfies Reiter’s condition (F,), i.e. for every finite subset
F C T and € > 0, there exists f € ¢7(I') such that f > 0, ||f|l, = 1, and
|IAr(g)f— fllp < efor g € F. In particular 7(I") almost has invariant vectors.

So if H is amenable, then ¢#(X) almost has invariant vectors since it
contains (?(H) as a sub-module. This proves (1) = (12).

To prove (i1) = (i), we assume that 2(X) almost has invariant vectors
and prove in 3 steps that H satisfies Reiter’s property (P;), so is amenable.
So fix a finite subset F' C H, and € > 0; find f € 2(X), ||f||, = 1, such that
IAx(h)f — fll, < 5 for h € F.

1) Replacing f with |f], we may assume that f > 0.

2) Set g = fP, so that g € £*(X), ||lg|li =1, g > 0. For h € F, we have:

IAx(R)g — gl = > 1f(h7 ') — f(x)"|

reX



< p Y F(hT 2) = f@) (R )P+ )

sp (Z [f(h7 ) - f(l’)|p> p (Z(f(h_la:)p_l + f(;z;)p—l)p’ﬁ> ’
S (Qplj 2 (“’)p)) = s~ <

where we have used consecutively ? the inequalities

o |af — b°| < pla — b|(aP~! + bP~1) for a,b > 0;
e Holder’s inequality;
o (a+ b)ﬁ < 21%(a1% + bzﬁ) for a,b > 0;

and the fact that || f||, = 1.

3) Let (z,),>1 be a set of representatives for the orbits of H in X. Define
a function g, on H by g,(h) = g(hz,), and set G = > g,. Then

G >0 and |Gy = > ey 2oney 9(hTn) = 3 cx g9(x) = 1. Moreover,
for h € F:

Pr(R)G =Gl = Y 1Y (9(h ™ v2a) = g(yea))| < [Ax(h)g—gll < e

~YyeH n=1

by the previous step. This establishes property (P;) for H. O

First proof of Proposition 2 (homological algebra):

Claim: H'(H,(?(T')|g) = 0. Choosing representatives for the right cosets
of H in I', we identify £7(I')| 7 in an H-equivariant way with the /’-direct sum
@lP(H) of [I' : H] copies of ?(H). Since cohomology commutes with finite
direct sums, the claim is clear if [I': H] < oo. So assume that [I', H| = oo.
Ifbe Z'(H,(°(T)|n), write b = (bg)r>1 where by € Z'(H, (*(H)) for every
k > 1. By assumption, for each k, there is a function f; € (?(H) such that
bp(h) = Ap(h) fx — fi for every h € H. Set

BN(h) = (/\Hfl _fla-" 7/\N(h)fN_fN70707"')

“The expert will recognize here the argument to pass from property (P,) to property
(P1), as in [Eym72].




so that By € B'(H,’(I')|g) and By converges to b pointwise on H, for
N — co. This already shows that H'(H,¢"(I')|z) = 0. Notice now that, by
Proposition 1(2), the assumption H'(H,¢’(H)) = 0 implies that H is non-
amenable. By lemma 2 applied to X = I', this means that (I')|z does not
almost have invariant vectors. By Proposition 1(1), we get H'(H, #(T)|g) =
0, proving the Claim.

Recall from group cohomology (see e.g. § 8.1 in [Gui80]) that, for any

I'-module V', there is an exact sequence

Resz‘F

0 — HY(T/N,VN) I HYT, V) 3T HY(N, V|y)/Y

where ¢ : VN — V denotes the inclusion. In particular, if VN = 0, then the

restriction map

Resty : HY(I',V) — H'(N,V|x)
is injective. We apply this with V' = ¢?(T') (noticing that VN = 0 as N is
infinite).

Consider then the composition of restriction maps

HY(T, (1)) "S5 1 (H, (D)) "S5 HY(N, (D))

this composition is RestY, which is injective as we just saw. On the other
hand, by the claim this composition is also the zero map. So H'(T', ¢*(T)) =
0, as was to be established. a

Second proof of Proposition 2 (geometry): This proof works under
the extra assumption that H is finitely generated. Fix finite generating sets
T for H, S for I', with 7' C S, and consider the Cayley graph G(I', 5) and its
coboundary operator dr : F(I') — F(Er). Then D,(I') = {f € F(I') : drf €
¢?(Ep)}. Similarly, let diy be the coboundary operator associated with the
Cayley graph G(H,T).

Fix f € D,(T'); the goal is to show that f € ¢?(T') + C. Let (gi)icr be a
set of representatives for the right cosets of H in I, so that I' = [[,.; Hg;.
For i € I, set fi(x) = f(zg;) (x € H). Then

e (12 =D | f(szgi)—flzg)l? <N |f(s2)—f (@) = |ldr f||” < oo,

z€H se€T zel ses

i.e. fi € D,(H). Using our assumption and lemma 1, we may write
Ji=hi+u;
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where h; € (?(H) and u; € C. Define functions h and v on I' by h(zg;) =
hi(z) and u(zg;) = u; (x € H).

First claim: h € (2(T).

Indeed, since H is non-amenable (by Proposition 1), there exists a con-
stant C' > 0 (depending only on p, H,T') such that for every ¢ € I:

1Billy < Clld(ha) |-

Then summing over :

IRl = llhlls < CP Y Nldu(f)llE =073 > ) Ihi(se) = hi(x)l?

el el 1€l xeH seT
=CPY N N Afilse) = fi@)P = CP Y > | f(se) = f(x)
1€l x€H seT z€l' seT
SOPY Y Nf(se) = (@)l = Clldr ()] < oe.
zel seS

Second claim: u is constant.
Indeed, since f = h + u, and dr(f),dr(h) € ?(Er), we have dr(u) €
(?(Er). In particular this implies, for fixed indices ¢, j € I:

oo > Y ful(gigi g —u(zgr)|” =Y u((gig; wg)—wil” = u(z(g;g7 " )gi) —wil”
z€N zeN zeEN
since N is normal in I'. The latter sum is equal to
Z |u; — w;]? < oc.
zeN

Since N is infinite, this forces u; = u;, i.e. u is constant.

The first and the second claim together prove Proposition 2. a

3 Some results of W. Luck

The following result was obtained by Liick in [L94], Theorem 2.1. We recall

his short, elegant argument.

Lemma 3. Let N be a finitely generated group, and let o be an automor-
phism of N. Let H = N X, 7 be the corresponding semi-direct product. Then

blyy(H) = 0.



Proof: The proof depends on two classical properties of the L2-Betti

numbers for a finitely generated group I':

e b)(T") < d(T), where d(I') denotes the minimal number of generators of
F.

)

e if A is a subgroup of finite index d in I', then b@)(/\) =d- be)(F).

Let then p : H — Z denote the quotient map; for n > 1, set H,, = p~'(nZ),
a subgroup of index n in H. Then:

n-bigy(H) = byy(H,) < d(H,) < d(N)+1.

Since this holds for every n > 1, the lemma follows. O

Proof of Corollary 1: Since I'/N is not a torsion group, we find a
subgroup H of I', containing N, such that H/N is infinite cyclic. Since N is
finitely generated, we have b(IQ)(H) = 0, by lemma 3. The result follows then

immediately from Theorem 1. a

Example: We point out that lemma 3 has no analogue in P-cohomology,
with p # 2. To see it, let M be a 3-dimensional, compact, hyperbolic manifold
which fibers over the circle. Denote by ¥, the fiber of that fibration: this
is a closed Riemann surface of genus ¢ > 2. Then the fundamental group
I' = m(M) admits a semi-direct product decomposition I' = m(X,) % Z, so
that FEQ)(F) = 0 by lemma 2. However

inf{p>1:H,(I) #0} =2,

as was proven by Pansu [Pan89].

4 Proof of Theorem 2

Denote by X the (Gromov) boundary of X. Let A = ToN dX be the limit
set of I' in X (the closure of T'o is taken in the compact set X U 0.X).
Since X is a CAT(—1) space, its boundary carries a natural metric

d (called a visual metric) which can be defined as follows (see [Bou95],
Théoreme 2.5.1); for every £ and 5 in 0.X:

d(&m) = e,
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where (.|.) denotes the Gromov product on d.X based on o, namely

i 1
(&ln) = ey gllo =z +lo—y[ —lz —yl).
Observe that there exists a constant B such that for every g € ' there is a
point ¢ in X with d(go,|o,£)) < B. Indeed this property does not depend
on the choice of the origin 0. So we choose 0 on a bi-infinite geodesic (11,12).
Then go belongs to (gn1,gn2). Now since X is Gromov-hyperbolic, one of
the two points gny or gnq satisfies the claim.

Let u be a Lipschitz function of (0X,d) which is non-constant on A ;
such functions do exist since A is not reduced to a point. Following G. Elek
[E1e97], let f be the function on I' defined by f(g) = u(§,), where &, is a
point in X such that d(¢g~'o,[0,£,)) < B.

Claim: f € D,(T') for p > max {1, e(T")}. Indeed we have

11D, = D D 1f(sg) = F)F =D [ul€sy) — ulé)l

s€S gel’ se5 gel
< O Y ey &) < DY YT erelen
o€5 g€l g€l ses
< DY e < e,
gel

where C, D are constants depending only on u, B and S. The details for
the first inequality in the last line are the following. Observe that |(sg)™'o —
g 'o| = [s7'o — o] is bounded above by an absolute constant. This implies
that if z, and =, denote respectively the points on [0, €,) and [0, &s,) whose

1

distance from o is equal to |g~'o — o, then |z, — z4,| is bounded above by

an absolute constant. Now with the triangle inequality
|z —y| <o — 2| + |25y — 2] + |25 — ¥l
and from the definition of the Gromov product, it follows that
1
(€sgléy) = §(|0 — Tsg| + o — zy| — |T5g — 7)),

so that (£,]&,) is bounded below by |g7'o — o| plus an absolute additive
constant. This proves the claim.
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Since A has at least 3 points, the group I' is non-amenable (namely it is

well-known that A is a minimal set, and that an amenable group stabilises

one or two points in dX). So by proposition 1 and by Lemma 1, we must
prove that f does not belong to i(¢*(I')) + C. Assume it does, then f(g)
tends to a constant number when the length of ¢ in T" tends to +o0o. This

contradicts the fact that u is non-constant on A. O
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