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Abstract

We study amenable actions on graphs having infinitely many ends, giving
a generalized answer to Ceccherini’s question on groups with infinitely many
ends.

1 Statement of the result

An action of a group G on a set X is amenable if there exists a G-invariant mean on
X, i.e. a map µ : 2X = P(X)→ [0, 1] such that µ(X) = 1, µ(A∪B) = µ(A)+µ(B),
for every disjoint subsets A, B ⊆ X, and µ(gA) = µ(A), ∀g ∈ G, ∀A ⊆ X.

An isometric action of a group G on a metric space (X, d) is proper if for some
x0 ∈ X, and every R > 0, the set {g ∈ G | d(x0, gx0) ≤ R} is finite.

The aim of this note is to give a short proof of the following result:

Theorem 1. Let X = (V,E) be a locally finite graph with infinitely many ends.
Let X = V ∪ ∂X be the end compactification. Let G be a group of automorphisms
of X. Assume that the action of G on V is amenable and there exists x0 ∈ V such
that the orbit Gx0 is dense in X. Then there is a unique G-fixed end in ∂X, and
the action of G (as a discrete group) on V is not proper.

A deep result of Stallings [4] says that G has infinitely many ends if and only if
G is an amalgamated free product Γ1 ∗AΓ2 or HNN -extension HNN(Γ, A, ϕ) with
A finite (with min{[Γ1 : A], [Γ2 : A]} ≥ 2, not both 2, in the amalgamated product
case; and min{[Γ : A], [Γ : ϕ(A)]} ≥ 2, not both 2, in the HNN case). In particular,
if G has infinitely many ends, it contains non-abelian free subgroups, hence is non
amenable. Tullio Ceccherini-Silberstein asked whether non-amenability of G could
be proved without appealing to Stallings’ theorem. Since a finitely generated group
G with infinitely many ends acts properly and transitively on its Cayley graph, our
result shows that G is not amenable.

Remarks

1. The density assumption of Theorem 1 is satisfied when G has finitely many
orbits in V . This assumption is necessary; for example the action of Z on
F2 = 〈a, b〉 defined by n · g = ang, ∀n ∈ Z, ∀g ∈ F2 is amenable and proper.

1



2. Except for the non properness statement, our result is contained in a result
of Woess (see Theorem 1 in [6]): if X = (V,E) is a locally finite graph and G
admits an amenable action on V , then either G fixes a nonempty finite subset
of V , or G fixes an end of X, or G fixes a unique pair of ends which are the
fixed points of some hyperbolic element in G.

3. There are results on strong isoperimetric inequalities for graphs with infinitely
many ends satisfying extra conditions (see Theorem 10.10 in [8]): these give
alternative answers to Ceccherini’s question.

4. A stronger question is to prove without appealing to Stallings’ result that
a finitely generated group with infinitely many ends, contains a free group
on two generators. Such constructions can be found in the work of Woess
(Theorem 3 in [7]), Karlsson and Noskov (Proposition 3 in [3]), and Karlsson
(Theorem 1 in [2]).

5. For a finitely generated group with infinitely many ends, Abels shows, using
Stallings’ theorem, that for G a finitely generated group with infinitely many
ends, the compact set of ends is actually a minimal G-space (Theorem 1 in
[1]). This is false for compactly generated, non discrete groups. Abels indeed
gives the example of the group of affine mappings (x 7→ ax+ b) over Qp. This
group G is HNN(K,K,ϕ), where K is the group of affine mappings over Zp
and ϕ : K → K is given by (x 7→ ax + b) 7→ (x 7→ ax + pb). So G has
infinitely many ends, but has a unique fixed point on its space of ends1, which
is therefore not G-minimal.

Acknowledgments We thank T. Ceccherini-Silberstein for suggesting the ques-
tion, F. Krieger for pointing out a mistake in the previous version, and A. Karlsson
for recommending useful references.

2 Proof of the theorem

Let X be a countable, discrete set. A compactification of X is a compact space
X = X ∪ ∂X in which X is an open dense subset. If G is a group of permutations
of X, we say that X is a G-compactification if the action of G on X extends
to an action of G on X by homeomorphisms. When X is a locally finite graph
(identified with its set of vertices), we will take for ∂X the set of ends of X. In
this case, we say that X = X ∪ ∂X is the end-compactification of X (it is an
Aut(X)-compactification).

Lemma 2. Assume that G admits an amenable action without finite orbit, on a
countable set X. Let µ be G-invariant mean on X. Let X be a G-compactification
of X. Then for every subset A of X with µ(A) = 1, the set

(⋂
g∈G gA

)
∩∂X is not

empty.

Proof. By compactness of ∂X, it is enough to show that the family
(
gA ∩ ∂X

)
g∈G

has the finite intersection property. For g1, . . . , gn ∈ G, we have µ
(⋂n

i=1 giA
)

= 1,
while µ(F ) = 0 for every finite subset F ⊂ X sinceG has no finite orbit. So

⋂n
i=1 giA

is infinite. Therefore
(⋂n

i=1 giA
)
∩ ∂X 6= ∅. A fortiori

⋂n
i=1

(
giA ∩ ∂X

)
6= ∅.

1This can be seen directly; it also follows from our result, as G is amenable as a discrete group.
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The proof of Theorem 1 will follow from the four claims below:

Claim 1. Let K be a finite, connected subgraph of X. Let A be an unbounded
connected component of X \K. Then gK ⊂ A for infinitely many g’s in G.

By the assumption, any G-orbit in X has infinite intersection with A (indeed,
the assumption implies that Gx is dense in X for every vertex x in V since G acts
by isometries on X; therefore the intersection of Gx and A is infinite since A is a
neighborhood of all ends contained in it). So for x ∈ K, one finds a sequence (gn)n≥1

in G such that gnx’s are pairwise distinct vertices in A. Since d(gnx, x) → ∞ for
n → ∞, we have gnK ∩K = ∅ for n sufficiently large. Then gnK is a connected
subset of X \K, and gnK ∩ A 6= ∅. By maximality of A among connected subsets
of X \K, this implies gnK ⊂ A.

If K is a finite connected subgraph of X, we will say that K is good if every
connected component of X \K is infinite. Let K be an arbitrary finite connected
subgraph of X. Denote by K̂ the union of K and the finite connected components
of X \K; then K̂ is a good subgraph of X.

Claim 2. Let K be a good subgraph of X, such that X \ K has at least 3
connected components. Let µ be G-invariant mean on V . Then there exists a
unique connected component CK of X \K such that µ(CK) = 1.

Indeed, let A1, . . . , An be the connected components of X \ K with n ≥ 3.
Without loss of generality, we may assume that µ(A1) ≤ µ(Ai), ∀i ∈ {1, . . . , n}.
By claim 1, we can find h ∈ A1 such that hK ∩ K = ∅ and hK ⊂ A1. Since
hA1, . . . , hAn are the connected components of X \ hK, and K is connected, there
exists a unique k ∈ {1, . . . , n} such that K ⊂ hAk, so that hAi ⊂ A1, ∀i 6= k. Hence⊔
i 6=k hAi ⊂ A1 (see figure 1).

hAk

An

K

A1

A2

hAi

hK

hAj

... ...

Figure 1.
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Then by minimality of µ(A1),

(n− 1)µ(A1) ≤
∑
i6=k

µ(Ai) =
∑
i6=k

µ(hAi) = µ
( ⊔
i 6=k

hAi
)
≤ µ(A1).

Hence µ(A1) = 0 since n ≥ 3, and µ(Ai) = 0, ∀i 6= k. Since µ is zero on finite
subsets of X, we have 1 = µ(X) = µ

(
K ∪

⊔n
j=1Aj

)
= µ(Ak). We set Ak = CK .

Let x0 be a base-vertex in V . Denote by BN the ball of radius N centered at x0.
Let N0 be such that, for N ≥ N0, the complement X \ B̂N has at least 3 connected
components. Set

DN =
( ⋂
g∈G

gC
B̂N

)
∩ ∂X.

By Lemma 2, DN 6= ∅, and (DN )N≥N0 form a decreasing family of closed non-empty
subsets of ∂X. So by compactness, E =

⋂
N≥N0

DN is non-empty, and obviously
G-invariant.

Claim 3. The set E is reduced to one point, and G has no other fixed point in ∂X.

Indeed, if w ∈ E and w′ ∈ ∂X with w 6= w′, then for N large enough w and w′

are not in the same closure of connected component of X \ B̂N . So w ∈ C
B̂N

and
w′ /∈ C

B̂N
, which means w′ /∈ E.

Let us show that gw′ 6= w′ for a suitable g ∈ G. Recall (see e.g. Theorem 4 and
9 in [5]) that an automorphism h ∈ Aut(X) is of exactly one of 3 possible types:

• elliptic, if h stabilizes some finite subset of V .

• parabolic, if h is non-elliptic and fixes exactly one end.

• hyperbolic, if h is non-elliptic and fixes exactly two ends.

Let A′ 6= C
B̂N

be a connected component of X \ B̂N with w′ ∈ A′. Let A

be a connected component of X \ B̂N distinct from A′ and C
B̂N

. By claim 1, we

can find g ∈ G such that gBN ⊂ A. All connected components of X \ B̂N will
be mapped into A by g, except one. This exceptional connected component is
necessarily C

B̂N
because µ(C

B̂N
) = 1 and µ is G-invariant. In particular, gA ⊂ A,

and this inclusion is strict. So gmA ⊂ A, ∀m ≥ 1. The sequence gmx0 possesses a
subsequence gmkx0 which converges to an end ξ in A. It is obvious that g fixes ξ;
therefore g is hyperbolic fixing exactly ξ and w. In particular, gw′ 6= w′, as was to
be shown.

Claim 4. The action of G (endowed with the discrete topology) on V is not proper.

The proof is inspired by a nice observation due to Karlsson and Noskov (Propo-
sition 4 in [3]; see also Proposition 5 in [2]). As in claim 3, we can find h ∈ G
such that hmA′ ⊂ A′, ∀m ≥ 1 so that h is hyperbolic and fixes exactly one end
η in A′, apart from w. With the same g as in Claim 3, let yn = hngh−n. We
claim that yn 6= ym, ∀n 6= m. Suppose by contradiction that there is n 6= m
such that hngh−n = hmgh−m; so there exists k 6= 0 such that hkg = ghk. Then
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hkgη = ghkη = gη since h fixes η. Since hk fixes the same ends as h, gη has to be
η or w. But this is not possible since η, ξ and w are all distinct.

Now, it remains for us to prove that the set {ynx0 : n ∈ N} is bounded. Indeed,
for γ a hyperbolic automorphism, let `(γ) =: min{d(γkv, v) : k ∈ Z\{0}, v ∈ V }
be the translation length of γ, and let Lγ =: {v ∈ V : d(γv, v) = `(γ)} be the axis
of γ (this is a line in X). We will use one more result of Halin [5]: the end w,
being a fixed end of some hyperbolic automorphism, is thin, i.e. for N � 1 the set
CBN

contains finitely many disjoint rays. As a consequence, the rays Lh∩CB̂N
and

Lg ∩ CB̂N
stay within finite distance, i.e. there exists R > 0 such that, for every

x ∈ Lh ∩ CB̂N
, one can find x′ ∈ Lg ∩ CB̂N

with d(x, x′) ≤ R.
To prove that {ynx0 : n ∈ N} is bounded, we may clearly assume that x0 ∈

Lh. For n large enough, we have h−nx0 ∈ CBN
, so we can find xn ∈ Lg with

d(h−nx0, xn) ≤ R. Then,

d(ynx0, x0) = d(gh−nx0, h
−nx0)

≤ d(gh−nx0, gxn) + d(gxn, xn) + d(xn, h−nx0)
≤ 2R+ `(g);

this concludes the proof.
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