NON-PROPERNESS OF AMENABLE ACTIONS ON GRAPHS WITH INFINITELY MANY ENDS

Soyoung Moon and Alain Valette

May 12, 2007

Abstract

We study amenable actions on graphs having infinitely many ends, giving a generalized answer to Ceccherini's question on groups with infinitely many ends.

1 Statement of the result

An action of a group G on a set X is amenable if there exists a G-invariant mean on X, i.e. a map $\mu: 2^X = \mathcal{P}(X) \to [0,1]$ such that $\mu(X) = 1$, $\mu(A \cup B) = \mu(A) + \mu(B)$, for every disjoint subsets $A, B \subseteq X$, and $\mu(gA) = \mu(A)$, $\forall g \in G, \forall A \subseteq X$.

An isometric action of a group G on a metric space (X, d) is *proper* if for some $x_0 \in X$, and every R > 0, the set $\{g \in G \mid d(x_0, gx_0) \leq R\}$ is finite.

The aim of this note is to give a short proof of the following result:

Theorem 1. Let X = (V, E) be a locally finite graph with infinitely many ends. Let $\overline{X} = V \cup \partial X$ be the end compactification. Let G be a group of automorphisms of X. Assume that the action of G on V is amenable and there exists $x_0 \in V$ such that the orbit Gx_0 is dense in \overline{X} . Then there is a unique G-fixed end in ∂X , and the action of G (as a discrete group) on V is not proper.

A deep result of Stallings [4] says that G has infinitely many ends if and only if G is an amalgamated free product $\Gamma_1*_A\Gamma_2$ or HNN-extension $HNN(\Gamma,A,\varphi)$ with A finite (with $\min\{[\Gamma_1:A],[\Gamma_2:A]\}\geq 2$, not both 2, in the amalgamated product case; and $\min\{[\Gamma:A],[\Gamma:\varphi(A)]\}\geq 2$, not both 2, in the HNN case). In particular, if G has infinitely many ends, it contains non-abelian free subgroups, hence is non amenable. Tullio Ceccherini-Silberstein asked whether non-amenability of G could be proved without appealing to Stallings' theorem. Since a finitely generated group G with infinitely many ends acts properly and transitively on its Cayley graph, our result shows that G is not amenable.

Remarks

1. The density assumption of Theorem 1 is satisfied when G has finitely many orbits in V. This assumption is necessary; for example the action of \mathbb{Z} on $\mathbb{F}_2 = \langle a, b \rangle$ defined by $n \cdot g = a^n g$, $\forall n \in \mathbb{Z}$, $\forall g \in \mathbb{F}_2$ is amenable and proper.

- 2. Except for the non properness statement, our result is contained in a result of Woess (see Theorem 1 in [6]): if X = (V, E) is a locally finite graph and G admits an amenable action on V, then either G fixes a nonempty finite subset of V, or G fixes an end of X, or G fixes a unique pair of ends which are the fixed points of some hyperbolic element in G.
- 3. There are results on strong isoperimetric inequalities for graphs with infinitely many ends satisfying extra conditions (see Theorem 10.10 in [8]): these give alternative answers to Ceccherini's question.
- 4. A stronger question is to prove without appealing to Stallings' result that a finitely generated group with infinitely many ends, contains a free group on two generators. Such constructions can be found in the work of Woess (Theorem 3 in [7]), Karlsson and Noskov (Proposition 3 in [3]), and Karlsson (Theorem 1 in [2]).
- 5. For a finitely generated group with infinitely many ends, Abels shows, using Stallings' theorem, that for G a finitely generated group with infinitely many ends, the compact set of ends is actually a minimal G-space (Theorem 1 in [1]). This is false for compactly generated, non discrete groups. Abels indeed gives the example of the group of affine mappings $(x \mapsto ax + b)$ over \mathbb{Q}_p . This group G is $HNN(K, K, \varphi)$, where K is the group of affine mappings over \mathbb{Z}_p and $\varphi: K \to K$ is given by $(x \mapsto ax + b) \mapsto (x \mapsto ax + pb)$. So G has infinitely many ends, but has a unique fixed point on its space of ends¹, which is therefore not G-minimal.

Acknowledgments We thank T. Ceccherini-Silberstein for suggesting the question, F. Krieger for pointing out a mistake in the previous version, and A. Karlsson for recommending useful references.

2 Proof of the theorem

Let X be a countable, discrete set. A compactification of X is a compact space $\overline{X} = X \cup \partial X$ in which X is an open dense subset. If G is a group of permutations of X, we say that \overline{X} is a G-compactification if the action of G on X extends to an action of G on \overline{X} by homeomorphisms. When X is a locally finite graph (identified with its set of vertices), we will take for ∂X the set of ends of X. In this case, we say that $\overline{X} = X \cup \partial X$ is the end-compactification of X (it is an Aut(X)-compactification).

Lemma 2. Assume that G admits an amenable action without finite orbit, on a countable set X. Let μ be G-invariant mean on X. Let \overline{X} be a G-compactification of X. Then for every subset A of X with $\mu(A) = 1$, the set $\left(\bigcap_{g \in G} \overline{gA}\right) \cap \partial X$ is not empty.

Proof. By compactness of ∂X , it is enough to show that the family $(\overline{gA} \cap \partial X)_{g \in G}$ has the finite intersection property. For $g_1, \ldots, g_n \in G$, we have $\mu(\bigcap_{i=1}^n g_i A) = 1$, while $\mu(F) = 0$ for every finite subset $F \subset X$ since G has no finite orbit. So $\bigcap_{i=1}^n g_i A$ is infinite. Therefore $(\overline{\bigcap_{i=1}^n g_i A}) \cap \partial X \neq \emptyset$. A fortiori $\bigcap_{i=1}^n (\overline{g_i A} \cap \partial X) \neq \emptyset$.

 $^{{}^{1}}$ This can be seen directly; it also follows from our result, as G is amenable as a discrete group.

The proof of Theorem 1 will follow from the four claims below:

Claim 1. Let K be a finite, connected subgraph of X. Let A be an unbounded connected component of $X \setminus K$. Then $gK \subset A$ for infinitely many g's in G.

By the assumption, any G-orbit in X has infinite intersection with A (indeed, the assumption implies that Gx is dense in \overline{X} for every vertex x in V since G acts by isometries on X; therefore the intersection of Gx and A is infinite since \overline{A} is a neighborhood of all ends contained in it). So for $x \in K$, one finds a sequence $(g_n)_{n\geq 1}$ in G such that g_nx 's are pairwise distinct vertices in A. Since $d(g_nx,x)\to\infty$ for $n\to\infty$, we have $g_nK\cap K=\emptyset$ for n sufficiently large. Then g_nK is a connected subset of $X\setminus K$, and $g_nK\cap A\neq\emptyset$. By maximality of A among connected subsets of $X\setminus K$, this implies $g_nK\subset A$.

If K is a finite connected subgraph of X, we will say that K is good if every connected component of $X \setminus K$ is infinite. Let K be an arbitrary finite connected subgraph of X. Denote by \widehat{K} the union of K and the finite connected components of $X \setminus K$; then \widehat{K} is a good subgraph of X.

Claim 2. Let K be a good subgraph of X, such that $X \setminus K$ has at least 3 connected components. Let μ be G-invariant mean on V. Then there exists a unique connected component C_K of $X \setminus K$ such that $\mu(C_K) = 1$.

Indeed, let A_1, \ldots, A_n be the connected components of $X \setminus K$ with $n \geq 3$. Without loss of generality, we may assume that $\mu(A_1) \leq \mu(A_i), \ \forall i \in \{1, \ldots, n\}$. By claim 1, we can find $h \in A_1$ such that $hK \cap K = \emptyset$ and $hK \subset A_1$. Since hA_1, \ldots, hA_n are the connected components of $X \setminus hK$, and K is connected, there exists a unique $k \in \{1, \ldots, n\}$ such that $K \subset hA_k$, so that $hA_i \subset A_1, \ \forall i \neq k$. Hence $\bigsqcup_{i \neq k} hA_i \subset A_1$ (see figure 1).

FIGURE 1.

Then by minimality of $\mu(A_1)$,

$$(n-1)\mu(A_1) \le \sum_{i \ne k} \mu(A_i) = \sum_{i \ne k} \mu(hA_i) = \mu\left(\bigsqcup_{i \ne k} hA_i\right) \le \mu(A_1).$$

Hence $\mu(A_1) = 0$ since $n \geq 3$, and $\mu(A_i) = 0$, $\forall i \neq k$. Since μ is zero on finite subsets of X, we have $1 = \mu(X) = \mu(K \cup \bigcup_{j=1}^n A_j) = \mu(A_k)$. We set $A_k = C_K$.

Let x_0 be a base-vertex in V. Denote by B_N the ball of radius N centered at x_0 . Let N_0 be such that, for $N \geq N_0$, the complement $X \setminus \widehat{B_N}$ has at least 3 connected components. Set

$$D_N = \Big(\bigcap_{g \in G} \overline{gC_{\widehat{B_N}}}\Big) \cap \partial X.$$

By Lemma 2, $D_N \neq \emptyset$, and $(D_N)_{N \geq N_0}$ form a decreasing family of closed non-empty subsets of ∂X . So by compactness, $E = \bigcap_{N \geq N_0} D_N$ is non-empty, and obviously G-invariant.

Claim 3. The set E is reduced to one point, and G has no other fixed point in ∂X .

Indeed, if $w \in E$ and $w' \in \partial X$ with $w \neq w'$, then for N large enough w and w' are not in the same closure of connected component of $X \setminus \widehat{B_N}$. So $w \in \overline{C_{\widehat{B_N}}}$ and $w' \notin \overline{C_{\widehat{B_N}}}$, which means $w' \notin E$.

Let us show that $gw' \neq w'$ for a suitable $g \in G$. Recall (see e.g. Theorem 4 and 9 in [5]) that an automorphism $h \in Aut(X)$ is of exactly one of 3 possible types:

- \bullet elliptic, if h stabilizes some finite subset of V.
- parabolic, if h is non-elliptic and fixes exactly one end.
- ullet hyperbolic, if h is non-elliptic and fixes exactly two ends.

Let $A' \neq C_{\widehat{B_N}}$ be a connected component of $X \setminus \widehat{B_N}$ with $w' \in \overline{A'}$. Let A be a connected component of $X \setminus \widehat{B_N}$ distinct from A' and $C_{\widehat{B_N}}$. By claim 1, we can find $g \in G$ such that $gB_N \subset A$. All connected components of $X \setminus \widehat{B_N}$ will be mapped into A by g, except one. This exceptional connected component is necessarily $C_{\widehat{B_N}}$ because $\mu(C_{\widehat{B_N}}) = 1$ and μ is G-invariant. In particular, $gA \subset A$, and this inclusion is strict. So $g^mA \subset A$, $\forall m \geq 1$. The sequence g^mx_0 possesses a subsequence $g^{m_k}x_0$ which converges to an end ξ in \overline{A} . It is obvious that g fixes ξ ; therefore g is hyperbolic fixing exactly ξ and w. In particular, $gw' \neq w'$, as was to be shown.

Claim 4. The action of G (endowed with the discrete topology) on V is not proper.

The proof is inspired by a nice observation due to Karlsson and Noskov (Proposition 4 in [3]; see also Proposition 5 in [2]). As in claim 3, we can find $h \in G$ such that $h^m A' \subset A'$, $\forall m \geq 1$ so that h is hyperbolic and fixes exactly one and η in $\overline{A'}$, apart from w. With the same g as in Claim 3, let $y_n = h^n g h^{-n}$. We claim that $y_n \neq y_m$, $\forall n \neq m$. Suppose by contradiction that there is $n \neq m$ such that $h^n g h^{-n} = h^m g h^{-m}$; so there exists $k \neq 0$ such that $h^k g = g h^k$. Then

 $h^k g \eta = g h^k \eta = g \eta$ since h fixes η . Since h^k fixes the same ends as h, $g \eta$ has to be η or w. But this is not possible since η , ξ and w are all distinct.

Now, it remains for us to prove that the set $\{y_nx_0:n\in\mathbb{N}\}$ is bounded. Indeed, for γ a hyperbolic automorphism, let $\ell(\gamma)=:\min\{d(\gamma^kv,v):k\in\mathbb{Z}\backslash\{0\},v\in V\}$ be the translation length of γ , and let $L_{\gamma}=:\{v\in V:d(\gamma v,v)=\ell(\gamma)\}$ be the axis of γ (this is a line in X). We will use one more result of Halin [5]: the end w, being a fixed end of some hyperbolic automorphism, is thin, i.e. for $N\gg 1$ the set C_{B_N} contains finitely many disjoint rays. As a consequence, the rays $L_h\cap C_{\widehat{B_N}}$ and $L_g\cap C_{\widehat{B_N}}$ stay within finite distance, i.e. there exists R>0 such that, for every $x\in L_h\cap C_{\widehat{B_N}}$, one can find $x'\in L_g\cap C_{\widehat{B_N}}$ with $d(x,x')\leq R$.

To prove that $\{y_nx_0 : n \in \mathbb{N}\}$ is bounded, we may clearly assume that $x_0 \in L_h$. For n large enough, we have $h^{-n}x_0 \in C_{B_N}$, so we can find $x_n \in L_g$ with $d(h^{-n}x_0, x_n) \leq R$. Then,

$$d(y_n x_0, x_0) = d(gh^{-n}x_0, h^{-n}x_0)$$

$$\leq d(gh^{-n}x_0, gx_n) + d(gx_n, x_n) + d(x_n, h^{-n}x_0)$$

$$\leq 2R + \ell(g);$$

this concludes the proof.

References

- H. ABELS, On a problem of Freudenthal's, Compositio Mathematica, 35 (1977), no. 1, 39-47.
- [2] A. Karlsson, Free subgroups of groups with nontrivial Floyd boundary, Comm. Algebra, **31** (2003) 5361-5376.
- [3] A. Karlsson and Guennadi A. Noskov, Some groups having only elementary actions on metric spaces with hyperbolic boundaries, Geom. Dedicata, 104 (2004) 119-137.
- [4] J. R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968) 312-334.
- [5] R. Halin, Automorphisms and endomorphisms of infinite locally finite graphs, Abh. Math. Sem. Univ. Hamburg. 39 (1973), 251-283.
- [6] W. Woess, Amenable group actions on infinite graphs, Math. Ann. 284, (1989), 251-265.
- [7] W. Woess, Fixed sets and free subgroups of groups acting on metric spaces, Math. Z. 214 (1993), no. 3, 425-439.
- [8] W. Woess, Random walks on infinite graphs and groups, Cambridge tracts in mathematics 138, Cambridge university press, 2000.

Institut de Mathématiques - Université de Neuchâtel 11, Rue Emile Argand - BP 158, 2009 Neuchâtel - Switzerland E-mail: so.moon@unine.ch, alain.valette@unine.ch