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Abstract

Let M be a finite von Neumann algebra with the Haagerup property, and let
G be a compact group that acts continuously on M and that preserves some finite
trace τ . We prove that if Γ is a countable subgroup of G which has the Haagerup
property, then the crossed product algebra M o Γ has also the Haagerup property.
In particular, we study some ergodic, non-weakly mixing actions of groups with the
Haagerup property on finite, injective von Neumann algebras, and we prove that the
associated crossed products von Neumann algebras are II1-factors with the Haagerup
property. If moreover the actions have Property (τ), then the latter factors are full.
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1 Introduction

It is well known that the Haagerup property does not behave well under semidirect product
groups [3] or under crossed products von Neumann algebras [14]. Consider then an action
α of a countable group Γ on a finite von Neumann algebra M , such that α preserves some
finite trace on M . Assume that both Γ and M have the Haagerup property. We look for
sufficient conditions on α or Γ which ensure that the crossed product von Neumann algebra
M oα Γ has the same property.

For instance, Theorem 3.2 of [14] provides such conditions: if Γ is the middle term of
a short exact sequence 1 → H → Γ → Q → 1, if Q is amenable and if M oα|H H has the
Haagerup property, then so does M oα Γ.

We propose here another condition:

Theorem 1.1 Suppose that Γ embeds into a compact group G, and that α is the restriction
to Γ of a continuous action of G on M . Then M oα Γ has the Haagerup property if Γ and
M do.

A typical situation where the above conditions are satisfied is when Γ is maximally almost
periodic and G is a compact group containing Γ. Then the action of G on itself by left
translations gives a continuous action on M = L∞(G) and thus L∞(G)oΓ has the Haagerup
property if Γ does. Furthermore, taking the closure of Γ if necessary, we can assume that
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it is dense in G, thus the corresponding crossed product is a type II1 factor. Observe that
such actions are non-weakly mixing.

We give next three families of examples of such factors which are moreover full; the
first one is inspired by Chapter 7 in [18], and the second one, by [1]:

Theorem 1.2 Let H be the usual Hamiltonian quaternion algebra, let G = H∗/Z(H∗) be
the corresponding Q-algebraic group and let p be any odd prime number. Embed Γp :=
G(Z[1

p
]) diagonally into G(R) × G(Qp) = SO(3) × PGL2(Qp), and consider the corre-

sponding action α of Γp on the 2-dimensional sphere S2. Then the crossed product algebra
L∞(S2) oα Γp is a full II1-factor with the Haagerup property.

Theorem 1.3 Let G be the Q-algebraic group SO(n, 1) or SU(n, 1), let p be any prime
number and denote by Gp the closure of Γ = G(Z) in G(Zp). Then L∞(Gp) o Γ is a full
II1-factor with the Haagerup property.

Our last class of examples uses diagonal actions of Γ = SL(2, Z) on products of quotient
groups by some principal congruence subgroups Γ(m):

Theorem 1.4 Let m = (mi)i≥1 be a sequence of integers 2 ≤ m1 < m2 < . . . which are
pairwise coprime. Let Gi = Γ/Γ(mi) and let G(m) =

∏
i≥1 Gi be the associated compact

group on which Γ acts diagonally. Then L∞(G(m))oΓ is a full II1-factor with the Haagerup
property.

In all these theorems, fullness comes from the strong ergodicity of the actions, and, as we
will see, it is implied by the fact Γ has Property (τ) with respect to suitable families of
subgroups. See for instance [1] and [18].

Finally, we give examples of crossed product factors that are not full but for which
central sequences are under control:

Theorem 1.5 Set again Γ = SL(2, Z), let Z0 denote its center and let Λ be the restricted
direct product group

⊕
j≥1 Z0. Set Γ̃ = Γ× Λ and let Z = Z0 × Λ denote the center of Γ̃.

Choose a sequence m = (mj)j≥1 as in Theorem 1.4 and assume that m1 ≥ 3. Let Γ̃ act on
G(m) =

∏
i≥1 Gi as follows:

(g, (zj)j≥1) · (xj)j≥1 = (gzjxj)j≥1.

Set finally N = L∞(G(m)) o Γ̃. Then N is a type II1 factor with the Haagerup property
and with Property gamma. Moreover, every central sequence in N is equivalent to a central
sequence (cn)n≥1 contained in the abelian von Neumann subalgebra L(Z).

Our article is organized as follows: the next section contains preliminaries on the Haagerup
property, and on Property (τ) and its relationship to strong ergodicity. Section 3 is devoted
to the proof of Theorem 1.1 and the last section contains the proofs of Theorems 1.2, 1.3,
1.4 and 1.5.

2 Preliminaries

2.1 Von Neumann algebras and the Haagerup property

Throughout the present article, M , N , denote finite von Neumann algebras with separable
preduals, A denotes preferably an abelian von Neumann algebra, and τ denotes some finite,
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faithful, normal, normalized trace on any of these. Such a state will be called simply a
trace.

We denote by N∗ the predual of N , by L2(N, τ) the standard Hilbert space associated
with τ and by ξτ ∈ L2(N, τ) the unit vector which implements τ , namely such that τ(x) =
〈xξτ , ξτ 〉 for every x ∈ N . We also denote by ‖ · ‖2,τ the associated Hilbert norm on both
N and L2(N, τ). If the choice of τ is fixed and that there is no danger of confusion, we
simply write L2(N) and ‖ · ‖2. We also set L2(N, τ)0 := {ξ ∈ L2(N, τ) ; ξ ⊥ ξτ}.

Let Aut(M, τ) be the group of all τ -preserving automorphisms of M . It is a Polish group
with respect to the topology of pointwise ‖ · ‖2,τ -convergence: a sequence (θn) converges to
θ if and only if, for all x ∈ M , one has ‖θn(x)− θ(x)‖2,τ → 0 as n →∞.

Let Γ be a countable group. The group von Neumann algebra of Γ is denoted by L(Γ)
and it is the commutant of the right regular representation of Γ on `2(Γ). Assume Γ
acts on N and that the action α preserves some trace τ . We briefly recall the definition
and a realization of the corresponding crossed product M oα Γ. We denote by g 7→ λg

(respectively g 7→ ρg) the left (respectively right) regular representation on `2(Γ). We
also set λ(g) = 1 ⊗ λg, which is a unitary operator acting on L2(M, τ) ⊗ `2(Γ). Then
N := M oα Γ is the von Neumann algebra generated by M ∪{λ(g) ; g ∈ Γ}, where x ∈ M
acts on L2(M, τ)⊗ `2(Γ) as follows:

(x · ξ)(g) = αg−1(x)ξ(g)

for all ξ ∈ L2(M, τ) ⊗ `2(Γ), so that λ(g)xλ(g−1) = αg(x) for all g and x ∈ M . In this
realization, N is a von Neumann subalgebra of M⊗̄B (where B denotes the algebra of
all linear, bounded operators on `2(Γ)), and more precisely, it is the fixed point algebra
under the action θ of Γ defined by θg = αg ⊗ Ad(ρg). We still denote by τ the extended
trace on N , and we let EM denote the τ -preserving conditional expectation of N onto

M . Every operator x ∈ N admits a “Fourier expansion”
∑
g∈Γ

x(g)λ(g) such that x(g) =

EM(xλ(g−1)) ∈ M for all g and
∑
‖x(g)‖2

2 = ‖x‖2
2. If α : G → Aut(M, τ) is a continuous

action of some group G on M , we also denote by g 7→ αg the corresponding unitary
representation of G on L2(M, τ) given by

αg(xξτ ) = αg(x)ξτ ∀x ∈ M.

The restriction to the invariant subspace L2(M, τ)0 := {ξ ∈ L2(M, τ) ; ξ ⊥ ξτ} is denoted
by α0.

If Φ : N → N is a completely positive map such that τ ◦Φ ≤ τ , then Φ is automatically
normal and it extends to a contraction operator TΦ on L2(N, τ) via the equality:

TΦ(xξτ ) = Φ(x)ξτ ∀x ∈ N.

We say that Φ is L2-compact if TΦ is a compact operator. Following [14], we say that N has
the Haagerup property if there exists a trace τ on N and a sequence (Φn)n≥1 of completely
positive, normal maps on N which satisfy:

(i) τ ◦ Φn ≤ τ and Φn is L2-compact for every n;

(ii) for every x ∈ N , ‖Φn(x)− x‖2,τ → 0 as n →∞.
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In fact, it follows from Proposition 2.2 of [14] and from Corollary 2, p. 39 of [15] that if
N satisfies conditions (i) and (ii) above with respect to τ , then each Φn can be chosen so
that Φn(1) = 1, τ ◦Φn = τ and TΦn is a selfadjoint operator. Moreover, Proposition 2.4 of
[14] implies that N satisfies the same conditions with respect to any other trace τ ′ on M .

The above property was introduced by M. Choda in [6] where it was proved that when
N is the group von Neumann algebra L(Γ) of some countable group Γ, then L(Γ) has
the Haagerup property if and only if there exists a sequence (ϕn)n≥1 of positive type,
normalized functions on Γ with the following two properties:

(i’) for every n, ϕn tends to 0 at infinity of Γ;

(ii’) for every g ∈ Γ, the sequence (ϕn(g))n≥1 tends to 1 as n →∞.

See [3] for much more on the Haagerup property for locally compact groups.

Finally, consider a type II1 factor N . A central sequence is a bounded sequence
(xn)n≥1 ⊂ N such that, for every x ∈ N ,

lim
n→∞

‖xnx− xxn‖2 = 0.

Two bounded sequences (xn)n≥1 and (yn)n≥1 in N are equivalent if

lim
n→∞

‖xn − yn‖2 = 0.

The factor N is full if every central sequence is trivial, i.e. if it is equivalent to the scalar
sequence (τ(xn))n≥1, and it has Property gamma (of Murray and von Neumann) if it is not
full.

2.2 Strong ergodicity and Property (τ)

Recall from [20] that a measure-preserving action of Γ on a probability space (X, µ) is
strongly ergodic if every sequence (Bn) of Borel subsets of X that satisfies

lim
n→∞

µ(Bn 4 gBn) = 0 ∀g ∈ Γ

is trivial, i.e.
lim

n→∞
µ(Bn)(1− µ(Bn)) = 0.

It generalizes easily to actions on finite von Neumann algebras [7]: a τ -preserving action
α of Γ on the finite von Neumann algebra M is strongly ergodic if every operator-norm
bounded sequence (xn) ⊂ M such that ‖αg(xn) − xn‖2 → 0 as n → ∞ for every g ∈ Γ is
equivalent to the scalar sequence (τ(xn)), in the sense of Subsection 2.1.

In [7], a slightly, but strictly stronger property is considered: if α, Γ and (M, τ) are as
above, we say that α is s-strongly ergodic if, for every sequence of unit vectors (ξn)n≥1 in
L2(M) that satisfy ‖αg(ξn)−ξn‖2 → 0 as n →∞ for all g ∈ Γ, one has ‖ξn−〈ξn, ξτ 〉ξτ‖2 → 0
as n →∞. Here are characterizations of s-strong ergodicity:

Lemma 2.1 Let α, Γ and (M, τ) be as above. Then the following conditions on α are
equivalent:

(1) α is s-strongly ergodic;
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(2) τ is the unique α-invariant state on M ;

(3) there exists δ > 0 and a finite subset F of Γ such that

(?) δ2‖x− τ(x)‖2
2 ≤

∑
g∈F

‖αg(x)− x‖2
2 ∀x ∈ M.

Proof. The equivalence between (1) and (2) is Theorem 2 of [5] and it is obvious that (3)
implies (1). It remains to prove that (1) implies (3).

Thus suppose that α is s-strongly ergodic and let 1 ∈ F1 ⊂ F2 ⊂ . . . Γ be an exhaustive
sequence of finite subsets of Γ. If one could not find δ > 0 and F satisfying (?), there would
exist a sequence (xn)n≥1 ∈ M such that ‖xn‖2 = 1, τ(xn) = 0 and∑

g∈Fn

‖αg(xn)− xn‖2
2 ≤

1

n2

for all n. As
⋃

n Fn = Γ, ξn = xnξτ satisfies the condition of s-strong ergodicity, but
‖ξn − 〈ξn, ξτ 〉ξτ‖ does not converge to 0, which is a contradiction. Q.E.D.

Remark. K. Schmidt gives in 2.7 of [20] an example of a strongly ergodic action of the
free group F3 that has more than one invariant state, thus which is not s-strongly ergodic.

The use of s-strongly ergodic actions in the context of crossed products is explained in
the next lemma which is adapted from [4]:

Lemma 2.2 Let M be a finite von Neumann algebra equipped with some trace τ and let α
be a τ -preserving, s-strongly ergodic and free action of a countable group Γ on M . Denote
by Z the center of Γ and assume that Γ/Z is not inner amenable. Then every central
sequence in the crossed product type II1 factor N = M oα Γ is equivalent to a central
sequence (cn)n≥1 contained in L(Z) which satisfies: for every finite subset K of Z \ {1},
one has

lim
n→∞

∑
z∈K

|cn(z)|2 = 0.

In particular, if Z is finite, then N is a full II1 factor.

Proof. Let (xn)n≥1 ⊂ N be a central sequence. One can assume that ‖xn‖2 = 1 for every
n. Let

∑
g xn(g)λ(g) be the Fourier expansion of xn. Then we have for every fixed g ∈ Γ:∑

h∈Γ

|‖xn(ghg−1)‖2 − ‖xn(h)‖2|2 ≤
∑
h∈Γ

‖xn(ghg−1)− λ(g)xn(h)λ(g−1)‖2
2

=
∑
h∈Γ

‖αg−1(xn(ghg−1))− xn(h)‖2
2

= ‖xnλ(g)− λ(g)xn‖2
2 →n→∞ 0.

Since Γ/Z is not inner amenable, one has∑
g/∈Z

‖xn(g)‖2
2 →n→∞ 0.
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This implies that (xn) is equivalent to its projection (EMoZ(xn)) onto the von Neumann
subalgebra M o Z. One assumes then that xn(g) = 0 for every g /∈ Z. Set Z∗ = Z \ {1}
and let δ > 0 and the finite set F ⊂ Γ be as in Lemma 2.1. Then∑

g∈F

‖λ(g)xnλ(g−1)− xn‖2
2 =

∑
z∈Z

∑
g∈F

‖αg(xn(z))− xn(z)‖2
2

≥ δ2
∑
z∈Z

‖xn(z)− τ(xn(z))‖2
2.

Thus, (xn) is equivalent to (cn) ⊂ L(Z) where cn = EL(Z)(xn) and hence cn(z) = τ(xn(z))
for all n and z.

Fix next a non empty finite subset K of Z∗ and set k = |K|. For each z ∈ K, αz is a
properly outer automorphism, hence there exists a non zero projection ez ∈ M such that

(?) τ(ezαz(ez)) ≤
1

2
τ(ez).

Indeed, by Theorem 1.2.1 of [8], one takes a non zero projection ez such that ‖ezαz(ez)‖ ≤
1
2
, and, as ezαz(ez)ez ≤ 1

2
ez, we get (?). This implies that ‖ez − αz(ez)‖2

2 = 2τ(ez) −
2τ(ezαz(ez)) ≥ τ(ez) > 0 for every z ∈ K. Set c = min{τ(ez) ; z ∈ K} > 0 and choose a
finite subset T of Γ \Z of cardinality k such that tZ ∩ t′Z = ∅ for all t, t′ ∈ T , t 6= t′. This
is possible since Γ/Z is infinite (being non inner amenable). Finally, choose some bijection
z 7→ tz from K onto T , set x(tz) = ez for every z ∈ K and put x =

∑
t∈T x(t)λ(t) ∈ N .

Observe that, for every z ∈ K, one has∑
t∈T

‖x(t)− αz(x(t))‖2
2 ≥ ‖ez − αz(ez)‖2

2 ≥ c.

We get then for every n:

‖xcn − cnx‖2
2 =

∑
z∈Z∗

|cn(z)|2
∑
t∈T

‖x(t)− αz(x(t))‖2
2

≥ c
∑
z∈K

|cn(z)|2.

This proves that
∑

z∈K |cn(z)|2 → 0 as n →∞. Q.E.D.

We describe next how to get s-strongly ergodic actions. Let Γ be a countable group
and let L = (Γι)ι∈I be a family of normal subgroups of Γ, each Γι having finite index in
Γ. Denote by R(L) the family of all irreducible unitary representations (ρ,Hρ) for which
there exists ι ∈ I such that Γι ⊂ ker(ρ). In other words, R(L) is the subset of the unitary
dual Γ̂ formed by representations that factor through some finite quotient group Γ/Γι. Let
us recall Definition 4.3.1 of [18]:

Definition 2.3 Let Γ and L be as above. We say that Γ has Property (τ) with respect to
the family L if the trivial representation 1Γ is isolated in R(L).

This means that one can find a positive number ε and a finite subset F of Γ such that

W (ε, F ) ∩R(L) = {1Γ},

where W (ε, F ) is the set of (ρ,Hρ) ∈ Γ̂ for which there exists a unit vector ξ ∈ Hρ such
that

max
g∈F

‖ρ(g)ξ − ξ‖ ≤ ε.
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We will use Property (τ) in two distinct situations.

In the first one, we consider a countable subset L′ = (Γi)i≥1 of L. Set XL′ =
∏

i≥1 Γ/Γi

gifted with its natural probability measure µ, and with the diagonal action of Γ:

g · (giΓi)i≥1 = ((ggi)Γi)i≥1.

Set also A = A(L′) = L∞(XL′ , µ) and denote by α the corresponding action on A(L′).
Integration with respect to µ defines a trace τ on A(L′).

Then Property (τ) interprets in terms of the action α as follows:

Lemma 2.4 Let Γ, L, L′, A(L′), µ and τ be as above. Assume moreover that:

(a) Γ has Property (τ) with respect to L;

(b) for every finite subset {Γm1 , . . . , Γmn} of L′ there exists ι ∈ I such that

Γι ⊂
n⋂

j=1

Γmj
;

(c) the action of Γ on
∏

i≥1 Γ/Γi is ergodic.

Then α is s-strongly ergodic.

Proof. Since the families L and L′ are fixed, we drop the corresponding subscripts every-
where. We prove that there exist δ > 0 and F ⊂ Γ that satisfy (?) in Lemma 2.3.

Condition (a) implies existence of 0 < ε < 1/2 and F such that W (ε, F ) ∩ R = {1Γ}.
Set δ = ε/2. It suffices to see that

∑
g∈F

‖αg(a)− a‖2
2 ≥ δ2 for every a ∈ A such that ‖a‖2 = 1

and τ(a) = 0. Suppose the contrary. There exists then a ∈ A, ‖a‖2 = 1 and τ(a) = 0 such
that ∑

g∈F

‖αg(a)− a‖2
2 < δ2.

For n ≥ 1, set An = L2(X1 × . . .×Xn) = L∞(X1 × . . .×Xn) ⊂ A, where Xi = Γ/Γi, and
let En be the trace preserving conditional expectation of A onto An. If n is large enough
so that ‖a− En(a)‖2 < δ, then we still have τ(En(a)) = 0 and ‖En(a)‖2 ≥ 1− δ. Set

b =
En(a)

‖En(a)‖2

∈ An,

which satisfies ‖b‖2 = 1 and τ(b) = 0. Then, denoting by α(n) the restriction of α to the
Γ-invariant subalgebra An, one has:∑

g∈F

‖α(n)
g (b)− b‖2

2 =
1

‖En(a)‖2
2

∑
g∈F

‖En(αg(a)− a)‖2
2

≤ δ2

(1− δ)2
< ε2.

There exists ι ∈ I such that Γι ⊂ Γi for every i ≤ n. As all the Γi’s are normal subgroups
of Γ, it follows that

α(n)
g (b)(x1, . . . , xn) = b(x1, . . . , xn)
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for all (x1, . . . , xn) ∈
∏n

i=1 Xi and all g ∈ Γι. Hence Γι ⊂ ker(α(n)0), where the latter
representation is the restriction of α(n) to L2(X1 × . . . × Xn)0. Thus, there exists an
irreducible subrepresentation ρ of α(n)0 which belongs to W (ε, F ) ∩R. However, ρ cannot
be the trivial representation since α(n)0 does not contain 1Γ because the action of Γ is
ergodic. This is a contradiction. Q.E.D.

The second situation is inspired by [1]. Suppose that L = (Γn)n≥1 is a decreasing se-
quence of finite index normal subgroups of Γ such that

⋂
n Γn = {1}. Let Γc = proj lim Γ/Γn

be the projective limit of the sequence of finite groups (Γ/Γn) with respect to the natural
projections Γ/Γn+1 → Γ/Γn. Then Γc is a compact group containing Γ as a dense sub-
group. In fact, Γc is the completion of Γ in the topology for which the Γn’s form a base of
neighbourhoods of 1. We denote again by α the action of Γ on L∞(Γc) by left translation.

Lemma 2.5 Let Γ, L = (Γn) and Γc be as above. If Γ has Property (τ) with respect to L,
then the action of Γ on L∞(Γc) is s-strongly ergodic.

Proof. For every n, set An = L∞(Γ/Γn), so that An is a von Neumann subalgebra of A
and that

⋃
n An is ‖ · ‖2-dense in A. Let also α(n) (respectively α(n)0) be the restriction of

the action α to An (respectively to {a ∈ An ; τ(a) = 0}).

Let 0 < ε < 1
2

and F ⊂ Γ finite be such that W (ε, F ) ∩ R(L) = {1Γ}. Put δ = ε/2.
As in the proof of Lemma 2.5, assume by contradiction that there exists a ∈ A := L∞(Γc)
such that ‖a‖2 = 1, τ(a) = 0 and ∑

g∈F

‖αg(a)− a‖2
2 < δ2.

By the same arguments, there exists n and b ∈ An with ‖b‖2 = 1, τ(b) = 0 and such that∑
g∈F

‖α(n)
g (b)− b‖2

2 < ε2.

Hence one can find an irreducible subrepresentation σ of α(n)0 such that σ ∈ W (ε, F ).
Since Γn = ker(α(n)) ⊂ ker(σ), we have σ = 1Γ, but this contradicts the ergodicity of α(n).
Q.E.D.

3 Actions of compact groups

Let G be a compact group and let α be a (continuous) action of G on a von Neumann
algebra M . If the action is ergodic, it follows from Corollary 4.2 of [13] that M is necessarily
finite and injective, and that there is a unique G-invariant state on M that is a trace. Even
if all our examples deal with ergodic actions, we state our main theorem for actions that
are not necessarily ergodic.

Theorem 3.1 Let α be a continuous action of a compact group G on a finite von Neumann
algebra M that preserves some trace τ . Assume that G contains a countable subgroup Γ
which has the Haagerup property and that M has the same property. Then the correspond-
ing crossed product von Neumann algebra N = M oα Γ has also the Haagerup property.

Proof of Theorem 2.1 follows readily from the following two lemmas:
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Lemma 3.2 Retain hypotheses and notations above. There exists a sequence (Ψm)m≥1 of
completely positive, unital, normal, τ -preserving maps on M with the following properties:

(i) Ψm is L2-compact for every m;

(ii) αg ◦Ψm = Ψm ◦ αg for all g ∈ G and all m;

(iii) for every x ∈ M , one has ‖Ψm(x)− x‖2 → 0 as m →∞.

Proof. Choose a sequence (Φm)m≥1 of completely positive, unital, τ -preserving maps on M
such that the corresponding operators TΦm are all compact and selfadjoint, and such that,
for every x ∈ M , ‖Φm(x)− x‖2 → 0 as m →∞. Define Ψm by:

Ψm(x) =

∫
G

αg ◦ Φm ◦ αg−1(x)dg ∀x ∈ M.

Notice that the integral is defined in the weak sense: this means that, for x ∈ M , Ψm(x)
is the element of M characterized by

ϕ(Ψm(x)) =

∫
G

ϕ(αg ◦ Φm ◦ αg−1(x))dg ∀ϕ ∈ M∗.

Each Ψm is a completely positive, unital, τ -preserving map on M , such that αg ◦ Ψm =
Ψm ◦ αg for every g ∈ G. This proves (ii) and the first properties of the sequence (Ψm)m.

Let us prove that each Ψm is L2-compact. As m is fixed for the moment, put T = TΨm

and S = TΦm . Since S is a selfadjoint, compact operator, there exists a sequence (Sk)k≥1

of finite-rank, selfadjoint operators on L2(M) such that ‖S − Sk‖ → 0, and ‖Sk‖ ≤ 1 ∀k
because S itself is a contraction. Moreover, one has ‖T −

∫
G

αgSkαg−1dg‖ ≤ ‖S − Sk‖ for
every k. Thus, it remains to check that Sk,G :=

∫
G

αgSkαg−1dg is a compact operator. Let
B denote the unit ball of L2(M). Since G is compact and Sk is a finite-rank operator, the
set Ωk := {αgSkαg−1(B) ; g ∈ G} is relatively compact. Finally, the image of B under Sk,G

is contained in the closed convex circled hull of Ωk which is compact.
This proves claim (i).

It remains to prove statement (iii). As the linear span of the set of projections in M is
norm-dense, it suffices to prove it for projections. Thus, fix a projection f ∈ M and ε > 0.
One has:

‖Ψm(f)− f‖2
2 = ‖Ψm(f)‖2

2 + ‖f‖2
2 − 2Reτ(Ψm(f)f)

≤ 2‖f‖2
2 − 2Reτ(Ψm(f)f)

= 2 (τ(f)− τ(Ψm(f)f)) .

As G is a compact group, one can find a finite set F ⊂ G such that, for every g ∈ G, there
exists h = h(g) ∈ F that satisfies:

‖αg(f)− αh(f)‖2 ≤
ε2

6
.

Furthermore, since Φm tends to the identity map on M in the pointwise ‖ · ‖2-topology,
there exists an integer n such that

‖Φm(αh(f))− αh(f)‖2 ≤
ε2

6
∀h ∈ F and ∀m ≥ n.

9



This implies that

sup
g∈G

‖Φm(αg(f))αg(f)− αg(f)‖2 ≤
ε2

2
∀m ≥ n.

Indeed, if m ≥ n and if g ∈ G, let h = h(g) ∈ F be as above. One has:

‖Φm(αg(f))αg(f)− αg(f)‖2 ≤ ‖Φm(αg(f)− αh(f))αg(f)‖2 +

‖Φm(αh(f))αg(f)− αh(f)αg(f)‖2 +

‖αh(f)− αg(f)‖2

≤ ε2

2
.

Since

τ(Ψm(f)f) =

∫
G

τ(Φm(αg(f))αg(f))dg,

we get for m ≥ n :

|τ(f)− τ(Ψm(f)f)| = |
∫

G

τ [αg(f)− Φm(αg(f))αg(f)]dg|

≤
∫

G

|τ [αg(f)− Φm(αg(f))αg(f)]|dg ≤ ε2

2
.

This proves that ‖Ψm(f)− f‖2 ≤ ε for all m ≥ n. Q.E.D.

The next lemma is Theorem 3 in [4], but we sketch the proof for the reader’s convenience.

Lemma 3.3 Let M be a finite von Neumann algebra gifted with a normal, faithful, nor-
malized trace τ and let α be a τ -preserving action of a countable group Γ. Assume that:

(i) Γ has the Haagerup Property;

(ii) There exists a sequence (Ψm)m≥1 of τ -preserving, completely positive, unital, L2-
compact maps on M such that αg ◦ Ψm = Ψm ◦ αg for all m and g ∈ Γ, and that
‖Ψm(x)− x‖2 → 0 as m →∞, for every x ∈ M .

Then the crossed product von Neumann algebra M o Γ has the Haagerup Property.

Outline of the proof. On the one hand, let (ϕn)n≥1 be a sequence of positive definite,
normalized functions on Γ as in the definition of the Haagerup property for groups. Denote
by Φn the completely positive multiplier on the von Neumann algebra L(Γ) associated to
ϕn. By [12], it extends to M o Γ a completely positive map still denoted by Φn in such a
way that

Φn(xλ(g)) = xϕn(g)λ(g) ∀x ∈ M, g ∈ Γ.

On the other hand, the restriction Ψ′
m to M o Γ of the completely positive map Ψm ⊗ iB

on M⊗̄B has range contained in M o Γ because θg ◦Ψm ⊗ iB = Ψm ⊗ iB ◦ θg for every g,
and M o Γ = (M⊗̄B)θ. It is straightforward to check that the sequence (Ψ′

n ◦Φn) satisfies
then all required properties to ensure that M o Γ has the Haagerup property. Q.E.D.

Remark. Let Γ be a countable group with the Haagerup property and let B be any finite
von Neumann algebra with the Haagerup property of dimension at least 2 gifted with some
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trace τB. Consider the infinite tensor product algebra M =
⊗
g∈Γ

(B, τB) on which Γ acts by

Bernoulli shifts: βg(⊗hxh) = ⊗hxg−1h. M has the Haagerup property, but we don’t know
whether the corresponding crossed product M oβ Γ has the Haagerup property except if
Γ is amenable. However, M. Choda claims on p. 88 of [7] that M oβ Γ has that property,
using Lemma 3.3, but there is a gap in her proof. Indeed, she constructs, from completely
positive, trace-preserving, unital L2-compact maps Φ on B, infinite tensor product maps
Φ̃ := ⊗gΦg, where Φg = Φ ∀g. Such maps Φ̃ make perfectly sense, are completely positive,
unital, trace-preserving, but they are not L2-compact in general so Lemma 3.3 cannot be
applied.

Corollary 3.4 Let M be a finite von Neumann algebra, let τ be a trace on M and let α be
a τ -preserving action of a group Γ on M . Assume that both Γ and M have the Haagerup
property and that the range of Γ through α is relatively compact in Aut(M, τ). Then the
crossed product M oα Γ has the Haagerup property.

Corollary 3.5 Let Γ be a maximally almost periodic group with the Haagerup property
and let G be a compact group such that Γ embeds into G. Then the crossed product algebra
L∞(G) o Γ has the Haagerup property.

Corollary 3.6 Let Γ and G be as in Corollary 3.5. Assume furthermore that Γ is dense
in G and that the latter acts freely and ergodically on a standard probability space (X,µ),
and that its action preserves µ. Then the crossed product L∞(X) o Γ is a type II1 factor
with the Haagerup property.

As is well known, the free group F2 embeds into SU(2), into SO(3) and also into SO(n+1)
for all odd n ≥ 3 (see [10]). These instances provide examples of crossed products with the
Haagerup property. In the final section we give examples of such factors that are full, and
of factors whose central sequences are under control.

4 Examples

Let Γ be a countable group with the Haagerup property which is embeddable into a compact
group G. Thus, for our purposes, we assume that it is dense in G. Consider the action α of Γ
by translation on G. It is ergodic and free, so that the associated crossed product L∞(G)oα

Γ is a type II1 factor. It follows from Theorem 3.1 that it has the Haagerup property. We
present here three families of examples of pairs (Γ, G) for which the corresponding factor
L∞(G)oα Γ is a full factor, and one family of factors that have Property gamma with some
control on central sequences.

Here is the first family of examples which is inspired by Chapter 7 of [18]: Let D =
D(u, v) be a definite quaternion algebra defined over Q: for a ring R, D(R) = {x0 + x1i +
x2j + x3k ; x` ∈ R} where u and v are rational numbers and i2 = −u, j2 = −v, k2 = −uv,
ij = −ji = k. (When u, v > 0, for example, we get the standard Hamiltonian quaternion
algebra.) Let G = D∗/Z(D∗) be the Q-algebraic group of invertible elements of D modulo
the central ones, and let p be some prime number for which D splits in Qp (e.g. p can be
any odd prime in the case of Hamiltonian quaternions). Set Γp = G(Z[1

p
]) and embed it

diagonally into G(R)×G(Qp) = SO(3)× PGL2(Qp). Then the projection of Γp to SO(3)
gives an embedding to a dense subgroup of SO(3). As the latter acts on the 2-sphere S2,
then so does Γp. One has then:

11



Theorem 4.1 With the assumptions above, the crossed product algebras L∞(SO(3)) o Γp

and L∞(S2) o Γp are full type II1 factors with the Haagerup property.

Proof. The fact that the factors have both the Haagerup property follows from Corollar-
ies 3.5 and 3.6. Furthermore, by Section 7.2 of [18], the natural Lebesgue measures on
L∞(SO(3)) and on L∞(S2) are the unique Γp-invariant means on these algebras. In order
to apply Lemmas 2.1 and 2.2, we check that Γp is not inner amenable. But the projection
Γ2 of Γp into PGL(2, Qp) is faithful and it is a lattice. Corollary of Proposition 2 of [9]
implies that Γ2, hence Γp, is not inner amenable. In particular, its center is trivial and the
associated factors are full. Q.E.D.

Our second family of examples is inspired by [1]:

Theorem 4.2 Let G be the Q-algebraic group SO(n, 1) or SU(n, 1), let p be any prime
number and denote by Gp the closure of Γ = G(Z) in G(Zp). Then L∞(Gp) o G(Z) is a
full II1-factor with the Haagerup property.

Proof. Set Γ = G(Z). It is a lattice in a Lie group with the Haagerup property, thus it has
the same property by Theorem 4.0.1 and Proposition 6.1.5 of [3]. It follows from Theorem
3.1 that L∞(Gp)oΓ is a II1-factor with the Haagerup property. It remains to prove that it
is a full factor. Notice first that the center of Γ is finite and it follows from [9] that Γ/Z(Γ)
is not inner amenable.

Next, for n ≥ 1, let Γ(n) denote the principal congruence subgroup

Γ(n) = {g ∈ Γ ; g ≡ I (mod n)}.

As is explained on page 509 of [1], Γ has Property (τ) with respect to the family L =
(Γ(n))n≥1: this follows from [11], [17], [2] when G(R) is isomorphic to SO(n, 1) and from
[16] when it is isomorphic to SU(n, 1). In particular, it also has that property with respect
to the subfamilly (Γ(pn))n≥1, and Gp equals the projective limit Γc = proj lim Γ/Γ(pn).
Lemmas 2.2 and 2.5 imply that the associated factor is full. Q.E.D.

Remark. Generally, Gp is different from G(Zp), but it is always a finite index subgroup.
This follows from Lemma 2 of [1]. Notice that, however, Gp = SL(2, Zp) in the case
Γ = SL(2, Z).

Our last two classes of examples involve Γ := SL(2, Z) and some of its subgroups. As in the
proof of the above theorem, for n ≥ 1, denote by Γ(n) the principal congruence subgroup of

Γ. Explicitely, Γ(n) is the group of matrices

(
a b
c d

)
∈ Γ such that a ≡ d ≡ 1 (mod n)

and b ≡ c ≡ 0 (mod n). It is the kernel of the natural homomorphism from Γ onto
SL(2, Z/nZ) (see [19], 4.2, for instance). In particular, Γ(1) = Γ.

Let m = (mi)i≥1 be a sequence of integers such that 2 ≤ m1 < m2 < . . . and that
(mi, mj) = 1 for all i 6= j, and let Gj = Γ/Γ(mj) be gifted with the natural action of Γ.
Γ embeds into the compact group G(m) :=

∏
j≥1 Gj via the mapping g 7→ (gΓ(mj))j≥1,

because
⋂

j Γ(mj) = {I}.

Lemma 4.3 Let m be as above. Then, for every integer m0 ≥ 1 such that (m0, mj) = 1
for every j ≥ 1, the diagonal action of Γ(m0) on G1× . . .×Gn is transitive for every n ≥ 1.
In particular, Γ(m0) embeds as a dense subgroup into G(m) and its action on L∞(G(m))
is ergodic and free.
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Proof. Fix n ≥ 1; it suffices to prove that the orbit of (1̄, . . . , 1̄) ∈
∏n

j=1 Gj under the
diagonal action of Γ(m0) equals

∏n
j=1 Gj. Let then g1, . . . , gn ∈ Γ, and let us prove

that there exists g ∈ Γ(m0) such that gΓ(mj) = gjΓ(mj) for every j = 1, . . . , n. Write

g−1
j =

(
aj bj

cj dj

)
. Then we have to find g =

(
x y
z t

)
∈ Γ(m0) such that

g−1
j g =

(
ajx + bjz ajy + bjt
cjx + djz cjy + djt

)
≡

(
1 0
0 1

)
(mod mj)

for every j = 0, 1, . . . , n. Thus, we have to find integers x, y, z, t such that xt − yz = 1
and such that x ≡ dj, y ≡ −bj, z ≡ −cj and t ≡ aj (mod mj) for every j = 0, 1, . . . , n.
Set k = m0 · m1 · · · . . . · mn. As (mi, mj) = 1 for all i 6= j, it follows from the Chinese
Remainder Theorem that one can find integers x′, y′, z′, t′ that are solutions mod k of the
above systems, and such that x′t′ − y′z′ ≡ 1 (mod k). As the natural homomorphism
SL(2, Z) → SL(2, Z/kZ) is onto, the existence of x, y, z, t is proved. Density of Γ(m0) in
G(m) follows from the definition of the product topology on G(m). Q.E.D.

By Example 4.3.3 D in [18], Γ = SL(2, Z) has Property (τ) with respect to the family
L of all its principal congruence subgroups. Thus Lemmas 2.2, 2.3 and Theorem 3.1 give:

Theorem 4.4 Let m and m0 be as above. Then L∞(G(m)) o Γ(m0) is a full II1-factor
with the Haagerup property.

Remark. In fact, the abelian von Neumann algebras L∞(Gp) in Theorem 4.2 and L∞(G(m))
in Theorem 4.4 contain both increasing sequences of finite-dimensional, invariant von Neu-
mann subalgebras that are ‖ · ‖2-dense. Thus, Proposition 3.3 of [14] suffices to prove that
the corresponding factors have the Haagerup property.

At last, we give a modified construction of the above framework in order to get examples
of non full factors with controlled central sequences. To do that, set again Γ = SL(2, Z), let
Z0 = {I,−I} denote its center and let Λ be the restricted direct product group

⊕
j≥1 Z0.

Set Γ̃ = Γ×Λ and let Z = Z0×Λ denote the center of Γ̃. Choose a sequence m = (mj)j≥1

as in Theorem 1.4 and assume that m1 ≥ 3 so that Z ∩ Γ(mj) = {I} for every j. Let Γ̃
act on G(m) =

∏
i≥1 Gi as follows:

(g, (zj)j≥1) · (gjΓ(mj))j≥1 = (gzjgjΓ(mj))j≥1.

It is easy to check that the action is free, and, as the action of Γ is s-strongly ergodic, then
so is the action of Γ̃. For future use, we define the following sequence of subsets of Z: for
every positive integer k, let Rk be the set of all (zj)j≥0 ∈ Z such that z0zj = 1 ∀j ≤ k; in
other words, z = (zj)j≥0 belongs to Rk if and only if either z = (I, ..., I, zk+1, zk+2, ...) or
z = (−I, ...,−I, zk+1, zk+2, ...).

Theorem 4.5 Retain notations above and let N = L∞(G(m)) o Γ̃. Then N is a type II1

factor with the Haagerup property and with Property gamma. Furthermore, every central
sequence in N is equivalent to a central sequence (cn)n≥1 contained in the abelian von
Neumann subalgebra L(Z) which satisfies the following condition: (?) for every k ≥ 1,

lim
n→∞

∑
z /∈Rk

|cn(z)|2 = 0.

Conversely, every bounded sequence (cn)n≥1 ⊂ L(Z) that satisfies (?) is a central sequence
in N .
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Proof. By Lemma 2.2, we know that every central sequence in N is equivalent to a central
sequence (cn)n≥1 contained in L(Z). Fix a positive integer k and xj ∈ Gj for j = 1, ..., k.
Set a = χ(x1,...,xk) ∈ L∞(G1 × ... × Gk) ⊂ L∞(G(m)). If z ∈ Z, one has a = αz(a) if and
only if z ∈ Rk. Thus,

‖acn − cna‖2
2 =

∑
z /∈Rk

|cn(z)|2‖a− αz(a)‖2
2 = 2

∑
z /∈Rk

|cn(z)|2.

Hence, if (cn) is a central sequence, then it satisfies (?), and conversely, if it satisfies (?),
then it is a central sequence because the set of all χ(x1,...,xk) as above is total in L∞(G(m)),

and each cn commutes to λ(Γ̃). Q.E.D.
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