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Introduction

The study of affine isometric actions of groups on Hilbert spaces (more generally on
Banach spaces) opens up a new chapter of representation theory, with applications
to rigidity, ergodic theory, geometric group theory, and even operator algebras.

During the semester “Amenability beyond groups” at the Erwin Schrödinger
Institute in Vienna, I was invited to give a mini-course on affine isometric actions,
from 5 to 9 March 2007. I express my deepest thanks to the organizers for giving
me the opportunity to popularize the subject. The aim of the course was, after
presenting several examples and giving the link with group cohomology, to give
applications to amenability, ergodic theory, and geometric group theory.

During the course, I had the pleasant surprise of finding a very careful notetaker
in the person of Piotr SoÃltan; the present notes are just a mild editing of Piotr’s
notes, whom I thank heartily for giving me permission to publish them. The reader
is asked to bear in mind the informal nature of the notes.

Notations: The letter G will be reserved to denote a group. This group
will most of the time be a topological group and the topology will most often be
assumed to be locally compact. The notation K b G then means that K is a
compact subset of G.

By π we will always denote a representation of G. In case this representation
acts on a Hilbert space (usually denotedH orHπ), we will assume that π is unitary
and strongly continuous. These and similar conventions will be used throughout
the notes without further explanation.

1 Affine actions

1.1 1-cohomology. In this subsection, which is completely algebraic, we set up
the cohomological framework we need.

Let G be a group and let V be a vector space (over some field k). An affine
action of G on V is a homomorphism α : G → Aff(V ), where Aff(V ) is the
group of affine bijections V → V . We have the split exact sequence

0 → V → Aff(V ) → GL(V ) → 1

∗Based on notes taken by Piotr MikoÃlaj SoÃltan
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where V is identified with its group of translations. Composing α with the quotient
map Aff(V ) → GL(V ), we get a representation π : G → GL(V ) called the linear
part of α.

Let us ask a converse question: if π : G → GL(V ) is a representation, what
are affine actions α with linear part π? Such α must be of the form

α(g)v = π(g)v + b(g)

for any v ∈ V . The vector b(g) is called the translation part of α.
Expressing that α is multiplicative (i.e. α(gh) = α(g)α(h)), it follows that

b : G → V must satisfy the 1-cocycle relation:

b(gh) = π(g)b(h) + b(g) (1)

for all g, h ∈ G.

Example 1. If π is the trivial representation of G on V then b is nothing but a
homomorphism from G, to the additive group V .

By Z1(G, π) we shall denote the set of all 1-cocycles G → V , i.e. all maps b
satisfying (1). It is easy to see that Z1(G, π) is a vector space under pointwise
operations. By B1(G, π) we will denote the subset of 1-coboundaries, i.e. those
b ∈ Z1(G, π) for which there exists a vector v ∈ V such that

b(g) = π(g)v − v

for all g ∈ G. Clearly B1(G, π) is a subspace of Z1(G, π). Finally we define

H1(G, π) = Z1(G, π)/B1(G, π)

and call H1(G, π) the first cohomology group of G with coefficients in the G-module
V .

We can write down a dictionary between concepts of geometric and algebraic
nature, in which each line represents a bijection:

Affine actions with linear part π Z1(G, π)

Affine actions with linear part π and with a glob-
ally fixed point (i.e. conjugate to π via a transla-
tion)

B1(G, π)

Affine actions with linear part π, up to conjuga-
tion by a translation

H1(G, π)
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1.2 Affine isometric actions on Hilbert spaces.

1.2.1 Generalities. Let H be a real Hilbert space and let Isom(H) denote the
group of affine isometries of H. Let α be a homomorphism G → Isom(H).

Remark: The Mazur-Ulam theorem says that if E is a real Banach space then any
isometry of E is affine.1 For strictly convex Banach spaces (e.g. Hilbert spaces) this
result is quite easy because we then have a metric characterization of segments:
for x, y ∈ E the segment [x, y] between x and y is

[x, y] =
{
z ∈ E : ‖x− z‖+ ‖z − y‖ = ‖x− y‖}.

In particular any isometry must preserve segments, and it is a classical exercise
that a segment-preserving bijection has to be affine.

For a topological group G we will always assume that affine actions are con-
tinuous in the sense that the map

G×H 3 (g, v) 7−→ α(g)v ∈ H

is continuous. The linear part of an isometric affine action is then a strongly
continuous unitary representation. We will stick to this setting for the rest of
these notes.

Definition 1.1. An affine action α of G on H almost has fixed points if

∀ε > 0, ∀K b G,∃v ∈ H : sup
g∈K

∥∥α(g)v − v
∥∥ < ε.

We endow Z1(G, π) with the topology of uniform convergence on compact
subsets and add one more line to the above dictionary:

Affine actions with linear part π
almost having a fixed point Closure of B1(G, π) in Z1(G, π)

We define the reduced cohomology group H
1
(G, π) as the quotient

H
1
(G, π) = Z1(G, π)/B1(G, π). (2)

Let us now give a useful characterization of coboundaries. Remember that any
1-cocycle is, in particular, a function G → H, so we can speak about bounded
cocycles.

1For complex Banach spaces we might have to compose with complex conjugation.
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Proposition 1.2. Let b ∈ Z1(G, π). Then
(
b ∈ B1(G, π)

)
⇐⇒

(
b is bounded

)
.

Proof. “⇒” If b(g) = π(g)v − v for some fixed v ∈ H and all g ∈ G, we have∥∥b(g)
∥∥ ≤ 2‖v‖.

“⇐” We appeal to the lemma of the center (see e.g. lemma 2.2.7 in [2]): every
nonempty bounded set B in a Hilbert space has a unique circumball, i.e. a closed
ball with minimal radius containing B. Thus if B is invariant under some group
of isometries then so is its circumball. It follows that the circumcenter (i.e. the
center of the circumball) is also invariant under the group.

Let α be the affine action associated to b (now assumed to be bounded). Then
for any g ∈ G and v ∈ H we have α(g)v = π(g)v + b(g). The set b(G) is the orbit
of 0 ∈ H under α. As this set is bounded and α-invariant, the circumcenter of
b(G) is α-fixed. Thus b ∈ B1(G, π).

1.2.2 Remarks and comments. Let us begin with the following theorem:

Theorem 1.3 (Delorme [13], Guichardet [17]). Let G be a locally compact group.
Then

(1) If G has Property (T ) then every affine isometric action of G on a Hilbert
space has a fixed point. In particular H1(G, π) = {0} for any unitary repre-
sentation π.

(2) If G is σ-compact then the converse of (1) is true. ¤

It is now known that the converse of (1) in the above theorem is not true
without the σ-compactness assumption (de Cornulier [8]).

For the second remark we need a definition:

Definition 1.4. A locally compact group G has the Haagerup property (or is a-
T-menable) if G admits a metrically proper affine isometric action α on a Hilbert
space H, i.e. such that

∀v ∈ H : lim
g→∞

∥∥α(g)v
∥∥ = +∞.

Let us remark that an affine isometric action is proper if and only if the norm
of the associated cocycle is a proper function (in the sense that the inverse image
of a compact set is compact). Indeed, taking the special case of v = 0 in Definition
1.4 we see that lim

g→∞
∥∥b(g)

∥∥ = +∞. Therefore g 7→
∥∥b(g)

∥∥ is a proper function.

Conversely if g 7→
∥∥b(g)

∥∥ is proper then for any v ∈ H
∥∥α(g)v

∥∥ =
∥∥π(g)v + b(g)‖ ≥

∣∣∣
∥∥b(g)

∥∥−
∥∥π(g)v

∥∥
∣∣∣ → +∞.
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for g →∞.
The class of a-T-menable groups contains σ-compact amenable groups, free

groups, Coxeter groups, every closed subgroup of SO(n, 1), SU(n, 1), etc. ... The
interest of this class stems from the following deep result:

Theorem 1.5 (Higson, Kasparov [19]). A-T-menable groups satisfy the strongest
form of the Baum-Connes conjecture, namely the Baum-Connes conjecture with
coefficients. ¤

1.3 Examples.

1.3.1 Finite-dimensional Hilbert spaces. Let En be n-dimensional Euclidean
space. Up to conjugation by a translation, any isometry of En either is a linear
isometry (i.e. it has a fixed point) or it is a helix, i.e. the composition of a linear
isometry and a translation by a vector fixed by the linear isometry.

Let λ be an isometry of En without a fixed point. Then the associated action
of Z (by powers of λ) is proper (of course, if λ had a fixed point the action would
not be proper). Moreover there is the following result:

Theorem 1.6 (Bieberbach [5]). A finitely generated group with a proper isometric
action on En is virtually Abelian. ¤

1.3.2 Constructing affine actions. Let (X, d) be a metric space with an action
of G by isometries. Suppose we have

• a Hilbert space H with a unitary representation π of G,

• a continuous map c : X ×X → H such that

– ∀x, y ∈ X, g ∈ G : c(gx, gy) = π(g)c(x, y) (equivariance),

– ∀x, y, z ∈ X : c(x, y) + c(y, z) = c(x, z) (Chasles’ relation),

– there exists a function φ : R+ → R+ such that
∥∥c(x, y)

∥∥2 = φ
(
d(x, y)

)
for all x, y ∈ X (i.e. the norm of c(x, y) depends only on d(x, y)).

Then to any x0 ∈ X we can associate an affine action α of G on H with linear
part π such that

∥∥b(g)
∥∥2 = φ

(
d(gx0, x0)

)
for all g ∈ G. Indeed, we can put

b(g) = c(gx0, x0). By Chasles’ relation and equivariance: b ∈ Z1(G, π). Moreover
the cocycles associated with two different choices of x0 are cohomologous, i.e. they
define the same class in H1(G, π).

If φ is a proper function (i.e. lim
t→∞

φ(t) = +∞) and G acts properly on X, then
b is a proper cocycle and so G is a-T-menable.

Now we give a concrete example of the situation described above. Let X =
(V, E) be a tree, i.e. a connected graph without circuit. Let E be the set of oriented
edges in X (each edge appears in E twice - with both orientations). Let H = `2(E)
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and let π be the permutation representation (we assume that a group G acts on
X).

For any x, y ∈ X (or more precisely x, y ∈ V ) we have to define the vector
c(x, y) ∈ `2(E). Let e ∈ E and let [x, y] be the unique geodesic path from x to y.
We let

c(x, y)(e) =





0 if e is not in [x, y];
+1 if e ∈ [x, y] and e points from x to y;
−1 if e ∈ [x, y] and e points from y to x.

Chasles’ relation follows from the fact that all triangles in a tree are degenerate,
i.e. they are tripods: if x, y, z are vertices and we take geodesic paths [x, y] and
[y, z], then the common part of [x, y] and [y, z] will have to be travelled in both
directions, so if e is an oriented edge in this common part then c(x, y)(e) and
c(y, z)(e) will cancel out.

Moreover we have
∥∥c(x, y)

∥∥2 = 2d(x, y).

It follows that groups acting properly on a tree are a-T-menable (such groups
are e.g. Fn, SL(Qp), etc.).

The above construction extends to groups acting on spaces with walls, CAT(0)
cube complexes, spaces with measured walls,...

1.3.3 Infinite-dimensional Hilbert spaces. Contrary to what happens with
Euclidean spaces, in infinite-dimensional Hilbert space we can have an “almost
recurrent” isometry, i.e. one with unbounded orbits, but such that orbits come
back infinitely often within bounded distance from the origin. We shall exhibit
one on `2(N), where N = {1, 2, 3, ...}.

Let F(N) = CN (all functions N→ C). Define a linear operator on F(N) by

(Ua)n = e
2πi
2n an

for any (an) ∈ F(N). Note that U has no non-zero fixed vector.
Now let w = (1, 1, . . .) ∈ F(N) and let α = Tw ◦ U ◦ T−1

w , where Tw is the
translation by w. This means that

(
α(a)

)
n

= e
2πi
2n an +

(
1− e

2πi
2n

)

for any a = (an) ∈ F(N).
The first claim is that α

(
`2(N)

) ⊂ `2(N). Indeed, this is the case because the
sequence (bn) with bn = 1− e

2πi
2n , belongs to `2(N).

Proposition 1.7 (Edelstein [15]). The map α
∣∣
`2(N)

is an isometry with unbounded
orbits. Moreover there is a constant R > 0 such that

∥∥αl(0)
∥∥ ≤ R

for infinitely many l’s.
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Proof. The only fixed point of U is 0 ∈ F(N), so the only fixed point of α is w
which does not belong to `2(N). Therefore α has no fixed point in `2(N). It follows
that α has unbounded orbits (Proposition 1.2 and the above dictionary).

Now αl(0) = w − U lw, so for l = 2k we have

∥∥α2k

(0)
∥∥2 =

∞∑
n=1

∣∣1− e
2πi2k

2n
∣∣2 =

∞∑

n=k+1

∣∣1− e
2πi

2(n−k)
∣∣2 =

∞∑
t=1

∣∣1− e
2πi
2t

∣∣2,

and we can define R as the square root of the sum of the last series above.

1.3.4 Minimal actions. An action is called minimal if it has dense orbits.

Question 1 (A. Navas). Which finitely generated groups admit an isometric min-
imal action on an infinite-dimensional Hilbert space?

Proposition 1.8. The wreath product Z2 o Z =: (
⊕
Z Z2) o Z admits a minimal

action on `2R(Z).

Proof. First we identify Z2 with Z
[√

2
]
. The latter acts minimally on R by trans-

lation, so
⊕
Z
Z

[√
2
]

acts minimally by translations on `2R(Z) (because
⊕
Z
R is dense

in `2R(Z)). This action is equivariant with respect to the left regular representation
of Z, so it extends to an action of the wreath product.

Theorem 1.9 (see [11]). Every minimal isometric action of a finitely gener-
ated nilpotent group on a Hilbert space is an action by translations on a finite-
dimensional Euclidean space. ¤

Let us conclude this section with an open question:

Question 2. Can polycyclic groups act minimally isometrically on an infinite-
dimensional Hilbert space?

2 Amenability and 1-cohomology

Definition 2.1. Let π be a unitary representation of a locally compact group G
on a Hilbert space H. We say that π almost has invariant vectors if

∀ε > 0, ∀K b G, ∃ξ ∈ H : ‖ξ‖ = 1, sup
g∈K

∥∥π(g)ξ − ξ
∥∥ < ε.

As an example of the use of this notion let us state the following theorem:

Theorem 2.2 (Reiter’s property (P2)). A locally compact group G is amenable
if and only if the left regular representation λG on L2(G) almost has invariant
vectors. ¤
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Theorem 2.3 (Guichardet [17]). Let G be a σ-compact group and π a unitary
representation of G with no non zero fixed vector. Then

(
π does not almost

have invariant vectors

)
⇐⇒

(
The space B1(G, π) is closed

in the space Z1(G, π)

)

Before proving this theorem let us state an immediate corollary.

Corollary 2.4. If G is σ-compact and non compact then G is non amenable if
and only if B1(G,λG) is closed in Z1(G,λG). In particular for an amenable,
σ-compact, non compact group G we have H1(G,λG) 6= {0}. ¤

Proof of Theorem 2.3: Because G is σ-compact, Z1(G, π) is a Fréchet space. Con-
sider the coboundary map ∂ : Hπ → Z1(G, π), given by ∂ξ(g) = π(g)ξ − ξ.

We know that

• ∂ is linear,

• ∂ is continuous,

• ∂ is injective (because π has no non zero fixed vectors),

• the image of ∂ is, of course, B1(G, π).

We have the following chain of equivalences:
(
B1(G, π) is closed in Z1(G, π)

)

m(
∂−1 is continuous

)

m(
∃C > 0, K b G, ∀ξ ∈ Hπ : ‖ξ‖ ≤ C sup

g∈K

∥∥π(g)ξ − ξ
∥∥
)

m(
π does not almost have invariant vectors

)

The first equivalence follows from the closed graph theorem (the version for Fréchet
spaces, here we use σ-compactness 2). The second equivalence follows from the
definition of the seminorms defining the topology of Z1(G, π).

Exercice 1. Let Rd denote the the group of real numbers with discrete topology.
Show that ∂ : `2(R) → Z1(Rd, λRd

) is a continuous isomorphism with discontinu-
ous inverse (i.e. H1(G,λRd

) = {0}).
Why does it not contradict the closed graph theorem?

2Note that the familiar version of the closed graph theorem for Banach spaces does not suffice
to prove Theorem 2.3.
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3 Property (BP0)

Definition 3.1. A unitary representation π of a locally compact group G is a
C0-representation, or is mixing if

∀ξ, η ∈ Hπ : lim
g→∞

〈π(g)ξ|η〉 = 0.

Examples:

(1) Any representation of a compact group is C0.

(2) The regular representation of any locally compact group is C0.

(3) If G acts on a probability space (X,B, µ) in a measure preserving way, then
we may consider the associated unitary representation πX of G on L2

0(X,µ),
i.e. the orthogonal complement in L2(X,µ) of the space of constant func-
tions. We have

(
πX is C0

)
⇐⇒

(
The action of G on X is mixing

)
.

Recall that an action is mixing if for any A, B ∈ B we have

lim
g→∞

µ(A ∩ gB) = µ(A)µ(B),

i.e. A and gB are asymptotically independent.

Definition 3.2. A locally compact group G has property (BP0) if for every affine
isometric action of G on a Hilbert space with C0 linear part either the action has
a fixed point or the action is metrically proper.

Equivalently: G has property (BP0) if and only if for any C0-representation
π and any b ∈ Z1(G, π) either b is bounded or b is proper (cf. Proposition 1.2).
This explains the origin of the acronym (BP0): “Bounded”, “Proper” and “C0-
representations”.

Remark:

(1) Property (T ) clearly implies property (BP0).

(2) The groups SO(n, 1) and SU(n, 1) have property (BP0) and they do not
have property (T ) (Shalom [24]).

(3) If H is a closed cocompact subgroup of G and H has property (BP0) then G
has (BP0). Indeed, cocompactness of H in G guarantees that, if the restric-
tion of b ∈ Z1(G, π) to H is bounded/proper then b must be bounded/proper.

Theorem 3.3 (see [12]). Solvable groups have property (BP0). ¤
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Corollary 3.4. Let G be either a connected Lie group or a linear algebraic group
over Qp (or some other local field of characteristic 0). Then G has property (BP0).

Proof. By structure theory, such a group has a cocompact solvable subgroup.

Theorem 3.3 is proved by induction on the solvability rank of G. The first step
is provided by the following Proposition:

Proposition 3.5. Let G be a locally compact group with non compact center Z(G);
then G has (BP0). In particular every Abelian group has (BP0).

Before proving Proposition 3.5, let us mention the following Corollary:

Corollary 3.6 (see [3]). σ-compact, amenable groups are a-T-menable.

Proof. If G is σ-compact and amenable then H = G × Z is non compact, σ-
compact and amenable. Therefore by the second statement in Corollary 2.4 the
group H1(H,λH) is not trivial. Take b ∈ Z1(H,λH) \B1(H,λH). By Proposition
3.5 H has (BP0), so the cocycle b is proper (because it is not bounded). Thus
b remains proper after restriction to G. Therefore G does admit a proper affine
isometric action on a Hilbert space.

Proof of Proposition 3.5: Let π be a C0-representation of G and let b ∈ Z1(G, π).
Assume that b is not proper. We must prove that b is bounded (cf. Proposition
1.2).
Claim: It is enough to show that b

∣∣
Z(G)

is bounded.
Let us first prove that the above claim implies the Proposition. Let α be the

action associated to b, so that: α(g)v = π(g)v + b(g). If b
∣∣
Z(G)

is bounded then

the fixed point set Hα
(
Z(G)

)
is not empty. In fact this set consists of one point

because if v0, v1 are fixed by α
(
Z(G)

)
then v0 − v1 is fixed under π

(
Z(G)

)
; thus

Z(G) 3 z 7−→ 〈π(z)(v0 − v1)|v0 − v1〉
is a constant C0 function on the non compact group Z(G). It is therefore identically
zero and consequently v0 = v1 (just evaluate this function at 1 ∈ Z(G)).

Moreover, since Z(G) is a normal subgroup of G, we have that Hα
(
Z(G)

)
is

α-invariant. Therefore α has a globally fixed point and b is a coboundary. This
proves the Proposition.

It remains to prove the Claim, i.e. to show that indeed b
∣∣
Z(G)

is bounded. We

assumed that b is not proper, so lim inf
g→∞

∥∥b(g)
∥∥ = C < +∞ in the sense that there

is a net in G divergent to infinity (i.e. eventually outside of every compact set)
for which the function g 7→ ∥∥b(g)

∥∥ remains bounded. Now for any z ∈ Z(G) and
g ∈ G we have

π(g)b(z) + b(g) = b(gz) = b(zg) = π(z)b(g) + b(z)
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(by the 1-cocycle relation), so that

b(z) =
(
1− π(z)

)
b(g) + π(g)b(z). (3)

Taking scalar product with b(z) of both sides of (3) we obtain

〈b(z)|b(z)〉 = 〈(1− π(z)
)
b(g)|b(z)〉+ 〈π(g)b(z)|b(z)〉

For fixed z, the absolute value of the first term on the right hand side is smaller
than 2

∥∥b(g)
∥∥∥∥b(z)

∥∥ while the second term tends to 0 when g → ∞. Taking g to
infinity of G in such a way that

∥∥b(g)
∥∥ remains bounded we find that

∥∥b(z)
∥∥2 ≤ 2C

∥∥b(z)
∥∥

and canceling
∥∥b(z)

∥∥ we obtain
∥∥b(z)

∥∥ ≤ 2C for any z ∈ Z(G).

4 Growth of cocycles

4.1 Generalities. If G is a locally compact compactly generated group and S is
a compact and symmetric (i.e. S = S−1) generating set for G then we can define
the word length function | · |S on G by

|g|S = min
{
n : g = s1s2 · · · sn, si ∈ S

}

for any g ∈ G.
Now let π be a unitary representation of G and let b ∈ Z1(G, π). We consider

the following question:

Question 3. How fast does
∥∥b(g)

∥∥ grow with respect to |g|S?

We first observe that
∥∥b(g)

∥∥ grows at most linearly:

Lemma 4.1. We have
∥∥b(g)

∥∥ = O
(|g|S

)
. More precisely

∥∥b(g)
∥∥ ≤

(
max
s∈S

∥∥b(s)
∥∥
)
· |g|S . (4)

Proof. Let us first remark that whenever G acts by isometries on a metric space
(X, d) then for every x0 ∈ X:

d(gx0, x0) ≤
(
max
s∈S

d(sx0, x0)
)
· |g|S . (5)

Indeed, for g = s1s2 · · · sn with n = |g|S we have

d(gx0, x0) = d(s1s2 · · · snx0, x0)

≤ d(s1s2 · · · snx0, s1s2 · · · sn−1x0) + d(s1s2 · · · sn−1x0, x0)
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= d(snx0, x0) + d(s1s2 · · · sn−1x0, x0)

≤ d(snx0, x0) + d(s1s2 · · · sn−1x0, s1s2 · · · sn−2x0) + d(s1s2 · · · sn−2x0, x0)

= d(snx0, x0) + d(sn−1x0, x0) + d(s1s2 · · · sn−2x0, x0)

...

≤ d(snx0, x0) + d(sn−1x0, x0) + · · ·+ d(s1x0, x0)

≤ n
(
max
s∈S

d(sx0, x0)
)

because the action of G is isometric.
Now let α be the affine isometric action of G on H associated to b. Using (5)

with X = H and x0 = 0 we obtain precisely (4).

A 1-coboundary is bounded as a function on G, so a limit of 1-coboundaries
should not grow too fast. Next lemma makes this precise.

Lemma 4.2. If b ∈ B1(G, π) then
∥∥b(g)

∥∥ = o(|g|S), i.e.

∥∥b(g)
∥∥

|g|S → 0

for |g|S →∞ (in this case, we say that b has sub-linear growth.)

Proof. Fix ε > 0. There exists b′ ∈ B1(G, π) such that

max
s∈S

∥∥b(s)− b′(s)
∥∥ <

ε

2

(recall that Z1(G, π) carries the topology of uniform convergence on compact sets).
Therefore ∥∥b(g)

∥∥
|g|S ≤

∥∥b(g)− b′(g)
∥∥

|g|S +

∥∥b′(g)
∥∥

|g|S ≤ ε

2
+

∥∥b′(g)
∥∥

|g|S ,

where in the last inequality we simply used (4) with b replaced by b− b′.
Now b′ is a coboundary, so by Proposition 1.2 it is bounded and

∥∥b′(g)
∥∥

|g|S <
ε

2

for sufficiently large |g|S .
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4.2 Application: a new look at an old proof.

Theorem 4.3 (Von Neumann’s mean ergodic theorem). Let U be a unitary oper-
ator on a Hilbert space H. Then for any v ∈ H we have

lim
n→∞

1
n

(
1 + U + U2 + · · ·+ Un−1

)
v = Pv,

where P is the orthogonal projection onto ker(U − 1), and the convergence is in
the norm of H.

Proof. Let us define a unitary representation π of Z on H by π(n) = Un. Also let
b ∈ Z1(Z, π) be the unique cocycle with b(1) = v. Using the cocycle relation (1)
we find that

b(n) = b
(
(n− 1) + 1

)
= Un−1b(1) + b(n− 1)

= Un−1b(1) + Un−2b(1) + b(n− 2)

...

= Un−1b(1) + Un−2b(1) + · · ·+ Ub(1) + b(1)

=
(
1 + U + U2 + · · ·+ Un−1

)
v.

Let H1 = PH and H0 = H⊥1 . We have H = H1 ⊕ H0 and both subspaces
are invariant under U . Let π1 and π0 be corresponding subrepresentations of π.
Furthermore let

b1(n) = P b(n),

b0(n) = (1− P )b(n).

Then bi ∈ Z1(Z, πi) for i = 1, 0. On H1 the operator U acts as the identity, so

b1(n) = P (1 + U + U2 + · · ·+ Un−1
)
v = (1 + U + U2 + · · ·+ Un−1

)
Pv = nPv.

Therefore 1
nb1(n) = Pv. On the other hand, we have

H0 = ker(U − 1)⊥ = ker(U∗ − 1)⊥ = ran(U − 1)

(indeed Uξ = ξ if and only if U∗ξ = ξ). This means that b0(1) = (1 − P )v is the
limit of a sequence (U − 1)ξn for some ξn ∈ H. It is easy to see that for each fixed
k ∈ Z the vector b0(k) is the corresponding limit of (∂ξn)(k) (where ∂ was defined
in the proof of Theorem 2.3), so b0 is in the closure of B1(G, π0) in the topology
of uniform convergence on compact subsets of Z. By Lemma 4.2 we have

∥∥b0(n)
∥∥

n
→ 0.

for n →∞. This proof was originally due to F. Riesz.
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Exercice 2. Let α be an affine isometry of a Hilbert space H. Prove that

inf
w∈H

‖α(w)− w‖ = lim
n→∞

‖αn(0)‖
n

That quantity is called the drift of α.

The next exercise is a recap on Sections 1 and 4.

Exercice 3. Let α be an affine isometry of a Hilbert space H. For any ξ ∈ H we
have

α(ξ) = Uξ + v

where U is a unitary operator and v ∈ H is a fixed vector. Let b be the cocycle on
Z with b(1) = v. Prove that

(1) the following are equivalent:

(a) α has a fixed point,

(b) v ∈ ran(U − 1),

(c) b is bounded;

(2) the following are equivalent:

(a) α almost has a fixed point, but no fixed point,

(b) v ∈ ran(U − 1) \ ran(U − 1),

(c) b is unbounded with
∥∥b(n)

∥∥ = o(n);

(3) the following are equivalent:

(a) α does not almost have a fixed point,

(b) v 6∈ ran(U − 1),

(c) ∃C > 0 :
∥∥b(n)

∥∥ ≥ C|n|.
Let us comment that part (3) of Exercise 3 is analogous to the finite-dimensional

situation of 1.3.1. Edelstein’s example (Proposition 1.7) falls under case (2).

5 Applications to geometric group theory

5.1 Uniform embeddings.

Definition 5.1. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be
a map.

(1) f is a uniform embedding if there exist control functions ρ+, ρ− : R+ → R
such that lim

r→+∞
ρ±(r) = +∞ and

∀x1, x2 ∈ X : ρ−
(
dX(x1, x2)

) ≤ dY

(
f((x1), f(x2)

) ≤ ρ+

(
dX(x1, x2)

)
.
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(2) f is a quasi-isometric embedding if f is a uniform embedding for which the
functions ρ± can be chosen to be affine functions.

(3) f is a quasi-isometry if f is a quasi-isometric embedding and there exists a
quasi-isometric embedding g : Y → X such that f ◦ g is a bounded distance
away from IdX and g ◦ f is a bounded distance away from IdY .

An example of a quasi-isometry is the map R → Z : x 7→ [x]. Thus a quasi-
isometry need not be an isometry nor even a continuous map. Similarly a quasi-
isometric or uniform embedding need not be continuous nor an embedding.

It is not difficult to see that, among finitely generated groups, being of poly-
nomial growth is an invariant of quasi-isometry. By a deep result of Gromov
[18], a finitely generated group has polynomial growth if and only if it is virtually
nilpotent; from this we deduce immediately:

Theorem 5.2. For finitely generated groups, being virtually nilpotent is an in-
variant of quasi-isometry. ¤

The following corollary of Gromov’s theorem is due to Gersten [16]; we will
give a proof below.

Corollary 5.3 (quasi-isometric rigidity of Zn). If G is a finitely generated group
quasi-isometric to Zn then G contains Zn as a finite index subgroup.

The next result is at first sight unrelated to previous statements, but we will
see that in fact it is!

Theorem 5.4 (Bourgain [6]). The 3-regular tree T3 does not embed quasi-
isometrically into a Hilbert space.

Other results on quasi-isometry invariants for finitely generated groups include:

Theorem 5.5 (Dyubina [14]). Being virtually solvable is not a quasi-isometry
invariant property. ¤

Question 4. Is being virtually polycyclic a quasi-isometry invariant?

Question 4 is open. The following definition is due to Shalom [25]:

Definition 5.6. Let G be a locally compact group. We say that G belongs to the
class (AmenHFD) if

(1) G is amenable,

(2) if a unitary representation π of G satisfies H1(G, π) 6= {0} then π contains
a finite-dimensional subrepresentation.

The acronym (AmenHFD) stands for “Amenable”, “coHomology” and “Finite
Dimension”.
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Theorem 5.7 (Shalom [25]).

(1) The following groups are in the class (AmenHFD):

• connected solvable Lie groups,

• virtually polycyclic groups,

• semi direct products Qp o Z (where Qp is the field of p-adic numbers
and Z acts on its additive group by multiplication by powers of p),

• lamplighter groups, i.e. groups of the form F o Z, where F is a finite
group.

(2) For finitely generated groups, being in (AmenHFD) is a quasi-isometry in-
variant.

(3) A finitely generated infinite group in (AmenHFD) admits a finite index sub-
group which surjects onto Z. ¤

An immediate consequence of Theorem 5.7 (3) is:

Corollary 5.8. A group quasi-isometric to a polycyclic group virtually surjects
onto Z. ¤

We address the following question:

Question 5. Which compactly generated groups admit a quasi-isometric embed-
ding into a Hilbert space?

The group Zn acts by translations on En. The choice of any orbit gives a
quasi-isometric embedding of Zn into En. More generally any closed subgroup of
Isom(En) embeds quasi-isometrically into En. It does not seem to be easy to find
other examples.

Remark: There are some negative results concerning quasi-isometric embeddings.
For example the following:

Theorem 5.9 (Cheeger-Kleiner [7]). The discrete Heisenberg group does not em-
bed quasi-isometrically into `1.

Of course `1 is not a Hilbert space, but we mention this result here because, in
conjunction with a result of Lee-Naor [20] it solved negatively the Goemans-Linial
conjecture, a conjecture coming from theoretical computer science. In passing,
non-embeddings results for `1 are usually harder, as they imply non-embedding
results in `2 (Reason: `2 embeds linearly isometrically into `1).

The following conjecture appears in [10].
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Conjecture 5.10. A compactly generated group which embeds quasi-isometrically
into a Hilbert space admits a proper isometric action on a finite-dimensional Eu-
clidean space. In particular, because of Bieberbach’s theorem (Theorem 1.6), if G
is finitely generated then it should be virtually Abelian.

Remark:

(1) A non amenable finitely generated group cannot embed quasi-isometrically
into a Hilbert space. This is because of a deep result of Benjamini-Schramm
[4] which says that the Cayley graphs of such a group contains a quasi-
isometrically embedded copy of the 3-regular tree, and Bourgain’s theorem
(Theorem 5.4).

(2) A finitely generated solvable group which is not virtually nilpotent cannot
be embedded quasi-isometrically into a Hilbert space. The reason for this
is a result of de Cornulier-Tessera [9] that such a group contains a quasi-
isometrically embedded copy of the free semigroup on two generators, to-
gether with Bourgain’s result.

Theorem 5.11 (see [10]). Conjecture 5.10 holds for compactly generated groups
in (AmenHFD).

In particular we have

Corollary 5.12. A virtually polycyclic group embeds quasi-isometrically into a
Hilbert space if and only if it is virtually Abelian. ¤

Compare this with the following result:

Theorem 5.13 (Pauls [21]). A virtually nilpotent group embeds quasi-
isometrically into a CAT(0) space if and only if it is virtually Abelian. ¤

Compared to Corollary 5.12, Theorem 5.13 holds for a smaller class of groups,
but for a larger class of actions (observe that Hilbert spaces are CAT(0), in fact
they are prototypical examples of such spaces). The proofs are quite different.

Let us show that Theorem 5.11 implies both Corollary 5.3 and Theorem 5.4.

Proof of Corollary 5.3: Zn is in the class (AmenHFD). Therefore so is G by The-
orem 5.7 (2). Also Zn embeds quasi-isometrically into a Hilbert space, thus so
does G. By Theorem 5.11, the group G is virtually Abelian, so G has Zm as
a finite-index subgroup. To conclude that m = n we consider growth which on
one hand is a quasi-isometry invariant and on the other hand detects the rank of
Zk.

Observe that the latter proof is independent of Gromov’s Theorem 5.2.
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Proof of Theorem 5.4: The idea behind the proof is the following: first view Q2oZ
as a subgroup of the affine group Q2oQ×2 , and embed the latter in GL2(Q2) in the
standard way. It is known (see Serre’s book on trees [23]) that there is an action
of GL2(Q2) on the 3-regular tree T3. One can show that the action of Q2 o Z on
T3 is proper and co-compact, so that T3 is quasi-isometric to Q2 o Z. This last
group is in (AmenHFD). By Theorem 5.11, all we need to do is show that Q2oZ
cannot act properly and isometrically on a finite dimensional Euclidean space.

Such an action would be a homomorphism Q2oZ→ Isom(En) and by proper-
ness it would have a compact kernel. But the only compact normal subgroup of
Q2 oZ is {1}, so Q2 oZ would have to embed into the Lie group Isom(En). But
Lie groups don’t have small subgroups (i.e. there exists a neighborhood of the
identity not containing any non-trivial subgroup), and an embedding of Q2 o Z
would contradict that.

5.2 Ideas on how to prove Theorem 5.11.

Theorem 5.14 (Schönberg [22]). Let X be a set and let ψ : X ×X → R+ be a
kernel, symmetric and vanishing on the diagonal. Let H be a Hilbert space. There
exists a map f : X → H such that ψ(x, y) =

∥∥f(x) − f(y)
∥∥2 if and only if ψ is

conditionally negative definite, i.e. for any n ∈ N, any x1, . . . , xn ∈ X and any

λ1, . . . , λn ∈ R with
n∑

i=1

λi = 0 we have

n∑

i=1

n∑

j=1

λiλjψ(xi, xj) ≤ 0.

Moreover if a group G acts on X and ψ is G-invariant then f can be taken to be
G-equivariant with respect to some isometric affine action of G on H. ¤

The following remarkable result allows, in the amenable case, to convert a
purely metric information into a very strong algebraic information.

Lemma 5.15 (Aharoni-Maurey-Mityagin [1], see also Proposition 4.4 in [10]). Let
G be a compactly generated and amenable group. Let f be a uniform embedding of
G into a Hilbert space H with control functions ρ±. Then there exists a constant
A ≥ 0 (which can be taken equal to 0 if G is discrete) and an equivariant uniform
embedding f̃ of G into a Hilbert space H̃ endowed with an affine isometric action
of G, such that f̃ has control functions ρ− −A and ρ+ + A.

Proof for G discrete: Set ψ(x, y) =
∥∥f(x)− x(y)

∥∥2. We have

ρ−
(|x−1y|S

)2 ≤ ψ(x, y) ≤ ρ+

(|x−1y|S
)2

. (6)

Fix x, y ∈ G and consider the function

uxy : G 3 g 7−→ ψ(gx, gy).
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It is bounded by the second inequality of (6). Let m be an invariant mean on
`∞(G) and define

ψ̃(x, y) = m(uxy).

The function ψ̃ : G×G → R+ is then G-invariant and we have

ρ−
(|x−1y|S

)2 ≤ ψ̃(x, y) ≤ ρ+

(|x−1y|S
)2

.

Moreover ψ̃ is conditionally negative definite: for x1, ..., xn ∈ G, λ1, ..., λn ∈
R,

∑n
i=1 λi = 0:

∑

i,j

λiλjψ̃(xi, xj) =
∑

i,j

λiλjm(uxixj
) = m(

∑

i,j

λiλjuxi,xj
);

now
∑

i,j λiλjuxi,xj
is a non-positive function, as ψ is conditionally negative def-

inite, and therefore m(
∑

i,j λiλjuxi,xj
) ≤ 0. It remains to apply Schönberg’s

theorem 5.14.

Theorem 5.11 is then proved along the following steps:

• Let G be a compactly generated group in (AmenHFD) and let f be a quasi-
isometric embedding of G into a Hilbert space. By lemma 5.15, we may
assume that f is equivariant with respect to an affine isometric action α.

• Write α(g)v = π(g)v + b(g). Up to conjugating α by a translation, we may
assume f(1) = 0 so that, by equivariance, we get f = b; observe that b has
linear growth, i.e. there exists C > 0 such that ‖b(g)‖ ≥ C|g|S for |g|S large
enough. In particular the 1-cocycle b is not in B

1
(G, π), by lemma 4.2. By

the definition of (AmenHFD), the representation π has a finite-dimensional
invariant subspace. Projecting b orthogonally onto this subspace provides
an affine isometric action of G on a finite-dimensional Euclidean space. This
action may not be proper however: we may have to enlarge the space to
make it proper. This is achieved as follows.

• Let σ be a sub-representation of π which decomposes as a direct sum of
finite-dimensional invariant subspaces, and is maximal with respect to that
property; let σ⊥ be the representation on the orthogonal subspace, so that
π = σ ⊕ σ⊥. The representation σ⊥ has no finite-dimensional invariant
subspace, by maximality of σ. By property (AmenHFD), this implies
H

1
(G, σ⊥) = 0. If b = b∞ + b⊥ is the decomposition of b corresponding

to π = σ ⊕ σ⊥, then b⊥ ∈ Z1(G, σ⊥) has sub-linear growth, by lemma 4.2.
Since b has linear growth, so has b∞. At this point we have shown that G
admits a 1-cocycle b∞ with linear growth, with respect to a representation
σ which is a direct sum of finite-dimensional representations.
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• Write σ =
⊕∞

i=1 τi, with τi a finite-dimensional representation, and σN =⊕N
i=1 τi. Let bN be the orthogonal projection of b∞ on the subspace of σN .

Then limN→∞ bN = b∞, uniformly on compact subsets of G. Observe that
the set of 1-cocycles with linear growth is open in Z1(G, σ) (for the topology
of uniform convergence on compact subsets). So bN has linear growth for
N large enough. The corresponding affine action αN (g)v = σN (g)v + bN (g)
defines an affine isometric action on a finite-dimensional Euclidean space; for
N large enough this action is proper, because a 1-cocycle with linear growth
is clearly proper. ¤
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Solutions of exercises

Solution of Exercise 1: The regular representation of a non compact group does
not have non zero fixed vectors, so ∂ is injective and continuous by the reasoning in
the proof of Theorem 2.3. It remains to show that ∂ maps `2(R) onto Z1(Rd, λRd

).
Let us skip ahead to the result that every Abelian group has property (BP0)

(it follows from Proposition 3.5). This means that Rd must have (BP0). So if b is
in Z1(Rd, λRd

) then it must be either bounded (i.e. lie in B1(Rd, λRd
)) or

Rd 3 t 7−→ ∥∥b(t)
∥∥

must be a proper function (preimage of a compact set is compact). Observe that
existence of a proper continuous function on a locally compact space implies σ-
compactness. Therefore there are no non zero proper cocycles (ones whose norm is
a proper function). Therefore, by property (BP0), there are no nontrivial cocycles
in Z1(Rd, λRd

). This means that ∂ maps `2(R) onto Z1(Rd, λRd
).

To see that ∂−1 is not continuous, look at the proof of Theorem 2.3 and observe
that, since every Abelian group is amenable, the regular representation λRd

almost
has invariant vectors in `2(Rd).
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This does not contradict the closed graph theorem because Z1(Rd, λRd
) is not

a Fréchet space: indeed uncountably many seminorms are needed to define its
topology. ¤

Solution of Exercise 2: For w ∈ H, write α(w) = Uw + v. Then, as in the
proof of von Neumann’s ergodic theorem, αn(0) = (1 + U + ... + Un−1)v, so that
by this theorem limn→∞

‖αn(0)‖
n = ‖P (v)‖, where P is the orthogonal projection

onto ker(U − 1). On the other hand

inf
w∈H

‖α(w)− w‖ = inf
w∈H

‖(U − 1)w + v‖ = inf
z∈ ran(U−1)

‖z + w‖

= dist(ran(U − 1), v) = ‖P (v)‖
because the orthogonal of ran(U − 1) is ker(U − 1). ¤

Solution of Exercise 3: As in the proof of Theorem 4.3 the isometry α
defines a representation π of Z by π(n) = Un, where U is the linear part of α.

Now let us turn to the following observation: the map

Ψ : Z1(Z, π) 3 b 7−→ b(1) ∈ H

is an isomorphism of topological vector spaces. Indeed, any vector can be a value
of a cocycle at the point 1 ∈ Z and this value determines the cocycle uniquely
(cf. proof of Theorem 4.3). This shows that Ψ is an isomorphism. Moreover the
topology on Z1(Z, π) is the topology of pointwise convergence (and value of a
cocycle at any point n ∈ Z is given by applying a fixed bounded operater to its
value at 1 ∈ Z). This shows that Ψ is a homeomorphism.

It is easy to see that Ψ
(
B1(Z, π)

)
= ran(U − 1). Thus also Ψ

(
B1(Z, π)

)
=

ran(U − 1).
Now recall the dictionary presented in Section 1 to see that we have the equiv-

alences
(1a) ⇐⇒ (1b), (2a) ⇐⇒ (2b), (3a) ⇐⇒ (3b).

In order to have the whole exercise wrapped up we need one more remark,
namely that if v 6∈ ran(U − 1) then we have Pv 6= 0, where P is the projection
onto ker(U − 1). Moreover by von Neumann’s mean ergodic theorem we have

1
n

b(n) → Pv,

for n →∞, so
∥∥b(v)

∥∥ ≥ Cn for some constant C > 0 (e.g. C = 1
2‖Pv‖).

Now we can finish the solution of our exercise. Equivalence between (1c) and
(1a) is the content of Proposition 1.2.

From Lemma 4.2 we see that (3c) implies (3a) and (3b), and by the remark
above (3b) implies (3c).

Finally by Proposition 1.2 and Lemma 4.2 we know that (2c) follows from (2a)
and/or (2b). Conversely if (3c) is satisfied then b cannot be a coboundary (because
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it is unbounded), but v = b(1) cannot at the same time lie outside ran(U − 1)
(again by the remark above). ¤
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