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Abstract. For closed n—dimensional Riemannian manifolds M with al-
most positive Ricci curvature, the Laplacian on one—forms is known to
admit at most n small eigenvalues. If there are n small eigenvalues, or
if M is orientable and has n — 1 small eigenvalues, then M is diffeo-
morphic to a nilmanifold, and the metric is almost left invariant. We
show that our results are optimal for n > 4.

1. Introduction

A classical theorem of Bochner states that the first real Betti number of a closed
n—dimensional Riemannian manifold M with positive semi—definite Ricci curvature
tensor Ric satisfies the inequality by (M) < n, with equality only if M is isometric to
a flat torus. This result is a consequence of Weitzenbdck’s formula for the Hodge—
de Rham-Laplacian A = dé + éd on one-forms «,

Aa = V*Va + Ric(af, ). (1.1)

The formula implies that all harmonic one—forms on M are parallel with respect
to the Levi—Civita connection of the metric. Since the space of parallel one—forms
has dimension at most n, Bochner’s Betti number estimate is a consequence of the
Hodge theorem on harmonic forms. And if b (M) = n, then the Albanese map
obtained by integrating an L2?-orthonormal basis of the space of harmonic forms
yields an isometry of M with its Albanese torus.

Bochner’s inequality for by (M) has been extended by Gallot ([Gal] Cor. 3.2) and
Gromov ([Gr] p. 73) to include manifolds whose Ricci tensor and diameter satisfy

Ric diam?(M) > —e(n) (1.2)

for suitably small positive e(n) depending only on n. The case of equality was
settled only recently by Cheeger and Colding ([CCo] p. 459) to the effect that (1.2)
and by (M) = n still imply that M is diffeomorphic to the torus. But it appears to
be unknown whether a diffeomorphism is given by the Albanese map.

Gallot and Meyer ([GaM]) extended Bochner’s theorem in a different direction
by giving an explicit bound for the number of small eigenvalues of the Laplacian,
instead of only the multiplicity by (M) of the zero eigenvalue. Consider a com-
pact connected Riemannian manifold (M, g) without boundary, of dimension n and
diameter diam (M, g) < d. Let

0< A <X<L. ..
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denote the spectrum of A on one—forms, with each eigenvalue repeated according to
its multiplicity. Assuming a Ricci curvature bound Ric d?> > —e for a real number
g, the result of Gallot and Meyer ([GaM] p. 574, see also [Ga3]), when specialized
to An41, states that
o A*d?
Anp1d® > ———— —©€. 1.3

T = Jn+ 1)2 c (13)
Here A* denotes the smallest positive eigenvalue of the Laplacian on functions.
Lower bounds for A* in terms of Ricci curvature and diameter were obtained by Li
and Yau. In particular, Theorem 10 in [LiY] states that

M d? + max{0,e} > 7% /4. (1.4)

Combined with (1.3), this yields a positive lower bound on A, 1, provided ¢ is not
too positive. So A can have at most n small eigenvalues.

In [PeS] and [CGR], the authors considered what happens when A actually
does have n small eigenvalues. Petersen and Sprouse showed in [PeS] that, under
an additional bound on the curvature tensor R, M has to be diffeomorphic to an
infra—nilmanifold, i.e. a quotient of a nilpotent Lie group by a discrete group of
isometries of some left invariant Riemannian metric. Compact infra—nilmanifolds
admit finite covering spaces that are nilmanifolds. In [CGR1], under bounds on
R and its covariant derivative VR, M itself was shown to be diffeomorphic to a
nilmanifold. In this paper, we generalize and sharpen both results.

For m € M, let Ric(m) denote the lowest eigenvalue of the Ricci tensor Ric(m),
considered as a symmetric operator on T, M. For a function f : M — R, we denote
by f~(m) = max{0, — f(m)} its negative part. Our main result is the following

Theorem 1.1. For every dimension n and real number p > n, there is a
positive constant £(n,p) such that the following is true. Suppose (M™,g) satisfies
diam(M, g) < d and

Ric (|2 @ < £(n,p) (1 + | Rlly 2 @) ™7 (15)
And? < e(n,p) (1 + ||R]|, s d2) 7P 1.6
q/
with ¢ = max{p,4} and
+n)(qg—2
B(n,p) = w+n)(g—2)
p—n

Then M is diffeomorphic to a nilmanifold. If instead of (1.6) we have

Anoad® < e(n,p)(1+ ||Rlly2d?) ", (1.7)
then M is diffeomorphic to a nilmanifold or to a non—orientable infra—nilmanifold.
In either case, the metric g is close to a left invariant metric go for the nilpotent
structure in the sense that, for k =mn or n — 1 respectively,

19 = golloo < G(IIRic™ [lp/2 d? + Axd?, n)

for some function § such that 6(t,n) — 0 as t tends to zero.
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The volume-normalized LP/?>-norms used in this statement are defined in section
2, and || - ||co denotes the maximum norm on tensor fields. We note that little would
be lost if we normalized the diameter bound to d = 1. In the form given, our
inequalities are scaling invariant. A nilmanifold is a quotient I'\G of a nilpotent
Lie group G by a discrete subgroup I' of G. The left invariant Riemannian metrics
on G descend to such quotients, and are called left invariant metrics on T'\G by
abuse of language.

Remarks 1.2. (i) It is well known, and will be explained in section 5, that
every compact nilmanifold admits left invariant metrics with ||R||d? and \,d>
arbitrary small, so that a converse of our result holds. This is not true for general
infra—nilmanifolds.

(ii) Instead of pointwise curvature bounds, only integral norms of the curvature
enter our hypotheses. This is a less restrictive assumption, as Gallot [Ga2] and Yang
[Yan] have shown that there are sequences of Riemannian manifolds of diameter
one with uniform bounds on [|[Ric™ ||, /2 or ||R|;/2, that do not admit Riemannian
metrics with diameter one and uniform pointwise lower bounds on Ric, or upper
bounds on ||R||w, respectively. For such metrics, the somewhat delicate smoothing
argument required in (and briefly indicated on page 84 of) [PeS] may not apply.

(iii) In addition to a Ricci curvature bound, our assumptions involve the norm
|R]|g/2 of the full curvature tensor. Counterexamples given in section 4 show that
the result does not hold without a bound on R, even if we assume smallness of the
Ricci tensor in the L*°—norm.

(iv) Compact nilmanifolds with first Betti number equal to n are known to be
tori. In fact, a result of Nomizu (see [Ra] p. 123) states that the real cohomology of
a compact nilmanifold I'\G is isomorphic to the cohomology of the Lie algebra of
G; so b1 (T'\G) = n implies that G is abelian. As a consequence, our result includes
a weak form of the theorem of Cheeger and Colding, weak as it involves a bound
on R. Under the present assumptions, our proof shows that the Albanese map
is a diffeomorphism. The statement on A,_; extends and sharpens a theorem of
Yamaguchi (see [Yam]).

(v) The proof of Theorem 1.1 remains of use when there are only k¥ < n — 1
small eigenvalues, in the sense that hypothesis (1.6) in Theorem 1.1 is replaced by

Med? < e(n,p) (1 + || Rll g2 &%) 77

In that case, the immediate conclusion is that 7'M contains a trivial subbundle of
rank k. In particular, we obtain a lower bound on the first eigenvalue A\; of the
Laplacian on one-forms in terms of dimension, diameter and ||R||,/, for manifolds
with Ric > 0 and non—vanishing Euler characteristic.

For manifolds with non—negative Ricci tensor, (1.3) and (1.4) imply that

2

2 ™
P —
Ant1d” 2 32(n + 1)2

If, in addition, (1.7) holds, then g is a metric of non—negative Ricci curvature on
a compact infra—nilmanifold. The splitting theorem of Cheeger and Gromoll (see
[ChG] p. 126) implies that such metrics are flat, and we obtain the following
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Corollary 1.3. Suppose (M, g) satisfies Ric > 0. If
2 2\ —B(n,p)
)\n—ld S 5(nap)(1 + ”R”q/z d )

then (M, g) is isometric to a euclidean space form; and if

And® < e(n,p) (1+ || Rl o d?) 7P

then (M, g) is isometric to a flat torus.

Our proof of Theorem 1.1 is based on a Harnack inequality for generalized
Schrodinger operators. This inequality allows us to employ a result from [Ghl]
characterizing nilmanifolds instead of the L?-pinching theorem of [MiR] used in
[PeS]. Unlike the gradient estimates given in [PeS] and [CGR], this method does
not require bounds on the covariant derivative VR of the curvature tensor.

The article is structured as follows. Section 2 contains the Harnack and regu-
larity estimates required for the proof of Theorem 1.1. The proof proper is given in
the following section. In section 4, we describe examples explaining our curvature
assumptions, while section 5 is devoted to spectral properties of infra—nilmanifolds.

We refer to the monograph [Sa] for notation and general background in Rieman-
nian geometry, and to [Bé] for an introduction to Bochner methods and eigenvalue
estimates.

This paper combines the preprints [Au] and [CGR2]. Colbois and Ghanaat had
the opportunity to work on [CGR2] at the Forschungsinstitut fiir Mathematik at
ETH Ziirich; they thank Marc Burger and the Forschungsinstitut for their hospi-
tality and support. The four authors thank Christian Bér, Sylvestre Gallot and
Chadwick Sprouse for helpful remarks.

2. Curvature and elliptic estimates

In this section we prepare general Harnack and regularity estimates for Schrédinger
operators in a form suitable for the proof of Theorem 1.1. Such estimates have been
obtained in [LCR] and [Gal].

In what follows, (M, g) will be a compact connected Riemannian manifold of
dimension n and diameter diam(M,g) < d. We consider a Riemannian vector
bundle E on M, equipped with a connection V that is compatible with the fiber
metric { , ). The inner product on E and the Riemannian measure p on M are
used to define normalized LP—norms

1 1/p
— p

for sections S € LP(E) of E, as well as Sobolev norms on the corresponding spaces
L7 (E) of sections with p—integrable k—th covariant derivatives. Hélder’s inequality
implies that ||S|lq < ||S]lp for 1 < ¢ <p.

Our estimates require certain Sobolev inequalities on M. The following version
due to Gallot (see [Ga2] p. 203) is adequate for the present purpose. We note that
suitable constants C'(n,p,q) and {(n,p,q) can be determined explicitly.
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Lemma 2.1. For every dimension n and every pair of real numbers p > q > n,
there are constants ((n,p,q) > 0 and C(n,p,q) such that the following is true. If
(M™, g) is a compact Riemannian manifold such that diam(M, g) < d and

||M7||p/2 d2 < C(n7p7 q))

then every function u € L2(M) satisfies

llull2g/(q—2) < C(n,p,q)d [|dull> + [[ull2, (2.1)
and every u € LI(M) satisfies

supu — infu < C(n,p, g¢)d ||dul|,- (2.2)

The rough Laplacian operating on sections of E is defined as AS = V*VS.
Here V* is the adjoint of V with respect to the L?-inner product. We consider
Schrédinger operators of the form A + V, where the potential V € C*(Sym(E))
is a smooth field of symmetric endomorphisms of E. Weitzenbock’s formula (1.1)
shows that the de Rham-Laplacian A on 1-forms is an operator of this type.

The next result is a regularity estimate for linear combinations of eigensections
of Schrodinger operators. For m € M, let v(m) be the lowest eigenvalue of V' (m)
acting on the fiber E,,. Consider an L?-orthonormal system S;, (i = 1,2,...) of
eigensections of A + V. For a finite set I of positive integers, let F; < L?(E) be the
vector space spanned by {S; | i € I}. As before, f~ denotes the negative part of a
real valued function f.

Theorem 2.2. For every integer n > 2 and all real numbers p > q > n, there
are explicit constants ((n,p,q) >0 and a(n,p,q) such that the following is true.
Suppose (M™, g) satisfies diam(M, g) < d and

||M7||p/2 d2 S C(napa q)

Then for every S € Fr and k € R we have

A _
IS0 < (14 alupa) g ) A+ APV S, (23

where 12
A= (v = &) )lpj2 +supser [N — k[ ) " d.

Proof. For k € [1,00] define
Ay = Ay (I) = sup {[|S[[x/[|S]l2 | S € Fr — {0} }.

Then Ay is increasing as a function of k. We shall use the classical Moser iteration
method to obtain an upper bound for 4.
Let S € Fy and k € R. Fixe > 0 and let f = 1/|S|? + €2. The Cauchy—Schwarz
inequality implies that
VSIS
arp? < S g2
|f| = |S|2+€2 —|v |7
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and therefore

FASf = SAG) + 1P
< ZA(SP) + V5P
= (A5,5)
<{((A+V =-k)S, S)+ v -r)"I|S]
<IA+V=R)S| S+ —r)

So for any real k > 1/2,

[ae = g [ ag)
k2 2k—1
e

%_1(/ (A+V - K)S| f21 + /M(V—/@)_f%)

and using Holder’s inequality we obtain

<

2

k
I < g (10 = ) o2 113k gy + 1A +V = m)S e 1£1367)

The Sobolev inequality (2.1), applied to the function u = f* yields an estimate on
the norm |[ullag/(g—2) = ||S||§kq/(q_2). Letting € tend to zero we get

||S||§kq/(q—2)

Ckd 1/2

Vv2k—-1

with a constant C' = C(n,p,q) depending only on the quantities indicated. Since
A +V — k maps FT into itself, we have

< ISl + (11 = 8 llp2 11 -2 + A + V = W) Sl 181357

(A +V —k)Sllar < Aok [[(A+V = £)S]|2
< Aokp/(p—2) sg? [Ai — & [|S]|2;

and [|S|l2k < [|Sll2kp/(p—2) < A2kp/(p—2) [IS]|2 then implies

CkA \'/*
1) Askp/p—2) |IS]|2-

[[Sll2kg/(q—2) < (1 + Vo

This is true for every S € Fj, so we get

CckA \Y*
Aska/(g-2) < (1+ﬁ> Askp/(p-2)
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q(p—2)
p(g—2)

> 1 and

for every k > 1/2. We use this inequality for k¥ = 47 with 8 =
with j =0,1,2,... to obtain first

m—1 ; B8’
CAHA
Aspgm j(p_9) < 14+ ——— Asp/p—
2pp™/(p—2) = jl;[() ( + 25]'_1) 2p/(p—2)>

and then, by taking the limit as m tends to infinity,

o0 . B~
CBIA
A < 1+ ——— Ay /(p—2)"
H( ﬁﬂf—l) s

The inequality ||S||2p/(p—2) < ISII2L7 |IS||5P =27 translates into
Azp/(p-2) < AP

and we obtain

oo ) B7p/(p—2)
CBiA
Ay < 14+ ———— . (2.4)
{1+ o)

To simplify this estimate, we note that In (1 + az) < In (1 + z)+az/(z+1), provided
a and x are positive. Therefore,

P 1 2 A
< — I J -
lnAoo_p—2jE:0ﬁj (1n(1+A)+C,3 1+A>

g '
- In(1+A)+C'(n,p,q)

For any z € [0,1], we have e®* < axe® + 1, and we conclude that

1+A°

A
A < (1 + a(n,p, q)1+—A> (14 A)Pa/(p=9)

Lemma 2.3. FEvery smooth section S of E satisfies the pointwise inequality

1
5A(|v5|2) +|V2S|? < (V*RFS,VS) + Ric™|[VS|?
+(VAS,VS) +|RE||VS|?,

(2.5)

where, for vector fields X andY on M, R?Y = V%{,Y - V%’,X is the curvature of
E and, in abstract index notation,

(V*RPS,VS) := (-V,;(R[S),V:S). (2.6)



Proof. A standard calculation interchanging covariant derivatives shows that

1
5A(|v5|2‘) +|V28> = (V*RFS,VS) — Ricy; (ViS,V;8S)
+(VAS,VS) + (R[(V;85),V:S).

Lemma, 2.3 is an immediate consequence.

The following Harnack inequality is essentially due to Le Couturier and Robert.
It is stated as Theorem 1.4.1 in [LCR] for solutions S of a Schrédinger equation
(A +V)S =0. We note that the hypothesis ¢ > 4 was omitted in [LCR].

Theorem 2.4. For every dimension n > 2 and real number p > n, there are
explicit constants ((n,p) >0 and A(n,p) such that the following holds. If (M, g)
satisfies

||M_”p/2 d2 < C(nap)a

then for every smooth section S of E

inf |S VS|lad\” ASlypd\' "
1= B < st (TED) (1 oo + 15002 )

sup [S] ~ 1500 115100
2(p—n) .
where ¢ = max{p,4} and 1 = —————. In particular, 0 < 7 < 1.
{4} pg+n(qg—4)

Proof. The idea of the proof (see [LCR]) is to apply Lemma 2.3 and the Sobolev
inequality (2.1) to obtain a bound on a suitable integral norm of V.S. Then inequal-
ity (2.2) yields the result.

Let u = /|VS|2 + €2. As in the proof of Theorem 2.2, we obtain that
1 2 2q2
uAu < §A|VS| + V2S5,

This inequality and Lemma 2.3 imply

k2 B
J1aehE = 7 [ ()
k2 2k—2
= m /M UAU u
k2 i
/ (m—u”wr(vm, V) u2h—2
M

2k —1
+ (V*RES, VS) u*~2 + |RE| u%).

IA

b2
The relation |ab| < a® + 7 and the divergence theorem applied to the vector field

uk=2(AS, V. S)*
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imply that for £ > 1

/ (VAS,VS)u?k2 = / |AS|? u?*72 — (2k — 2) / (AS, Vgrad uS) u?k 3
M M

M

< / IAS]2 w22 + (2k — 2) / |AS] |du| u2*2
M M
k-1 _
< —/ |du|® u?*=2 + (2k — 1)/ |AS|? u?k=2,
2 Ju M

From the skew symmetry R% y = —R{ x we have

Zz’,j <R55: Vz > = %|RES|2
Because of (2.6), the divergence theorem applied to the vector field

Y u?* 2 (RE S, V)

yields

-1
/ (v RS, vs)u? < B2 / P + (2K — 1) / |RES|2 u2t—2
M M M

k-1 oy 2 E g2, 2k—2
- /M|d(u ) + (2 1)/M|R S? w22,

If we set k = (¢ — 2)/2 and apply Holder’s inequality, we obtain for ¢ > 4

_ q
ld(u(a=2/2)], < 7((||<Rw s + 1B ) 61126 2y -2y

1/2
+ (VST + IRESIE )l )

Now let p > n and r = (p + n)/2. Holder’s inequality implies that
llally™ < Ml [|ull?

if 1 <a<b<e¢ andif p and o are positive numbers such that (p+0)/b = p/a+o/c.
We apply this inequality, and use the Sobolev inequality (2.1) for the function
ul9=2)/2_ Setting v := % we obtain that for ¢ > 4

— —2)/2 2)/2 _
leally ™ Nl ey < Nl =05 sy = T2 |y

< ull"57 + C'(n,p) d ((u(mnp/z + 1 RE o ) 42 2y
1/2
+(1ASIE, + NRESTE,) huly )

If we set ¢ = max{p,4}, then vy =2(p—r)/(r(¢ —2)) and p(¢ —2)/(p—2) > q > p.
Letting € tend to zero, we get

IVSI13 > £ (IVSllota—2)/0-2)) (2.7)
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where f is given by
27+

Tz + C'(n,p)dvaz® +b

f(z)
with

a = |[Ric™[l,/2 + |R|l,/2 and
b= [|AS|I;,, + IRPSII;

q/2 q/2"

Since the function f is increasing, we can replace ||VS||q—2)/(p—2) by [IVSllp
on the right hand side of (2.7), and then, using the Sobolev inequality (2.2), by
(sup |S| — inf |S|) /C(n,p)d to obtain

—1 14y
(VS| d)” > (sup|S| — inf |S])
C"(n,p) <||S||oo + \/al[S|2d% + bd4)

with a new constant C"'(n,p). By hypothesis, we have [|Ric™ |,/ d* < 1. Theorem
2.4 follows using
IRZS115/2 < IR®N7/2 ISl and

IRE||, o2 < 1+ |RE|2,d".

3. Proof of Theorem 1.1

The estimates obtained in section 2 can be applied to the cotangent bundle E =
T*M of a Riemannian manifold, together with its de Rham-Laplacian A = A +V
on one-forms . In this case, the curvature R¥ is the curvature tensor R of M
acting on forms, and the potential is given by V' (a) = Ric(at,-). In particular, the
lower bound v is equal to Ric™. We choose the index set I = {1,...,k} and let
g = (p+n)/2 in Theorem 2.2. Then by inequality (2.3), linear combinations a of
eigenforms corresponding to the first k eigenvalues Aq, ..., Ay satisfy

llelle < 1 llall2, (3.1)

where

A
€ = (1 +alnp)y A> (1 + APt/ GEmm)

< ay(n,p)(1 4+ A)PP+m)/(2E=—n)
A= (IRic [lp/2 + M) d.

On the other hand, Theorem 2.4 yields an estimate

sup|a| — inf ||

i _ L. (32
< A(n,p) (IVallzd)” (1 + (| Rlly/2d%) llelleo + [|1Aally/2 d*)

for every smooth one—form «, where ¢ = max{p,4}, and where 0 < 7 < 1 depends
only on n and p.
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It is sufficient to prove Theorem 2.1 under the assumption that d = 1, as the
general case is then obtained by rescaling the metric. We will also assume that

A2 = |[Ric [lp/2 + M < o (14 [[Rllg2) 77 (3.3)

and then impose restrictions of the form ey < e(n, p) consistent with our hypotheses
(1.5) and (1.6). Let w!, ..., w* be eigenforms corresponding to the first k eigenvalues
A1, ---, A, orthonormal with respect to the volume normalized L? inner product.
Our goal ist to show that, for suitably small ¢, the forms w? are nearly orthonormal
at every point of M, and that their exterior derivatives are small in the maximum
norm. First we apply (3.2) to a = w'. Weitzenbdck’s formula (1.1) shows that

. . 1 S
P12 — Y.I],,%|2 _R; i
||vw ||2 - A'l”w ||2 + VOI(M) ‘/]\/[( Rlc)(w y W )

1 i
< - _ 1
= Sol(M) /M (A = Ric) |u'|

1 .
< : _ - 1 2
= Jol(M) /M (Bic = Ae)™ ]

[l Rie = M)~ [l llw'll2,

IA

and (3.1) then implies
i : — /2
IVw'll2 < e || (Ric — Ag) {1177 (34)
Again using (1.1) and (3.1), we get
18w llg/2 < 1AW llg/2 + [Ricllg/2 llw'lloo
< (e + [[Ricllg/2) [l (3-5)
< (A + [IRicllg/2)e1-

We substitute these inequalities into (3.2), assuming an initial restriction g9 < 1,
so that A, <1, to obtain
sup|w’| — inf |w’|
. - T . 1—

< A(n,p) (er | Rie = 2)™ I72)” (1 + 1Rllgpo)er + i+ [Ricly)er )

<2 T A(n,p) [|(Ric = A) [T (14 1R]ly/2)' 7 (3.6)
If we simplify this using ||(Ric — Ax) 7|1 < [|[Ric™||1 + Ax < A2, the definition of ¢;
from (3.1), and A < 1, we get

sup [w'| — inf || < as(n, p) (1 + A)PEF/CE=PIAT(L 4 ||R||4/0)' 7
< ag(n,p) AT(L+ | Rllg/2)" "

2
S a3(nap) 56/ .

AS a consequence, . X
sup |wz| —inf |w’| S €1, (37)
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where €1 = ag (n,p)sg/ % can be made as small as we wish by requiring that g <
e(n,p) for suitably small £(n, p).
Since ||w*||2 = 1, there are points in M where |w*| = 1, and we obtain

1—g <|wip)| <1+e

for every p € M. We now consider the inner products (w?,w’) for i # j. Applying
(3.2) as before, but now to a = w! —w’ instead of w?, we obtain, using the triangle
inequality

sup |w! — w| — inf |w* — W?| < 4éy.

Since ||w? — w||2 = V/2, there are points in M where |w? — w’| = /2, and so
V2 —der < W'(p) — ! (p)] < V2 +4ey

for p € M. Using o . ' . .
2w, w) = W + W2 — ' — w2,
we obtain o
—1061 S (w’,w’) S 1061.

We have shown that there is a pointwise inequality

(W' w?) — 09| < e, (3.8)
fori,j=1,...,k, where e, = 10&; = 10a3(n,p) 56/2.
For €5 < 1/n, it follows that the w? are linearly independent everywhere, so that
T M has a trivial subbundle of rank k. In particular, we have k < n. And if k¥ = n,
then App1 > Ay
We now consider the case k = n. Then w = (w!,...,w") is a coframe. Also, by
(3.8), the Riemannian metric

n . .
9w = Zi:l w'uw'

induced by w on M is close to the original metric g. We apply the following result
from [Gh1] (see Theorem A in [Gh2] for a more detailed statement).

Theorem 3.1. There is a constant e(n) > 0 such that the following is true. If M
is a compact n—manifold with a coframe w : TM — R™ whose exterior derivative
satisfies ||dw||cod < €(n), where diam(M,g,) < d, then M is diffeomorphic to
a nilmanifold T\G. One can choose a Maurer—Cartan form wo on I'\G and a
diffeomorphism ¢ : M — I'\G such that

[lw = ¢*wolloo < ¢(n) [|dwl|cod, (3.9)

with a constant c(n) depending only on n.

In this result, the norms and diameter are with respect to g,. Because of (3.8),
the difference between g, and the given g is negligible for our purpose.

In order to use Theorem 3.1, we need a bound on ||dw¢||« analogous to (3.1) for
the two—forms a = dw?. We apply Theorem 2.2 to the bundle of two—forms and its
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de Rham-Laplacian. The corresponding Weitzenbock formula (see [Sa], p. 303) has
the form A = A 4+ V, where the potential V' satisfies [|[v7||,/2 < ¢(n)||R||p/2- As in
(3.1), Theorem 2.2 with k = 0 then yields

lldwllo < ealldw(l2 < eav/An, (3.10)

where
&2 < ag(n, p)(1+ AT/ G0,
but this time
A= (1Rllp/2 + X))
Theorem 1.1 under hypothesis (1.6) is an immediate consequence.

Now consider the case of n — 1 small eigenvalues, hypothesis (1.7). We first show
that if M is orientable, then the n—th eigenvalue is also small, so that we can apply
the result we already proved. Choose L2?-orthonormal eigenforms w!,...,w” !
corresponding to the eigenvalues Ay,...,A,—1. Since M is orientable, we can use
the Hodge star operator to define

n=*wW A... A", (3.11)

This form is L2-orthogonal (in fact pointwise orthogonal) to w!,...,w" 1. By the
minimax principle, its Rayleigh quotient,

d’? 2 + 6’)7 2
R(y) = lldnll3 2|| lI5
lInll3
is an upper bound for A,. In terms of a local orthonormal frame field e, ...,e, for

M, the codifferential of 7 is given by dn = —,, V¢, n. Therefore, using (3.4),

lldnll2 = [l6(" A ... Aw™ H)]l2

i i

<em) 3, (IVell2 TT, il
n—1 . — 1/2

<e(n) e ([IRic™ [l + M) -
On the other hand, ||dwf||2 < ||[Vw!||2 and again (3.4) imply

1nllz = lldw' A... Aw™ )]l2

< Zz ldwi|l2llwt Ao Awi AL AW |

1/2

< (n=1) e (IRic™ [l + Ae)

Inequality (3.8) yields a lower bound on the denominator of the Rayleigh quotient,
and we obtain

An < R(n) < (1+e(n) 22) e(m) e~ (Ric™ [l + M) ">, (3.12)
which is the required smallness of A,,.
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If M is not orientable, then our argument implies that the twofold orientable
covering M is a nilmanifold. This is not quite sufficient, as we need to show that the
deck transformation o : M — M is an isometry of some left invariant Riemannian
metric on M. We therefore proceed as follows.

The pullbacks &', ..., @™ ! of the eigenforms to M are eigenforms of the pullback
metric §. By (3.8), these forms are almost orthonormal at every point. Considering
the Rayleigh quotient for the form *(@'A...A@™ 1) as before, we conclude that the

n—th elgenvalue A, of M is small. Now let @™ be an elgenform corresponding to Ap,
such that ©!,...,@™ are L?-orthonormal. Our previous argument shows that the
R™-valued one—form @ = (@!,...,&") is a coframe with small exterior derivative.
The transformation o leaves the sum of the eigenspaces for the first n eigenvalues
invariant, because it is an isometry of § and since A, 1 > A,. Therefore, o acts as
an affine isometry of the coframe @, i.e. satisfies

ot =aold

for some constant orthogonal map a of R™. By [Gh2], affine isometries of @ are
affine isometries of the Maurer—Cartan coframe ¢*wy in Theorem 3.1 as well, and
the proof is complete.

4. Anderson’s examples

In this section, we show that Theorem 1.1 does not hold without an assumption
involving the full curvature tensor R. More precisely, we have

Proposition 4.1. For every dimension n > 4, there are closed n—manifolds
with arbitrary large second real Betti numbers bs that admit Riemannian metrics of
diameter one with ||Ric||eo + An < € for any given € > 0.

Nomizu’s theorem mentioned in Remark 1.2(iv) implies that manifolds with
by > n(n — 1)/2 are not homotopy equivalent to infra—nilmanifolds. The examples
we use have been constructed by Anderson. Theorem 0.4 of [An] exhibits manifolds
M with diameter one, ||Ric||e < &, first Betti number b = n—1 (so that \,—; = 0),
and by arbitrary large. This shows that our result on A, _1 does not hold if we replace
(1.5),(1.6) by conditions not involving R.

For the proof of Proposition 5.1, we now describe Anderson’s simplest examples
in more detail (see p. 73 and Remark 2.1 on p. 75 of [An]). These examples are
obtained by performing surgery killing a generator of the fundamental group of a
flat n—torus. One starts with a Riemannian product Mo = S§ x T of a circle of
suitable diameter § and a flat (n — 1)-torus. Removing a subset of the form Sj x By,
where B, C T"! is a ball of radius a less than half the injectivity radius of 7?1, we
are left with M, = S} x (T" "\B,), a manifold with boundary S} x S*~2. To this
one glues a copy of D% x S"~2, carrying a suitably scaled Riemannian Schwarzschild
metric g,g, to obtain

= (S} x (T"\B,)) U (D?* x 5™2)

equipped with a Riemannian metric g, g that has diameter less than n7 and satisfies
[|Ricl|cc = 0 as aR — oo . The construction involves parameters a, R and § that
need to be related by d§ = ¢o/aR, where ¢y depends only on the dimension n. We
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may choose the radius a = R~'/? and then let R tend to infinity to obtain metrics
gr satisfying ||Ric||e < € and diam(M, gr) < nw, that coincide with our original
flat metric on My outside of S§ X B,. Here ¢ as well as a can be made as small as
required by choosing R large.

We now claim that the n—th eigenvalue A,(gr) tends to zero as R — oo. To
show this, we exhibit n one-forms 3',...,3™ on M that are almost orthonormal
in L2(M) and whose Rayleigh quotients tend to zero. The minimax principle then
implies our claim. The forms 3¢ are obtained as follows (see for example [RT]). Let
@ € C°(T™ 1) be a function such that 0 < ¢ < 1, ¢ = 0 on By, ¢ = 1 outside
Bs,, and such that its differential satisfies ||dy|| < 1/3a. Since the dimension
n—1> 2, the L2-norm ||dy||2 = O(a) as a tends to zero. Define a cutoff function
Y on My = S} x T~ by (t,z) = p(z). We choose an L?-orthonormal basis
al,...,a" for the harmonic forms on our flat torus My, and let & = @at. The
forms o' are in fact parallel and, if we use volume normalized L? inner products as
in section 4, pointwise orthonormal. For the exterior derivatives we obtain

1d&’ |l = [lde A o[l2 < ldell2 llo oo

and this tends to zero if a does. A corresponding inequality holds for ||§a?||s, while
[|&¢|l2 = ||¢||2 tends to one. Therefore, the Rayleigh quotients of the & converge
to zero with a. Since these forms vanish on the domain affected by our surgery,
they can be transplanted to M extending by zero on D? x S™~2 without changing
their L? norms or Rayleigh quotients. In this way, we obtain the required forms 3?
on M. Finally, this operation can be repeated on several disjoint balls B, to yield
examples with arbitrary large second Betti numbers.

5. Spectra of infra—nilmanifolds

Theorem 1.1 can be illustrated by the well known spectral behavior of almost flat left
invariant metrics on infra—nilmanifolds (see [Gh1] p. 68). The left invariant Maurer—
Cartan form w : TG — G of a Lie group G descends to a coframe w : TM — G on
any left quotient M = I'\G of G by a discrete subgroup. Inner products on the Lie
algebra G imply, via w, left invariant Riemannian metrics on M. If, in particular,
M is a compact nilmanifold, then there are families of inner products on G such
that the corresponding left invariant metrics g., € > 0 have the properties that
ldwlco,g. — O and diam(M,g.) — 0 as € tends to zero (see [BuK] p. 126), and
standard formulas then imply that R also tends to zero.

Take an orthonormal basis for G with respect to g. and decompose w = (w!,...,
w™) accordingly. Since G is unimodular, we have dw! = 0, and the Rayleigh quo-

>
tients for w? are

[I(d + 8)wlll3 .

TwilE = ||ldwi||?, ,. =0 (e = 0).
elld,ge

39e

As a consequence, A, (g.) tends to zero with e, while inequalities (1.3) and (1.4) show
that A\p+1d? admits a lower bound converging to 72 /32(n+1)2. We summarize these
remarks in
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Proposition 5.1. FEvery compact n—dimensional nilmanifold admits families
g- (€ > 0) of Riemannian metrics such that the diameter diam(g.), the curvature
tensor ||R(ge)|loo,g. and the eigenvalue A,(g:) converge to zero as € — 0.

By Theorem 1.1, such metrics do not exist on infra—nilmanifolds that are not
nilmanifolds. All compact infra—nilmanifolds are obtained as quotients M = F\M
of nilmanifolds M by finite groups F of affine transformations, and one can see how
the small eigenvalues of M are lost when passing to the quotient. In fact, affine
transformations ¢ are characterized by the property that ¢*w = a o w for some
constant linear map a = rot(y) : G — G, the rotational part of . Left translations
by elements of G are those affine transformations that have rot(yp) = 1. So unless
M is itself a nilmanifold, dividing by F' will eliminate some of the small eigenvalues
Aty.-.s Ay of M. And it will eliminate all of them, when rot(F) acts irreducibly on
g.

This is the case for the three dimensional euclidean space forms labelled Gg on
p- 122 of [Wo]. The first real Betti number of this space is zero, which means that
all three of the small eigenvalues (corresponding to the harmonic forms) are lost
when passing to M = Gg from its torus covering space M.

The euclidean space form Gg provides an example for another problem in spectral
theory. A theorem of Cheng ([Ch]) states that for closed Riemannian n—manifolds
(M,g) with Ric > —(n — 1) and diameter diam(M,g) < d, the first non—zero

eigenvalue ,\g") of the Laplacian on functions satisfies

2
(=12, o)
4 d?

where ¢(n) depends only on n. It may be asked (see [Lo]) whether results of this
kind hold for the eigenvalues of the Laplacian on p—forms. For one—forms, this is
true and a direct consequence of Cheng’s result, by applying exterior differentiation
to an eigenfunction corresponding to )\go). However, the following counterexample
shows that some caution is required for two—forms.

A (M, g) <

Example 5.2. Let M = Gg be as before. If we equip M with any flat metric g
and consider the family M, = (M,eg), then as ¢ — 0, all M, have zero curvature
and diameter converging to zero. The first eigenvalue )\gl) (M.) of the Laplacian on
one—forms, and by duality that on two—forms, tend to infinity.

Consider N, = S x M, with S! a circle of diameter one. Then N, endowed with
the product metric, is a flat manifold with diameter converging to one as ¢ — 0.
The Kiinneth formula A(a A 8) = AaA B+ a A AS implies that the first eigenvalue
of N, on two-forms is

AW = min {00 (8) + 24 (1), X0 (81) + AV (01))

which tends to infinity as e — 0. Rescaling the metric, we obtain a family of compact
flat four—-manifolds of any given diameter d whose first eigenvalues on two-forms
tend to infinity.
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