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Abstract. In this paper, we show that the convex domains of Hn

which are almost extremal for the Faber-Krahn or the Payne-Polya-
Weinberger inequalities are close to geodesic balls. Our proof is also
valid in other space forms and allows us to recover known results in
Rn and Sn.

1. Introduction

This paper aims to study some optimal inequalities involving the �rst
eigenvalues of the Dirichlet spectrum of convex domains in space
forms, and to ask how stable they are. The paper essentially deals
with the most intricate case of the hyperbolic space.

The inequalities we are interested in are the Faber-Krahn inequal-
ity and the Payne-Polya-Weinberger inequality. The Faber-Krahn in-
equality asserts that among all bounded domains with the same vol-
ume in a given space form, the geodesic ball has the smallest �rst
Dirichlet eigenvalue. Moreover, the geodesic ball is the unique min-
imizer (up to an isometry) among smooth domains. In this setting,
such an inequality is stable if a bounded domain Ω whose λ1(Ω) is
close to λ1(B) (B is a geodesic ball with the same volume as Ω),
is close for the Hausdor� distance to B (up to an isometry). This
general statement does not hold true, because it is possible to attach
very long and thin tentacles to a ball without a�ecting signi�cantly
the volume and the spectrum. In fact, for Euclidean domains, weaker
forms of stability have been established. One form is to prove that a
domain whose �rst Dirichlet eigenvalue is close to the �rst eigenvalue
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of a suitab le ball, ressembles a ball up to sets of small volume (see
[15] for a precise statement). The other form is to consider only con-
vex bodies, in this case the Faber-Krahn inequality is stable [14]. The
stability of the Faber-Krahn inequality has also been established for
convex domains in H2 and S2 [3].

The �rst result of this paper is to prove the stability of the Faber-
Krahn inequality for convex domains in a space form of arbitrary
dimension and arbitrary curvature. In the sequel, we will denote by
X1 = (Sn, can), X0 = (Rn, can) and X−1 = (Hn, can) the space
forms of curvature 1, 0 and −1 respectively. Except when stated oth-
erwise, the results in this paper hold true for δ ∈ {−1, 0, 1}.

Theorem 1.1. Let V0 > 0. Let λ∗1(V0) be the �rst Dirichlet eigenvalue
of a geodesic ball B of volume V0 in Xδ. For any ε > 0, there exists
η > 0 such that, if Ω is a convex domain of volume V0 in Xδ and if
λ1(Ω) ≤ λ∗1(V0) + η then, up to an isometry,

dH(Ω, B) ≤ ε,

where dH denotes the Hausdor� distance. In the case δ = 0, we have

η = η′(ε)V −2/n
0 .

Remark 1.1. We do not assume that the convex domains are bounded.

The method developed is the same whatever the space form. Nev-
ertheless, the case δ = −1 is considerably harder. The primary dif-
�culty is that the hyperbolic space comprises unbounded convex do-
mains with �nite volume therefore, have a discrete Dirichlet spectrum.
This is contrary to the case of Rn, where an upper bound of the type
DiamΩ ≤ C(VolΩ,λ1(Ω), n) holds. To deal with this di�culty, we
need to prove the thus for unsolved Faber-Krahn inequality for un-
bounded convex domains.

Proposition 1.1 (Faber-Krahn Inequality). Let Ω be a convex set
in Xδ of �nite volume V0. The �rst Dirichlet eigenvalue of Ω satis�es

λ1(Ω) ≥ λ∗1(V0)

where λ∗1(V0) denotes the �rst Dirichlet eigenvalue of a geodesic ball
of volume V0. Moreover, the equality λ1(Ω) = λ∗1(V0) implies that Ω
is isometric to a geodesic ball.

Remark 1.2. The di�culty is in proving the case of equality.

The second result of this paper concerns the stability of the Payne-
Polya-Weinberger inequality (PPW inequality for short). This famous
conjecture has been proved by M.S. Ashbaugh and R.D. Benguria [1].
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Theorem 1.2 ([1]). Let Ω be a smooth bounded domain in Euclidean
space (resp. a smooth domain included in a hemisphere in Sn). Then,
the following inequality holds

λ2

λ1
(Ω) ≤ λ2

λ1
(B),

where B is an arbitrary Euclidean ball (resp. a spherical ball such that
VolB = VolΩ). Moreover the equality is achieved if and only if Ω is
isometric to a geodesic ball.

Let us notice that the ratio λ2(B)
λ1(B) is scale-invariant in Euclidean space

and that M. Ashbaugh and R. Benguria also showed in [2], that the
ratio of the two �rst eigenvalues of a geodesic ball in Sn is an increas-
ing function of the radius r (if r ≤ π/2). Consequently, the PPW
inequality follows directly from the theorem below.

Theorem 1.3 ([1,2,4]). Let Ω be a smooth bounded domain in Xδ

and such that Ω is included in an hemisphere if δ = 1. The second
Dirichlet eigenvalue of Ω satis�es

λ2(Ω) ≤ λ2(B)

where B is a geodesic ball such that λ1(B) = λ1(Ω). Moreover, the
equality holds if and only if Ω is isometric to B.

It is shown in [4] that λ2/λ1 is a decreasing function of the radius
of hyperbolic balls and that the PPW is false in Hn. This theorem
can be seen as a generalized PPW inequality on space forms.

We prove the following stability results.

Theorem 1.4. Let Ω be a convex domain of Rn or Sn, whose volume
is equal to V0. For any ε > 0 there exists η > 0 such that for all Ω as

above, the assumption λ2(Ω)
λ1(Ω) ≥

λ2(B)
λ1(B) − η implies

dH(Ω, B) ≤ ε,

where B is a (well-centered) geodesic ball of volume V0.

Remark 1.3. The previous result was already known in Euclidean spa-
ce, it has been proved by A. Melas [14].

Theorem 1.5. Let Ω be a convex domain of Xδ with λ1(Ω) = λ

(λ > (n−1)2

4 if δ = −1). For any ε > 0, there exits η such that for all
Ω as above, the assumption λ2(Ω) ≥ λ∗2(λ)− η implies

dH(Ω, B) ≤ ε,

where λ∗2(λ) is the second Dirichlet eigenvalue of a (well-centered)
geodesic ball B of Xδ such that λ1(B) = λ.
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Remark 1.4. We make no hypothesis about the volume of the convex
domains we consider, not even the �niteness. This represents the main
di�erence between this latter theorem and Theorems 1.4 and 1.1.

As for the Faber-Krahn inequality, it is necessary to generalize the
PPW inequality to a more general setting, above all the characteri-
zation of the case of equality, in order to prove Theorems 1.4 and 1.5
(see Theorems 4.1 and 4.2 for precise statements).

The method developed to solve these stability questions is a rather
general method, and based on the following abstract stability lemma.
The proof is straightforward, therefore omitted.

Let X be a topological space and f : X → R be a function. We
say that f is coercive if there exists a compact subset K of X such
that infX\K f > infX f (we set inf∅ f = +∞).

Lemma 1.1. Let X be a topological space. If f : X → R is coer-
cive and lower semi-continuous then f is bounded below, reaches its
minimal value and the set Mf = f−1{inf f} of its minima satis�es
the following stability property: for any neighborhood U of Mf , there
exists η > 0 such that

f−1
(
]−∞, inf f + η]

)
⊂ U.

This lemma is very close to the so-called lower semi-continuity and
compacity method. This is typically used in calculus of variations to
deal with the problem of minimisers existence (see [18, Chapter 1]).
It can be applied to a wide variety of problems (as large as the lower
semi-continuity and compacity method). It does not, however, give
an explicit η.

Our proof also shows that the in�mum of the functional λ1 (resp.
λ1
λ2
) on unbounded convex domains of Hn with a given volume (resp.

with a given λ1) is strictly larger than those on bounded domains. To
our knowledge, this is also a new result.

The paper is organized as follows:

In section 2 we de�ne a metric on the space C of convex, bounded
domains in Xδ.

In section 3 we show that the eigenvalues and volume functions
are continuous on C.

In section 4 we extend the classical Faber-Krahn and Payne-Polya-
Weinberger (as its generalized version) inequalities to the set of convex
unbounded domains. This level of generality is required in our proof
even if this set is restricted to bounded convex domains for the proof
of the coercivity.

Finally, we reduce the proof of the stability theorems to the proof
of the coercivity of the functionals λ1 and λ1/λ2 on the set of bounded
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convex domains of given volume (resp. given λ1) and prove the coer-
civity of these functionals in sections 5 and 6. For that purpose, we
prove several new qualitative results on the spectrum and the eigen-
functions of domains in space forms. For instance, we prove that a
convex Euclidean domain with a spectral gap is bounded (hence has
a discrete spectrum) and that its diameter is bounded from above by

C(n)
(

1+λ1
λ2−λ1

)3/2
where C(n) is a universal (explicitable) constant.

2. A distance on convex domains

In the following, we set s1(t) = sin t, s0(t) = t, s−1(t) = sh t and

cδ = s′δ. Let x0 denote a �xed point in Xδ.

De�nition 2.1. Let C be the set of convex, bounded and open subsets
Ω strictly included in Xδ, which contain the point x0.

Remark 2.1. The isometry group of Xδ acts transitively on Xδ.

Remark 2.2. Each proper, convex set of the sphere is included in a
hemisphere. Hence, up to the sphere itself, all convex domains Ω in
Sn satisfy vol(Ω) ≤ Vol Sn/2 and λ1(Ω) ≥ n.

So, Theorems 1.1, 1.4 and 1.5 are obvious in the case Ω = Sn and we
just have to prove them for domains Ω ∈ C.

In the remaining part of this section we de�ne a (proper) metric
on C. We chose to work with a metric which has a better behaviour
than the usual Hausdor� metric with respect to the volume and the
Dirichlet spectrum. To de�ne our metric, we need some facts on sup-
port functions.

2.1. Support functions

For any Ω ∈ C, the following function will be called the support of Ω.

ρΩ : v ∈ Sx0 7→ sup{t ∈ R+/ exp x0(sv) ∈ Ω for all s ∈ [0, t]} ∈ R+

where Sx0 and expx0
are the set of unit tangent vectors and the expo-

nential map of Xδ at x0 respectively. Note that, even on Sn, we have
ρΩ ≤ R as soon as Ω ⊂ B(x0, R).

The properties of ρΩ needed subsequently are summarized in the
following lemma.

Lemma 2.1. The function ρΩ is a Lipschitz function. Under the as-
sumption B(x0, r) ⊂ Ω ⊂ B(x0, R), its Lipschitz constant is bounded

above by sδ(R)

√(
sδ(R)
sδ(r)

)2
− 1 if δ 6= 1, and by cotg r otherwise.
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Moreover, the following equalities hold.
Ω = expx0

{t.v/ v ∈ Sx0 , 0 ≤ t ≤ ρΩ(v)},
Ω = expx0

{t.v/ v ∈ Sx0 , 0 ≤ t < ρΩ(v)},
∂Ω = expx0

{ρΩ(v).v/ v ∈ Sx0}.

Proof. Fix y0 = expx0
(ρΩ(u0)u0) ∈ ∂ Ω and consider the geodesic

double cone centered at y0 and tangent to the ball B(x0, r). We claim
that for each v ∈ Sx0 \ {u0} close enough to u0, the geodesic γv(t) =
expx0

(tv) meets the cone in exactly two points Z(v), Z ′(v). We also
have l(dSx0

(v, u0)) ≤ ρΩ(v) ≤ L(dSx0
(v, u0)), where

l
(
dSx0

(v, u0)
)

= min{d(x0, Z(v)), d(x0, Z
′(v))}

and
L

(
dSx0

(v, u0)
)

= max{d(x0, Z(v)), d(x0, Z
′(v))}.

From elementary trigonometric computations (see appendix A for
more details), we get

lim inf
v→u0

ρΩ(v)− ρΩ(u0)
dSx0

(v, u0)
≥ lim inf

v→u0

l
(
dSx0

(v, u0)
)
− l(0)

dSx0
(v, u0)

= l′(0) = −sδ

(
d(x0, y0)

)√(sδ

(
d(x0, y0)

)
sδ(r)

)2
− 1

and

lim sup
v→u0

ρΩ(v)− ρΩ(u0)
dSx0

(v, u0)
≤ lim sup

v→u0

L
(
dSx0

(v, u0)
)
− L(0)

dSx0
(v, u0)

= L′(0) = sδ

(
d(x0, y0)

)√(sδ

(
d(x0, y0)

)
sδ(r)

)2
− 1,

which imply that ρΩ is Lipschitzian and give an upper bound on the
Lipschitz constant, thanks to monotony properties of sδ.

The last three equalities of the statement follow easily from the
continuity of ρΩ and standard properties of the exponential map.

2.2. A distance on convex bounded domains

De�nition 2.2.We set d(Ω1, Ω2) the metric de�ned on C by

d(Ω1, Ω2) = ‖ ln
(ρΩ1

ρΩ2

)
‖∞.

Proposition 2.1.
(
C, d

)
is a proper metric space (i.e. every closed

and bounded subset of X is a compact set).
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Proof. Let (Ωi)i∈N be a bounded sequence in C. Since there exist r
and R such that B(x0, r) ⊂ Ωi ⊂ B(x0, R) for every i ∈ N, the
functions ρΩi : Sx0 → [r,R] are equicontinuous (thanks to Lemma
2.1). Consequently, the sequence (ρΩi)i∈N converges uniformly on Sx0

to a function ρ∞, up to an extraction. Since r ≤ ρ∞ ≤ R, we also
have that lim

i→∞
‖ ln

(
ρΩi/ρ∞

)
‖∞ = 0. We set Ω∞ = {exp x0

(
t.v

)
/ v ∈

Sx0 , t ∈ [0, ρ∞(v)[}, which is a bounded, star-shaped domain. The
equality ρΩ∞ = ρ∞ holds because ρ∞ is continuous and exp x0 is a
di�eomorphism of a neighbourhood of B(0, R) onto a neighbourhood
of B(x0, R). It remains to prove that Ω∞ is convex.

Let y1 and y2 be any pair of points in Ω∞. There exists only
one minimizing geodesic γ from y1 to y2 in Xδ (Ω∞ is an open set
of a hemisphere in the case δ=1). Since y1 and y2 are in Ωj for all
j large enough, we easily infer that γ ⊂ Ω∞ = {exp x0

(
t.v

)
/ v ∈

Sx0 , t ∈ [0, ρ∞(v)]}. So for any r > 0 small enough, the union of the
minimizing geodesic from y1 (resp. from y2) to a point of B(y2, r)
(resp. of B(y1, r)) is contained in Ω∞. Since y1 (resp. y2) is in the
injectivity domain of y2 (resp. y1), the union of this two sets is an
open neighbourhood of γ contained in Ω∞ and the result is proved.

Corollary 2.1. For any R ≥ r > 0, the set of convex sets Ω in C
such that B(x0, r) ⊂ Ω ⊂ B(x0, R) is a compact set.

3. Continuity of the volume and the eigenvalues

As proved in [9], any weak solution in H1
0 (Ω) of ∆u = λu on a convex

(in fact Lipschitzian) domainΩ belongs to C∞(Ω)∩C0(Ω) and is equal
to 0 on ∂Ω. Moreover, the Dirichlet spectrum of any open subset Ω
of �nite volume in Xδ is discrete [17, Corollary 10.10]. In this case,
all the eigenvalues (λk(Ω)k∈N∗ satisfy the min-max principle below.

λk(Ω) = inf{m(E)/E subspace of C∞c (Ω),dimE = k}

where m(E) = sup
f∈E

∫
Ω |∇f |

2∫
Ω f

2
.

We will say that an arbitrary open set Ω has a spectral gap if λ1(Ω) <
λ2(Ω) (where λ1(Ω) and λ2(Ω) are de�ned by the min-max principle).
This implies that λ1(Ω) is an eigenvalue of the Dirichlet problem and
always occurs when the volume is �nite.

Proposition 3.1. For any k ≥ 1, the following inequalities hold∣∣∣ln(λk(Ω1)
λk(Ω2)

)∣∣∣ ≤ Λδ

[
d(Ω1, Ω2), R

]
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and ∣∣∣ln(VolΩ1

VolΩ2

)∣∣∣ ≤ Λ′δ
[
d(Ω1, Ω2), R

]
,

where

Ω1 ∪Ω2 ⊂ B(x0, R), Λδ(s, t) = ln
[
e2s

(e2ssδ(te−2s)
sδ(t)

)δ(n−1)]
,

Λ′1(s, t) = Λ′0(s, t) = ns and Λ′−1 = ln
[
ens

(e−s sinh(t)
sinh(e−st)

)n−1]
.

Proof. In the case δ = 1, we denote by y0 the antipodal point of x0

in Sn. For λ ∈]0, 1], we de�ne the map

Hλ : Xδ (resp. X1 \ {y0}) → Xδ (1)
exp x0(tv) 7→ exp x0(λtv)

Set d = d(Ω1, Ω2). Since He−d(Ω1) ⊂ Ω2 we just have to bound the
quotient λk

(
Hλ(Ω1)

)
/λk(Ω1) for λ = e−d.

For that purpose, we de�ne a linear injective map Φλ : C∞c (Ω) →
C∞c

(
Hλ(Ω)

)
by Φλ(f) = f ◦H1/λ. Easy computations involving Jacobi

�elds give

λ
(

inf
t∈]0,R]

sδ(λt)
sδ(t)

)n−1
‖f‖1 ≤ ‖Φλ(f)‖1 ≤ λ

(
sup

t∈]0,R]

sδ(λt)
sδ(t)

)n−1
‖f‖1

∣∣d(Φλ(f)
)∣∣2(x)

Φλ

(
|df |2

)
(x)

≤ max
( 1
λ2
,
s2δ(d(x0, x)/λ)
s2δ(d(x0, x))

)
The �rst inequality applied to f ≡ 1 gives the volume estimate. The
two inequalities imply

‖d
(
Φλ(f)

)
‖2
2

‖Φλ(f)‖2
2

≤ eΛδ(d,R) ‖df‖2
2

‖f‖2
2

.

Using the min-max principle, we obtain

λk(Ω2) ≤ λk

(
He−d(Ω1)

)
≤ eΛδ(d,R)λk(Ω1).
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4. Extremal convex domains

4.1. Schwarz symmetrization on noncompact domains

The aim of this paragraph is to recall some basic properties of the
Schwarz symmetrization. However we will not assume as usual, that
the domain to be symmetrized is bounded. To replace this property,
some additional assumptions on the functions to be symmetrized are
sometimes needed.

De�nition 4.1 (Schwarz symmetrization). Let f be a nonnega-
tive function de�ned on an open set Ω in the space form Xδ. Let µf be
the distribution function de�ned for s ≥ 0, by µf (s) = vol({f > s})
and let V : r 7→ V ol(B(r)) (r ≥ 0). The nonincreasing Schwarz
symmetrization of f is

f∗ = µ]
f ◦ V ◦ dx0 ,

where dx0(x) = d(x0, x) and .] refers to the right inverse function of
a nonincreasing function (i.e. u#(s) = inf{t ≥ 0/u(t) ≤ s}). If the
volume of Ω is �nite, the Schwarz nondecreasing symmetrization of f
is de�ned by

f∗ = µ]
f ◦H ◦ dx0 ,

where H : r 7→ vol (Ω)− V (r).
These symmetrized functions satisfy

µf∗ = µf∗ = µf . (2)

Remark 4.1. For more details on symmetrization, we refer to [8,12,5].

Proposition 4.1. Let Ω be an open set of �nite volume in the space
form Xδ.

If u is in L2(Ω) then u∗ is in L2(Ω∗) and

||u||L2(Ω) = ||u∗||L2(Ω∗). (3)

In addition, the following inequalities hold∫
Ω∗
f∗g

∗ ≤
∫

Ω
fg ≤

∫
Ω∗
f∗g∗ (4)

for every nonnegative measurable functions f, g on Ω.
If u is now in H1

0 (Ω) then u∗ ∈ H1
0 (Ω∗) and∫

Ω∗
|∇u∗|2 ≤

∫
Ω
|∇u|2. (5)
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Proof. The proof of the statement (3) is an immediate consequence
of (2), the inequality (4) is easy to check for simple functions and
the general case follows by density [12]. The proof of (5) also relies
on an approximation argument, a suitable dense subset is introduced
in the lemma below. The assumption on the volume is then used to
conclude, using Rellich's Theorem on the symmetrized ball and the
following inequality which is a direct consequence of (3) and (4).

||u∗ − v∗||L2(Ω∗) ≤ ||u− v||L2(Ω).

Lemma 4.1. Let f be a smooth nonnegative function in H1
0 (Ω), which

is zero on ∂Ω and in C0(Ω), where Ω is an open set of �nite volume
in Xδ. Suppose that the level sets of f are compact sets (except maybe

{f = 0}) of measure zero. Under these assumptions, µ]
f is absolutely

continous, the symmetrized function f∗ is in H1
0 (Ω∗) and satis�es (5).

Moreover, in case of equality in (5), the open set {f > 0} is a ball.

Proof. Let Reg(f) be the set of regular points of f which are included
in {x ∈ Ω; f > 0}. By assumption, Reg(f) is an open set of full
measure in {x ∈ Ω; f > 0}. As a consequence, we deduce that f∗ is
continuously di�erentiable on an open set of full measure of {f∗ > 0}
and satis�es the inequality (5) thanks to the coarea formula and the
isoperimetric inequality (we refer to [6] for more details). We conclude
that {f > 0} is a ball using a decreasing sequence of regular values
which goes to 0 and the case of equality in the isoperimetric inequality.

Remark 4.2. The set of functions which satisfy the assumptions of the
lemma above contains the smooth functions with compact support
and only nondegenerate critical points, therefore it is dense in H1

0 (Ω)
(see [6] and references herein).

Remark 4.3. In the sequel, we will use the Schwarz symmetrization on
convex domains of Hn whose the volume is not assumed to be �nite. A
priori, the nondecreasing Schwarz symmetrization cannot be de�ned
in this setting, however the inequality∫

Ω∗
f∗g

∗ ≤
∫

Ω
fg

remains true for a function f = F ◦ dx0 , where F is a nonnegative
and nondecreasing bounded function such that F is constant outside

a compact set, if we de�ne f∗ as f∗(x) =
{

(f |Ω∩B(x0,r))∗ if |x| < r
||f ||∞ otherwise

for r large enough.
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4.2. Faber-Krahn Inequality

In this section, we extend the Faber-Krahn inequality from the setting
of smooth bounded domains to the setting of convex sets of �nite
volume. The main interest of the result below is the characterization
of the case of equality.

Proposition 4.2 (Faber-Krahn Inequality). Let Ω be a convex set
in Xδ of �nite volume V0. The �rst Dirichlet eigenvalue of Ω satis�es

λ1(Ω) ≥ λ∗1(V0)

where λ∗1(V0) denotes the �rst Dirichlet eigenvalue of a geodesic ball
with volume V0. Moreover, the equality λ1(Ω) = λ∗1(V0) implies that
Ω is isometric to a geodesic ball.

Remark 4.4. The inequality can be proved using smooth approxima-
tions of Ω. However, the characterization of the case of equality with-
out assuming that Ω is bounded, is crucial in our proof of Theorem
1.1, when δ = −1. Even when the domain is bounded, some regularity
on the boundary is needed to deduce the case of equality. Indeed each
ball with closed sets of capacity zero removed, satis�es the case of
equality.

Proof. The proof of the inequality follows from Proposition 4.1 and
does not rely on the convexity of Ω. As the volume of Ω is assumed to
be �nite, the Dirichlet spectrum of Ω is discrete [17, Corollary 10.10]
and the eigenfunctions belong to C∞(Ω)∩C0(Ω) [9, Corollary 8.11 and
theorem 8.29]. To prove the case of equality, it is su�cient to prove
that the �rst eigenfunction (denoted by f1) satis�es the assumptions
of Lemma 4.1, which is a consequence of the lemma below. Indeed,
thanks to this lemma and Sard's Theorem, the set of singular values
of f1 is a closed set of measure zero. Then, thanks to the fact that
the function ∆f1 = λ1f1 is positive on Ω, we deduce that each level
set of the �rst eigenfunction is of measure zero.

Remark 4.5. Let us remark that the assumption on the �niteness of
the volume is used only to prove that the bottom of the spectrum is
an eigenvalue. It is also true for the lemma below; we will use this
fact in Paragraph 4.3.

Lemma 4.2. Under the assumptions of Proposition 4.2, the �rst Diri-
chlet eigenfunction f1 on Ω can be assumed to be positive and proper:
for all s > 0, the set f−1

1 ([s,+∞[) is a compact set.

Proof. By the maximum principle, we can suppose f1 to be positive.
To prove the second assertion, set y0 be a �xed point of Ω, R ≥ 1
and x0 ∈ Ω \B(y0, 2R). Recall (see for instance [7]) that there exists
a constant C(n) such that,

∀x0 ∈ Xδ, ∀v ∈ H1
0

(
B(x0, 1)

)
, ‖v‖2

2n
n−2

≤ C(n)‖dv‖2
2. (∗)
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Note that in dimension n = 2, this inequality has to be replaced by
‖v‖2

4 ≤ C‖dv‖2
2 in what follows. A standard Moser's iteration gives

f2
1 (x0) ≤ A(n)

(
1 + λ1

)γ(n)
∫

B(x0,1)
f2
1 (6)

(where A(n) and γ(n) are constants that depend only on the di-
mension n, see appendix B for a proof), and from which we infer
that

sup
Ω\B(y0,2R)

f2
1 ≤ A(n)

(
1 + λ1

)γ(n)
∫

Ω\B(y0,R)
f2
1 .

This gives the compactness of the sets f−1
1

(
[s,+∞[

)
for all s > 0 since∫

Ω\B(y0,R) f
2
1 → 0 when R → ∞ and f1 is continuous on the convex

set Ω and is equal to 0 on ∂Ω.

4.3. Payne-Polya-Weinberger Inequality

M.S. Ashbaugh and R.D. Benguria proved the Payne-Polya-Weinber-
ger conjecture for smooth bounded sets of Euclidean space and smooth
sets included in a hemisphere of the sphere [1,2]. We need to extend
this inequality to (possibly non smooth) convex sets in the space form
Xδ (δ ∈ {0, 1}).
Theorem 4.1 (Payne-Polya-Weinberger Inequality). Let Ω be
a convex set of �nite volume V0 in Xδ (δ ∈ {0, 1}). Under these
assumptions, the following inequality is satis�ed,

λ2

λ1
(Ω) ≤ λ∗2

λ∗1
(V0).

Moreover, the equality is achieved if and only if Ω is isometric to a
geodesic ball.

Remark 4.6. Actually, as in [1,2], the monotony properties of the ratio
λ1(B)/λ2(B) with respect to the radius of the geodesic ball B of Xδ

make this theorem a direct corollary of the following result.

Theorem 4.2. Let Ω be a convex set in Xδ such that Ω 6= Xδ. Then
the spectral gap of Ω is smaller or equal to λ2(B)−λ1(B) (where B is
a geodesic ball such that λ1(B) = λ1(Ω)). If the spectral gap is equal
to λ2(B)− λ1(B), Ω is isometric to a geodesic ball.

Let us remark that contrary to the cases δ ∈ {0, 1}, the assump-
tions in Theorem 4.2 do not imply an upper bound on the volume of
Ω in Hn.

We will prove Theorems 4.1 and 4.2 simultaneously. The scheme
of the proof is the same as in [1,2,4], so we will mainly focuse on the
extra arguments needed in our setting. The �srt step of the proof is
the following proposition.
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Proposition 4.3. Let Ω be an open subset of Xδ (included in a hemi-
sphere if δ = 1) with a spectral gap, u1 an eigenfunction of Ω for the
�rst eigenvalue and g be a positive, piecewise C1 function on [0,∞[
(and with lim inf+∞ g > 0 if Ω is not bounded). Then, there exists a
point xm ∈ Xδ such that

λ2(Ω)− λ1(Ω) ≤
∫
Ω b

(
d(xm, y)

)
u2

1(y) dy∫
Ω g

2
(
d(xm, y)

)
u2

1(y) dy

where b = g′2 + n−1
s2
δ
g2.

Note that for the proof of Theorem 4.2, we can suppose that the
spectral gap is non zero.

Proof. The min-max principle implies that

λ2(Ω)− λ1(Ω) ≤
∫
Ω |∇P |

2u2
1∫

Ω P
2u2

1

,

for every non-zero function P such that Pu1 is in H1
0 (Ω) and∫

Ω Pu
2
1 = 0.

The next step consists in choosing n suitable test functions. For
that purpose, we need the following lemma which extends a result of
[1,2,4] (the proof is postponed to appendix C).

Lemma 4.3. For any u ∈ L2(Xδ) (with support in a hemisphere
if δ = 1) and any g : R+ → R+ continuous (bounded and with
lim inf+∞ g > 0 if u has not compact support), there is x ∈ Xδ such
that ∫

Xδ

g
(
d(x, y)

)exp−1
x (y)

d(x, y)
u2(y) dy = 0TxXδ

In order to construct test functions, we apply this lemma to u =
u1.1Ω and g a nonnegative, increasing and bounded function (g will
be speci�ed later). The functions Pi = g(r)Xi, where (r,Xi) are the
geodesic coordinates at the point xm given by Lemma 4.3, satisfy∫
Ω Piu

2
1 = 0 for every i. To conclude the proof of Proposition 4.3, we

just have to sum the n inequations given by the min-max principle
applied to the Pi ,and note that

∑
i P

2
i = g2 and

∑
i |∇Pi|2 = b.

Now, we choose g a radial function such that the equality below
holds.

λ2(B)− λ1(B) =

∫
B bz

2∫
B g

2z2
,

where z is a positive �rst eigenfunction of B. It is shown in [1,2,4] that
we can choose g positive, nondecreasing and constant outside B and
such that b is radial, positive and nonincreasing. We recall that B is
such that λ1(B) = λ1(Ω). It remains to compare the spectral gaps. For
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that purpose, we �rst use properties of the Schwarz symmetrization
(Proposition 4.1). We get∫

Ω
b u2

1 ≤
∫

Ω∗
b∗u∗21 ≤

∫
Ω∗
b u∗21∫

Ω
g u2

1 ≥
∫

Ω∗
g∗u

∗2
1 ≥

∫
Ω∗
g u∗21 .

The inequality involving the nonincreasing Schwarz symmetrization
is valid without any assumption on the volume, thanks to remark
4.3. We conclude using the Chiti comparison result, which allows to
compare z with u∗1 on B. This comparison result is valid as soon as
the �rst eigenfunction u1 satis�es the assumptions of Lemma 4.1 (this
has been established in the proof of Proposition 4.2 and does not rely
on any assumption on the volume), we refer to [1, pages 21-24] for
more details. Using the Chiti comparison result, we get [1, page 607]∫

Ω∗
g u∗21 ≥

∫
B
g z2 and

∫
Ω∗
b u∗21 ≤

∫
B
b z2

and this concludes the proof of the inequality. The case of equality fol-
lows from the characterization of the equality in the Chiti comparison
result.

5. Coercivity of the functional λ1

We show that λ1 is coercive on appropriate subsets of C. We �rst need
a control of the in-radii of elements of C.

5.1. In-radius estimate in C

For any bounded domain Ω in Xδ, let Inrad (Ω) be the maximum
radius of a geodesic ball included in Ω .

Proposition 5.1. Let Ω be a bounded convex set in Xδ. Then

Inrad (Ω) ≥ π

2
√
λ1(Ω) + (n− 1)

.

This proposition has been proved by P. Li and S.T. Yau [13] for
smooth domains of nonnegative mean curvature (see appendix D for
a proof). It can be readily extended to any (non smooth) convex do-
mains: indeed, for any ε > 0 small enough, there exists a smooth
convex domain Ωε such that H1−ε(Ω) ⊂ Ωε ⊂ H1+ε(Ω), where H is
the map de�ned by (1), p. 8 (see [10, Lemma 2.3.2] for the Euclidean
case and use the Klein projective model of the hyperbolic space and
the open hemisphere, to infer this property in Hn and Sn). The con-
tinuity of λ1 on C allows to conclude.
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5.2. Coercivity of λ1

Subsequently, we denote by CV0 the set of convex bounded domains
Ω of Xδ with VolΩ = V0 and B(x0, Inrad (Ω)) ⊂ Ω (note that CV0

contains, up to isometry, all convex bounded domains of Xδ with
volume V0).

Combining Corollary 2.1 and Proposition 5.1, we get

Corollary 5.1. For any M > 0, the set of elements Ω of C (resp.
CV0) with Ω ⊂ B(x0,M) and λ1(Ω) ≤M is compact.

5.2.1. case δ=1. Corollary 5.1 shows the compactness of the set
{Ω ∈ CV0/ λ1(Ω) ≤ M}. This implies that λ1 is coercive. Actually,
CV0 itself is compact (see section 6).

5.2.2. Case δ=0. In this case, {Ω ∈ CV0/ λ1(Ω) ≤ M} is also a
compact set and so λ1 is coercive. Indeed by Proposition 5.1, a convex
domain Ω in this set contains the ball B(x0,

π
2
√

M+n−1
). Set y ∈ Ω

such that d(x0, y) = diamΩ/4. Since Ω is convex, it contains the
convex hull of B(x0,

π
2
√

M
) ∪ {y} whose volume must be bounded

from above by V0. We deduce that diamΩ is bounded from above by
a function of M and V0. We conclude by Corollary 5.1.

5.2.3. Case δ=−1. We cannot argue as easily as in the previous case
because in Hn, the volume of the convex hull of B(x0,

π
2
√

M+n−1
)∪{y}

does not tend to ∞ with d(x0, y). We will prove simultaneously the
coercivity of λ1 and the property

inf
C′
λ1(Ω) > λ∗1(V0), (7)

where C′ = {Ω unbounded convex sets; vol(Ω) = V0}.
These two facts prove Theorem 1.1. First, we need to establish

some lemmata.

Lemma 5.1. Let Ω be a domain of a complete Riemannian manifold
(Mn, g). Then for any R ≥ 1, α, γ ∈]0, 1[ and y0 ∈M , we have

min
[
λ1

(
Ω ∩B(y0, R)

)
, λ1

(
Ω \B(y0, γR)

)]
≤ 1

(1−R−α)2
[
λ1(Ω) +

8
(1− γ)2R2(1−α)

]
where λ1 stands for the bottom of the spectrum, Ω can be of in�nite
volume and we have set λ1(∅) = ∞.
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Proof. The proof relies on the variational characterization of the �rst
eigenvalue.

We set N = E(Rα) + 1, Br = B(y0, r), Ar,r′ = Ω ∩ (Br \ Br′)
and rk = γR + (1− γ)R k

N for any integer 0 ≤ k ≤ N . Then, for any
u ∈ H1

0 (Ω), we have

∫
Ω
u2 ≥

N−1∑
k=0

∫
Ark+1, rk

u2 ≥ N

∫
Ark0+1, rk0

u2

for at least one integer 0 ≤ k0 ≤ N − 1. Let φ and ψ be the two
functions de�ned on R+ by:

�φ is non-decreasing, φ = 0 on [0, rk0
+rk0+1

2 ], φ = 1 on [rk0+1,∞[
and ‖∇φ‖∞ ≤ 2N

(1−γ)R ,

�ψ is non-increasing, ψ = 1 on [0, rk0 ], ψ = 0 on [ rk0
+rk0+1

2 ,∞[
and ‖∇ψ‖∞ ≤ 2N

(1−γ)R ,

For g(x) = ψ
(
d(y0, x)

)
u(x) and h(x) = φ

(
d(y0, x)

)
u(x), we have

∫
Ω∩B rk0

+rk0+1
2

g2 +
∫

Ω\B rk0
+rk0+1

2

h2 =
∫

Ω
(g + h)2

≥
∫

Ω
u2 −

∫
Ark0+1, rk0

u2 ≥ N − 1
N

∫
Ω
u2

Since |dg + dh|2 = |(ψ + φ)du+ ud(ψ + φ)|2, we obtain

∫
Ω∩B rk0

+rk0+1
2

|dg|2 +
∫

Ω\B rk0
+rk0+1

2

|dh|2 =
∫

Ω
|dg + dh|2

≤ (1 +R−α)
∫

Ω
(φ+ ψ)2|du|2 + (1 +Rα)

∫
Ω
u2|dφ+ dψ|2

≤ (1 +R−α)
∫

Ω
|du|2 + (1 +Rα)

∫
Ark0+1, rk0

u2 4N2

(1− γ)2R2

≤ (1 +R−α)
∫

Ω
|du|2 + (1 +Rα)

∫
Ω
u2 4N

(1− γ)2R2
.
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We infer

min
[
λ1

(
Ω ∩B(y0, R)

)
, λ1(Ω \B(y0, γR)

)]
≤ min

(∫
Ω∩B rk0

+rk0+1
2

|dg|2∫
Ω∩B rk0

+rk0+1
2

g2
,

∫
Ω\B rk0

+rk0+1
2

|dh|2∫
Ω\B rk0

+rk0+1
2

h2

)

≤

∫
Ω∩B rk0

+rk0+1
2

|dg|2 +
∫
Ω\B rk0

+rk0+1
2

|dh|2∫
Ω∩B rk0

+rk0+1
2

g2 +
∫
Ω\B rk0

+rk0+1
2

h2

≤ 1
(1−R−α)2

[∫
Ω |du|

2∫
Ω u

2
+

8
(1− γ)2R2(1−α)

]
This lemma implies the following result.

Lemma 5.2. For any V0 > 0 there exist C(V0, n) > λ∗1(V0) and
R(V0, n) > 0 such that, for any bounded convex set Ω which satis-
�es vol(Ω) ≤ V0 and λ1(Ω) ∈ [λ∗1(V0), C(V0, n)], we have

λ1(Ω) ≤ λ1

(
Ω ∩B(x0, R)

)
≤ 1

(1−R−α)2
[
λ1(Ω) +

32
R2(1−α)

]
for any α ∈]0, 1[, R ≥ R(V0, n, α) and x0 such that B

(
x0, Inrad(Ω)

)
⊂

Ω.

Proof. We set r(V0, n) = π√
2λ∗1(V0)+n−1

and

C(V0, n) = min
[
2λ∗1(V0),

λ∗1(V0) + λ∗1
(
V0 −VolB(x0, r(V0, n)/2)

)
2

]
.

Then, by Proposition 5.1, we have B(x0, r(V0, n)/2) ⊂ Ω and so
Vol

(
Ω\B(x0, R/2)

)
≤ V0−VolB(x0, r(V0, n)/2) for anyR ≥ r(V0, n).

By the Faber-Krahn inequality, this implies that λ1

(
Ω \B(x0, R/2)

)
is larger than λ∗1

(
V0 − VolB(x0, r(V0, n)/2)

)
. Now, we can choose

R(V0, n) large enough in order to have 1
(1−R−α)2

[
C(V0, n)+ 32

R2(1−α)

]
≤

λ1

(
Ω \B(x0, R/2)

)
for any R ≥ R(V0, n). Lemma 5.1 then applies.

Now, we prove (simultaneously) the coercivity of λ1 and (7). By
de�nition of the bottom of the spectrum, it is su�cient to prove
that every sequence of bounded convex domains (Ωi)i∈N such that
vol(Ωi) ≤ V0 and limi λ1(Ωi) = λ∗1(V0), converges, up to isometries
and extraction, to B(x0, r0) (vol(B(x0, r0)) = V0).

Let (Ωi)i∈N be such a sequence. Up to isometries, we can suppose
that the �xed point x0 ∈ Hn satis�es the conditionB

(
x0, Inrad(Ωi)

)
⊂
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Ωi for every i. By the lemma above and Corollary 5.1, the sequence(
Ωi ∩BR

)
i∈N is precompact in C for all R ≥ R(V0, n). Up to a diago-

nal extraction, we can now suppose that for any n ∈ N the sequence(
Ωi ∩ Bn

)
i∈N converges to an element Un of C. Using the continuity

of λ1 and the volume on C, we get

λ∗1(V0) ≤ λ1(Un) ≤ 1
(1− n−1/2)2

[
λ∗1(V0) +

32
n

]
and Vol (Un) ≤ V0

So λ1(Un) tends to λ∗1(V0) and by the Faber-Krahn inequality, we must
have VolUn → V0. Moreover, (Un)n∈N is a nondecreasing sequence of
convex sets for the inclusion. As a consequence, Ω =

⋃
n Un is a

convex domain of volume V0 and �rst eigenvalue λ1(Ω) = λ∗1(V0). By
Proposition 4.2, Ω = B(x0, r0) and we infer that the sequence (Ωi)i∈N
converges to B(x0, r0) in C.

6. Coercivity of the λ1/λ2 functional

6.1. case δ = 0

We show that, on CV0 , λ1/λ2 tends to 1 when λ1 tends to ∞. By
section 5.2.2, infCV0

λ1/λ2 < 1 and the fact that λ1/λ2 is invariant
under homothetie on the domains, this implies Theorem 1.4 in Rn.

By a classical result due to Jones, for any Ω ∈ CV0 there exists
an ellipsoid E such that E ⊂ Ω ⊂

√
nE . We easily infer that there

is a n-rectangle R with edges of lengths L1 ≤ · · · ≤ Ln, such that
R ⊂ Ω ⊂ nR. This gives

λ1(Ω) ≤ λ1(R) ≤ nπ2

L2
1

and V0 ≤ Ln−1
n nnL1, (8)

and so Ln ≥
(

V0
√

λ1

πnn+1
2

) 1
n−1

. Following [11], we can translate and ro-

tate Ω so that R be centred in (0, . . . , 0) and the edge of R of length
Ln be parallel to the last coordinate axis. We denote Ω(y) = {x ∈
Rn−1/ (x, y) ∈ Ω} and λ(y) = λ1

(
Ω(y)

)
. Then, if f is an eigenfunc-

tion of Ω associated to the �rst eigenvalue, we have∫
Ω
f2 =

∫
Ω

|∇f |2

λ1(Ω)
≥

∫
R

∫
Ω(y)

|∇xf(x, y)|2

λ1(Ω)
dxdy

≥
∫

R

λ1

(
Ω(y)

)
λ1(Ω)

∫
Ω(y)

|f(x, y)|2dxdy
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Thus, there is y such that λ1(Ω) ≥ λ1

(
Ω(y)

)
. By convexity of Ω we

deduce that
(
1− (Ln

2 )−
2
3

)
Ω(y)× [y − (Ln

2 )
1
3 , y + (Ln

2 )
1
3 ] is contained

in Ω and consequently,

λ1(Ω) ≤ λ2(Ω) ≤ λ2

((
1− (

Ln

2
)−

2
3
)
Ω(y)× [y − (

Ln

2
)

1
3 , y + (

Ln

2
)

1
3 ]

)
≤

λ1

(
Ω(y)

)(
1− (Ln

2 )−
2
3

)2
+

2π2

(Ln
2 )

2
3

≤ λ1(Ω)(
1− (Ln

2 )−
2
3

)2
+

2π2

(Ln
2 )

2
3

. (9)

Since we have shown above that Ln → ∞ when λ1 → ∞, we
obtain that λ1/λ2 tend to 1 when λ1 tends to ∞.

Remark 6.1. The same method could be used to show that for any in-
tegers p ≤ q, λp/λq tends to 1 when λ1 tends to∞ on CV0 . We conlude
that for any p ≤ q there exists a convex domain (to be determined)
which minimizes the quotient λp/λq.

Remark 6.2. The inequations (9) imply that for any convex domain
Ω of Rn, x0 ∈ Ω and R > 0 such that B(x0, R) does not contain Ω,
we have

λ1(Ω ∩B(x0, R)) ≤ λ2(Ω ∩B(x0, R)) ≤ λ1(Ω ∩B(x0, R))(
1− C(n)R−

2
3

)2
+
C(n)

R
2
3

and so λ2(Ω∩B(x0, R)) tends to λ1(Ω) when R tends to∞. We con-
clude that a convex Euclidean domain with a spectral gap is bounded
(hence has a discrete spectrum) and that its diameter is bounded from

above by C(n)
(

1+λ1
λ2−λ1

)3/2
. This implies readily the coercivity of λ1/λ2

on the set of convex Euclidean domains of �xed λ1, from which we
infer Theorem 1.5 in Rn.

6.2. Case δ = 1

The coercivity λ1/λ2 on the set of convex domains with λ1 = λ follows
from Lemma 5.1. On CV0 , this follows from the compactness of CV0

which, by Corollary 5.1, is a consequence of the inequality Inrad (Ω) ≥
C(n)Vol (Ω). This inequality holds true for any convex domain of Sn

as explained below.
First, using the inequality (8), based on the Jones ellipsoid, we

get easily that for any convex domain contained in a geodesic ball
of radius R in Rn, we have Vol (Ω) ≤ nnRn−1Inrad (Ω). Now, since
Sn can be covered by 2(n+ 1) balls of radius Rn = arccos( 1√

n+1
) we

infer that there is a point x0 in Sn such that Vol
(
Ω ∩ B(x0, Rn)

)
≥

1
2(n+1)Vol (Ω). Using the canonical embedding of Sn in Rn+1, we can
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project B(x0, Rn) onto the tangent space Tx0Sn (using the origin
of Euclidean space). This map P0 is a quasi-isometry from the ball
B(x0, Rn) in Sn to the geodesic ball B(x0,

√
n) in Euclidean space,

which preserves the convexity. Then, we have

InradSn (Ω) ≥ InradSn

(
Ω ∩B(x0, Rn)

)
≥ C1(n)InradTx0Sn

(
P0

(
Ω ∩B(x0, Rn)

))
≥ C2(n)Vol Tx0Sn

(
P0

(
Ω ∩B(x0, Rn)

))
≥ C(n)Vol Sn(Ω)

6.3. Case δ = −1.

In this section, we prove simultaneously the coercivity of the func-
tional λ1/λ2 on bounded convex domains whose �rst eigenvalue is
�xed and the property

sup
C′
λ2(Ω) < λ∗2(λ), (10)

where C′ = {Ω unbounded convex sets; λ1(Ω) = λ}.
These two properties imply Theorem 1.5.

We need the following result whose proof follows easily from the
min-max principle (see [16, theorem XIII.1]).

Lemma 6.1. Let Ω be a convex domain in Hn such that the bottom
of the spectrum is an eigenvalue. Then for any �xed point x0 ∈ Hn,
we have

lim
R→∞

λi(Ω ∩B(x0, R)) = λi(Ω), for i = 1, 2.

Thanks to this lemma, the coercivity property and the inequality (10)
reduce to the fact below.
Every sequence (Ωi)i∈N ∈ C such that limi λ1(Ωi) = λ and limi λ2(Ωi)
= λ∗2(λ), converges (up to extraction) to a ball such that λ1(B) = λ.

First, we show that a lower bound on the spectral gap implies some
estimates on the �rst eigenfunction.

Lemma 6.2. Let Ω be a bounded domain of Hn. If u ∈ H1
0 (Ω) satis-

�es 4u = λ1(Ω)u then there is a point xm ∈ Hn such that(
λ2(Ω)− λ1(Ω)− n−1

sinh2(R)

) ∫
Ω\B(xm,R)

u2 ≤ n

R2

∫
Ω∩B(xm,R)

u2

for any R > 0. This implies, for any R ≥ 2
√

n−1
λ2(Ω)−λ1(Ω) ,

λ1(Ω) ≤ λ1

(
Ω ∩B(xm, R)

)
≤

(1 + 1
R2 )

1− 4n
(λ2(Ω)−λ1(Ω))R2+4

)

(
λ1(Ω) +

4n
(λ2(Ω)− λ1(Ω))R2 + 4

)
.
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Proof. Proposition 4.3 applied to g(s) = s/R on [0, R] and g(s) = 1
on [R,∞[ gives a point xm ∈ Hn such that

λ2(Ω)−λ1(Ω) ≤
n

R2

∫
Ω∩B(xm,R) u

2(x)dx+ n−1
sinh2 R

∫
Ω\B(xm,R) u

2(x)dx∫
Ω\B(xm,R) u

2(x)dx

which gives the �rst estimate.
For the second estimate, we set ψ the non-increasing Lipschitzian

function de�ned on R+ by ψ = 1 on [0, R/2], ψ = 0 on [R,∞[ and
‖∇ψ‖∞ = 2

R . Then, we have

|d(ψu)|2 = ψ2|du|2 + 2uψ(dψ, du) + u2|dψ|2

≤ (1 +
1
R2

)ψ2|du|2 + (1 +R2)|dψ|2u2

So, we infer

λ1

(
Ω ∩B(xm, R)

)
≤

∫
Ω∩B(xm,R) |d(ψu)|

2∫
Ω∩B(xm,R)(ψu)

2

≤ (1 +
1
R2

)

∫
Ω ψ

2|du|2∫
Ω∩B(xm,R/2) u

2
+ (1 +R2)

∫
Ω |dψ|

2u2∫
Ω∩B(xm,R/2) u

2

≤ (1+
1
R2

)

∫
Ω |du|

2∫
Ω u

2

(
1+

∫
Ω\B(xm,R/2) u

2∫
Ω∩B(xm,R/2) u

2

)
+4(1+

1
R2

)

∫
Ω\B(xm,R/2) u

2∫
Ω∩B(xm,R/2) u

2
.

By the �rst estimate, we have∫
Ω\B(xm,R/2) u

2∫
Ω∩B(xm,R/2) u

2
≤ 4n

(λ2(Ω)− λ1(Ω))R2 − 4(n− 1)

from which we infer

λ1

(
Ω ∩B(xm, R)

)
≤

(1 + 1
R2 )

(
(λ2(Ω)− λ1(Ω))R2 + 4

)
(λ2(Ω)− λ1(Ω))R2 − 4(n− 1)

(
λ1(Ω)+

4n
(λ2(Ω)− λ1(Ω))R2 + 4

)
Let (Ωi)i∈N ∈ C such that limi λ1(Ωi) = λ and limi λ2(Ωi) =

λ∗2(λ). We can assume that λ2(Ωi)−λ1(Ωi) >
λ∗2(λ)−λ

2 > 0. Note that

by the preceeding lemma, we infer that for any R ≥ 4
√

n−1
λ∗2(λ)−λ we

have λ1

(
Ωi ∩B(xi

m, R)
)
≤ C(λ, n) (where C(λ, n) is a universal fun-

tion and xi
m is the center of mass of Ωi). This implies, by Proposition

5.1, that we can suppose (up to isometry) xi
m ∈ B

(
x0, 4

√
n−1

λ∗2(λ)−λ

)
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and B
(
x0, r(λ, n)

)
⊂ Ωi for all i. Then, the sequence

(
Ωi ∩B(x0, R)

)
is included in a compact set of C (see Corollary 5.1). By diago-
nal extraction, we can suppose that for any k ∈ N the sequence(
Ωi ∩ B(x0, k)

)
i∈N converges to an element Uk of C. By continuity

of λ1 on C, we have

λ ≤ λ1(Uk) = lim
i
λ1

(
Ωi ∩B(x0, k)

)
≤ lim

i
λ1

(
Ωi ∩B(xi

m, k − 4

√
n− 1

λ∗2(λ)− λ
)
)
≤ f(k, λ, n)

where f(k, λ, n) is a universal function given by the preceding lemma
and that converge to λ when k tends to ∞. So λ1(Uk) tends to λ. As
in the subsection 5.2.3, we set Ω = ∪kUk. Then Ω is a convex domain
with λ1(Ω) = limk λ1(Uk) = λ (since Uk = Ω∩B(x0, k)) and

λ2(Ω) = lim
k
λ2(Uk) = lim

k
lim

i
λ2(Ωi∩B(x0, k)) ≥ lim

i
λ2(Ωi) = λ∗2(λ).

Then, we conclude by Theorem 4.2.

Appendices

A. Trigonometric computations

In this appendix, we perform the computations of l′(0) and L′(0) used
in the proof of Lemma 2.1. We denote by β the half angle at y0 of
the geodesic double cone tangent to the ball B(x0, r). By the law of

sines, we have sinβ = sδ(r)

sδ

(
d(x0,y0)

) and
sδ

(
l(t)

)
sin β =

sδ

(
l1(t)

)
sin t , where we

have set l1
(
d(u0, v)

)
= d(x0, Z(v)). By letting t tend to 0, we get

l′1(0) =
s2
δ

(
d(x0,y0)

)
sδ(r) . On the other hand, the cosine law gives us the

equation cδ(l) = cδ(l1)cδ
(
d(x0, y0)

)
+ δsδ(l1)sδ

(
d(x0, y0)

)
cosβ (resp.

l2 = l21 +
(
d(x0, y0)

)2 − 2l1d(x0, y0) cosβ if δ = 0), whose derivative
at t = 0 gives the relation l′(0) = −l′1(0) cosβ. We easily deduce

the relation l′(0) = −sδ

(
d(x0, y0)

)√(
sδ

(
d(x0,y0)

)
sδ(r)

)2
− 1. Note that for

L′(0) we just have to replace β by π − β in what preceed.

B. Moser's iteration

In this section, we prove the inequality (6) used in the proof of lemma
4.2.
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Set 0 ≤ η ≤ 1 a C1 function such that η ≡ 1 on B(x0, αr) (for
α ∈]0, 1[ and 1 ≥ r > 0), η ≡ 0 on Xδ\B(x0, r) and |dη| ≤ 2/(1−α)r.

We �x m > 0 and β ≥ 0 and set h = inf(m, f1), u = f1h
β
2 and

φ = η2hβf1 ∈ H1
0 (Ω). Then we have

λ1

∫
Ω
η2u2 = λ1

∫
Ω
φf1 ≥

∫
Ω

(df1, dφ)

≥ β

∫
Ω
η2hβ|dh|2 +

1
2

∫
Ω
η2hβ |df1|2 − 2

∫
Ω
|dη|2hβf2

1 ,

where we used 2ηf1(df1, dη) ≥ −1
2η

2|df1|2−2f2
1 |dh|2. This inequality,

combined with the inequalities |d(ηu)|2 ≤ 2u2|dη|2 + 2η2|du|2 and
|du|2 ≤ (1 + β)hβ(2β|dh|2 + |df1|2), gives∫

Ω
|d(uη)|2 ≤ (10 + 4λ1)(1 + β)

∫
Ω
u2(η2 + |dη|2).

Hence the Sobolev inequality (∗) applied to uη implies(∫
B(x0,αr)

h
(2+β)n

n−2

)n−2
n ≤ 5C(n)(10 + 4λ1)(1 + β)

(1− α)2r2

∫
B(x0,r)

f
(2+β)
1

Then, we let m tend to ∞ and set rk = 1

2
√

k
, αk = 2

√
k−

√
k+1 and

βk = 2
(

n
n−2

)k − 2. By multiplying the (2 + βk)-th square root of the
inequalities obtained for 1 ≤ k ≤ K − 1 we infer(∫

B(x0,rK)
h2( n

n−2
)K

) 1

2(n/n−2)K ≤ A(n,K)(1 + λ1)γ(K)

∫
B(x0,r)

f1.

By de�nition of rK , we have
[∫

B(x0,rK) f
2( n

n−2
)K

] 1

2(n/n−2)K tends to

f(x0) when K tends to +∞, meanwhile A(n,K) and γ(K) converge,
which gives (6).

C. Proof of lemma 4.3

This lemma is essentially proven in [1,2,4] for u with compact sup-
port (which includes the case δ = 1) but we need to apply it to an
eigenfunction u of a convex (unbounded) domain Ω ,and so we have
to extend it in the case δ = 0,−1.

In the sequel of the proof, X denotes Rn or Hn. We �x x0 ∈ X
and de�ne

F : Tx0X → Tx0X

v 7→ d(exp−1
x0

)
(∫

X
g
(
d(v̄, y)

)exp−1
v̄ (y)

d(v̄, y)
u2(y) dy

)
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where we have set v̄ = expx0
(v). We set m = lim inf+∞ g. Let R1 > 0

such that
∫
X\B(x0,R1) u

2 ≤ min
(

m
32‖g‖∞ ,

1
2

)
. Then for any v ∈ Tx0X

with |v| ≥ R1 we easily have∣∣∣F (v)− d(exp−1
x0

)
(∫

B(x0,R1)
g
(
d(v̄, y)

)exp−1
v̄ (y)

d(v̄, y)
u2(y) dy

)∣∣∣ ≤ m

32
.

Note that d(exp−1
x0

) ◦ exp−1
v̄ (x0) = −v and so we infer that for any

v ∈ Tx0X with |v| ≥ R1 we have∣∣∣F (v) + λ(v)
v

|v|

∣∣∣ ≤ ‖g‖∞
∫

B(x0,R1)

∣∣exp−1
v̄ (x0)

d(v̄, x0)
− exp−1

v̄ (y)
d(v̄, y)

∣∣ dy +
m

32

where we have set λ(v) =
∫
B(x0,R1) g

(
d(v̄, y)

)
u2(y) dy and used the

fact that d(exp−1
x0

) is a contraction. Then we have λ(v) ≥ m
4 > 0

for any v with |v| ≥ R2 ≥ R1. Note also that the integrand above
measures the di�erence between the unit tangent vectors at v̄ to the
minimizing geodesic from v̄ to x0 and y ∈ B(x0, R1). By the law of
cosines, we can easily show that this quantity uniformly tends to zero
on B(x0, R1) when |v| tends to +∞. Hence, there exists R3 > 0 such
that for any v ∈ Tx0X which satis�es |v| ≥ R3, we have∣∣∣F (v) + λ(v)

v

|v|

∣∣∣ ≤ m

16
and λ(v) ≥ m

4

We have to show that F is zero somewhere. If not, the following map
(with R > R3) is well-de�ned.

G : B(0, 1) ⊂ Tx0X → S(0, 1) ⊂ Tx0X

v 7→ F (−Rv)
|F (−Rv)|

.

Moreover, the map G is continuous and satis�es

|G(v)−v| ≤ 2
∣∣F (−Rv)+λ(−Rv)

∣∣
|F (−Rv)| ≤ 4/3 for any v ∈ S(0, 1). So, we could

then easily construct a retraction from B(0, 2) to S(0, 2).

D. A result of Li and Yau

Lemma D.1 (Li-Yau). Let Ω be a bounded and smooth domain with
positive mean curvature (for the exterior normal). If f an eigenfunc-
tion associated to the �rst eigenvalue of the Dirichlet problem on Ω,
then we have,

|∇f |2 ≤ λ1(‖f‖2
∞ − f2)

(resp.
|∇f |2 ≤ (λ1 + n− 1)(‖f‖2

∞ − f2)
if δ = −1).
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Proof. Let F = |∇f |2
β−f2 where β = (1 + ε)‖f‖2

∞. Then we have

dF (v) =
2|∇f |2

β − f2

(Hess f( ∇f
|∇f | , v)

|∇f |
+
fdf(v)
β − f2

)
.

If x0 is a point of ∂Ω then ν = ∇f(x0)/|∇f(x0)| is well-de�ned (by
the strong maximum principle applied to f) and is the interior normal
to Ω at x0. We then have

dF (ν) =
2|∇f |2

β − f2

(Hess f(ν, ν)
|∇f |

+
f |∇f |
β − f2

)
≥ 0,

since Hess f(ν,ν)
|∇f | = − 4 f

|∇f |+µ(x0), where µ(x0) is the mean curvature of
∂Ω at x0. We infer by the strong maximum principle that at a point
x0 where F reaches its maximum on Ω̄ we must have

dF (x0) = 0 and 4F (x0) ≥ 0

The �rst equation and our computation of dF imply that ∇f/|∇f | is
an eigenvector of Hess f(x0) with respect to g(x0), associated to the

eigenvalue −f |∇f |2
β−f2 (we have ∇f(x0) 6= 0 since F 6= 0). So we have

|Hess f(x0)|2 ≥ f2F 2.
From the Bochner formula 1

24|∇f |2 = λ1|∇f |2 − |Hess f |2 −
Ric (∇f,∇f) (where Ric denote the Ricci curvature tensor of Xδ)
we infer that, at x0, we have

|∇f |2F − f4 fF +
(β − f2)

2
4F =

1
2
4

(
(β − f2)F

)
≤ λ1|∇f |2 − f2F 2 − δ(n− 1)|∇f |2.

Since 4F (x0) ≥ 0 and |∇f |2 = F (β − f2) we readily obtain the
estimate F (x0) ≤ λ1 (resp. F (x0) ≤ λ1 + n− 1 if δ = −1). Then, we
just have to let ε tend to 0.

To get Proposition 5.1 in the case of a smooth convex domain, let
f denote a positive eigenfunction associated to λ1 and z0 ∈ Ω a point
where f(z0) = ‖f‖∞. Set γ a normal geodesic from z0 to a point
y ∈ ∂Ω. By lemma D, we obtain(

arcsin(f ◦ γ/‖f‖∞)
)′ ≥ −

√
λ1 + δ(n− 1)

and so that f ◦ γ(t) ≥ ‖f‖∞ cos
(√

λ1 + δ(n− 1)t
)
. Since f(y) = 0,

the geodesic ball B(z0, π

2
√

λ1+δ(n−1)
) is included in Ω.
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