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1 Introduction

Let π be a unitary representation of a locally compact group G. We shall

denote by Z1(G, π) the space of (continuous) 1-cocycles on G with values in

the Hilbert space of π, by B1(G, π) the subspace of 1-coboundaries, and by

H1(G, π) = Z1(G, π)/B1(G, π) the 1-cohomology of G with coefficients in π.

We will also need the reduced 1-cohomology H1(G, π) = Z1(G, π)/B1(G, π),

where the closure is taken in the topology of uniform convergence on compact

subsets of G.

We say that π is cohomological if H1(G, π) 6= 0. We will be mainly inter-

ested in irreducible cohomological representations. We will use the standard

notation Ĝ for the dual of G (i.e. the set of unitary irreducible representa-

tions of G, modulo unitary equivalence), and the standard abuse of notation

π ∈ Ĝ to mean that π is a unitary irreducible representation of G.

Recall that SU(n, 1) denotes the group of isometries with determinant 1

of the hermitian form x1y1 + . . . xnyn−xn+1yn+1 on Cn+1, and that SO0(n, 1)

denotes the connected component of identity of SU(n, 1) ∩ GLn+1(R). Re-

member also that, up to a finite covering, SO0(n, 1) (resp. SU(n, 1)) is the

group of orientation-preserving isometries of n-dimensional real hyperbolic

space Hn(R) (resp. complex hyperbolic space Hn(C)). Delorme has proved

([Del77], Théorème V.5) that, for G = SO0(n, 1) (n ≥ 3), there exists, up to

unitary equivalence, a unique irreducible unitary representation of G which
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is cohomological; while for G = SU(n, 1) (n ≥ 1) 1, there are exactly two in-

equivalent unitary irreducible representations of G which are cohomological;

they are contragredient of each other.

This note is devoted to the properties of restrictions of irreducible co-

homological representations of SO0(n, 1) and SU(n, 1), to closed subgroups.

Here is the first result.

Theorem 1 Let G denote either SO0(n, 1) or SU(n, 1). Let H be a closed

subgroup of G, isomorphic either to SO0(m, 1) or to SU(m, 1) for some m ≤
n. Let πc ∈ Ĝ and σc ∈ Ĥ be irreducible cohomological representations. Then

the restriction πc|H of πc to H contains either σc or its contragredient σc as

a sub-representation.

In spring 2002, N. Bergeron was working on a vast generalization of The-

orem 1 to restrictions of cohomological representations in any cohomological

degree ≤ dH

2
where dH = m (resp. dH = 2m) if H = SO0(m, 1) (resp.

H = SU(m, 1)): see [Ber03], Theorem 3.4. His proof uses methods com-

pletely different from the ones of this paper. During a visit at Neuchtel, he

asked me whether Theorem 1 could possibly admit a “soft” proof, based on

general principles. After I produced the proof given below (already included

in [Ber03] as fact 6.5), Bergeron used it to prove the following Lefschetz-

type result ([Ber03], Theorem 6.4). Let XG denote the Riemannian sym-

metric space associated to G (so that XG = Hn(R) if G = SO0(n, 1), and

XG = Hn(C) if G = SU(n, 1)). Suppose that G and H above are given as

algebraic Q-groups 2. Then the stable restriction map

lim
Γ

H1(Γ\XG) →
∏

g∈G(Q)

lim
Γ

H1((H(R) ∩ g−1Γg)\XH)

(where the inductive limit is taken over congruence subgroups Γ of G(Z)), is

injective.

Recall that a representation of a semisimple Lie group S (with finite cen-

tre) is said to be spherical if it has a non-zero vector fixed under some max-

imal compact subgroup of S. To motivate our second result, recall another

result of Delorme ([Del77], Proposition V.3): an irreducible, cohomological

representation of S cannot be spherical.

1Remember that SO0(2, 1) is locally isomorphic to SU(1, 1).
2Assume also here that G is not a Q-isotropic form of SO(3, 1).
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We will see that the cohomological irreducible representations of SU(n, 1)

are non-spherical in a very strong sense: roughly speaking, they remain non-

spherical after restricting to SU(m, 1) (m < n).

Theorem 2 Set G = SU(n, 1), and let πc be an irreducible cohomologi-

cal representation of G. Let H be a closed subgroup of G, isomorphic to

SU(m, 1). Then πc|H has no non-zero L-invariant vector, where L is a max-

imal compact subgroup of H.

Conceivably, it is possible to prove Theorem 2 using the description of

πc in terms of Langlands parameter given in [BW80], 4 of Chapter VI, but

we have not pursued this approach. Instead, we appeal to a geometric ob-

servation of Gromov [Gro03] on the growth of harmonic equivariant maps

Hn(C) → H, where H is a Hilbert space endowed with an affine isomet-

ric action of SU(n, 1). Note that Theorem 2 becomes false upon replacing

SU(n, 1) by SO0(n, 1), as we show in the final remark.

2 Proof of Theorem 1

We proceed in 3 steps.

• First step: we claim that H1(H, πc|H) 6= 0. This follows immediately from a

result of Shalom ([Sha00b], Theorem 3.4) who proved that, for every unitary

representation ρ of G and any closed non-compact subgroup H of G, the

restriction map H1(G, ρ) → H1(H, ρ|H) is injective.

• Second step: we claim that πc|H does not almost have invariant vectors.

Indeed, let K be a maximal compact subgroup of G; by Theorem 5.4 in

Chapter IV of [BW80], there exists some integer N ∈ N such that all K-

finite matrix coefficients of the tensor power π⊗N
c are in L2(G). It is known

that this implies that π⊗N
c is a subrepresentation of a direct sum of copies

of the left regular representation of G (see Corollary 1.2.4 in Chapter V of

[HT92]). Restricting to H, we see that (πc|H)⊗N is a subrepresentation of a

direct sum of copies of the left regular representation of H. Assume that πc|H
almost has invariant vectors. Then the same holds for (πc|H)⊗N . It follows

that the left regular representation of H almost has invariant vectors. This

contradicts the fact that H is not amenable.

• Third step: A result of Guichardet (Théorème 1 in [Gui72]) says that,

for a unitary representation ρ of H without non-zero fixed vector, the space
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B1(H, ρ) of coboundaries is closed in the space Z1(H, ρ) of cocycles if and

only if ρ does not almost have invariant vectors. So, combining the first two

steps, we have

H1(H, πc|H) = H1(H, πc|H) 6= 0.

Now decompose πc|H into a direct integral of irreducible representations of

H :

πc|H =

∫
bH σdµ(σ).

Since H1(H, πc|H) 6= 0, there exists a Borel subset B of Ĥ with µ(B) 6= 0

such that H1(H, σ) 6= 0 for every σ ∈ B (see Proposition 4 in [Gui72]). On

the other hand, by the result of Delorme mentioned above, there exists at

most two irreducible representations of H with non-zero 1-cohomology. It

follows that at least one of these representations, call it σc, must be an atom

of µ, that is, µ{σc} 6= 0. This means that σc is a subrepresentation of πc|H .

3 Proof of Theorem 2

We fix several notations. Let K be a maximal compact subgroup of G. Let

G = KAK be a Cartan decomposition of G. We will use the fact that any

inclusion of H = SU(m, 1) into G = SU(n, 1) is induced by an inclusion of

Hm(C) into Hn(C) as a totally geodesic submanifold (see [Ber03], Proposition

6.3). Therefore we may assume that L = K∩H and A ⊂ H, so that H = LAL

is a Cartan decomposition of H. Since dim A = 1, we have A = {exp tY :

t ∈ R} for a unit vector Y in the Lie algebra a of A. Denote by H the Hilbert

space of πc.

Let Ĥs be the spherical dual of H, that is, the set of all spherical irre-

ducible unitary representations of H. Set

Ĥns = Ĥ \ Ĥs.

We have a direct integral decomposition

π|H =

∫
bH σdµ(σ) =

∫
bHs

σdµ(σ)⊕
∫
bHns

σdµ(σ)

= ρs ⊕ ρns.

If b ∈ Z1(G, πc), set

β(Y ) =
d

dt
b(exp tY )|t=0.
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Write

b = bs ⊕ bns and β(Y ) = β(Y )s ⊕ β(Y )ns

in the decomposition π|H = ρs ⊕ ρns.

Let Hs,Hns be the subspaces defined by the representations ρs, ρns re-

spectively. We have to show that the subspace Hs is zero. We start with a

weaker statement:

Lemma 1 Let b ∈ Z1(G, πc) be a cocycle which is not a coboundary and

such that b|K = 0. Then β(Y )s = 0

Proof of the lemma: Endow the Hilbert space H with the affine iso-

metric action of G given by

α(g)v = πc(g)v + b(g)

(v ∈ H, g ∈ G). Then the map b : G → H factors through a G-equivariant

mapping F : G/K ' Hn(C) → H with F (x0) = 0, where x0 = K. By an

unpublished result of Shalom (for a proof, see either the preprint version of

[Sha00a], or Proposition 3.3.15 in [BdlHV]), the map F is harmonic (in the

sense that ∆F = 0, where ∆ is the Laplace operator on Hn(C)).

Using the irreducibility of the isotropy representation of K on the tan-

gent space Tx0(G/K), it is easy to see that there exists λ > 0 such that

λ‖dFx(Z)‖ = ‖Z‖ (for every x ∈ G/K, Z ∈ Tx(G/K); for details, see Propo-

sition 3.3.17 in [BdlHV]). So, replacing b by λb and F by λF , we may assume

that F is a local isometry. In particular ‖β(Y )‖ = ‖dFx0(Y )‖ = ‖Y ‖ = 1.

By the second step in the proof of Theorem 1, πc|H and hence ρs, do not

almost have invariant vectors. On the other hand, spherical representations

have trivial cohomology, as was already mentioned. Therefore,

H1(H, ρs) = H1(H, ρs) = 0.

Since H1(H, π|H) 6= 0, it follows that bns is not a coboundary, hence β(Y )ns 6=
0.

For x ∈ Hm(C), define

Fns(x) =
bns(h)

‖β(Y )ns‖ ,
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where h ∈ H is such that hx0 = x. The mapping Fns : Hm(C) → Hns is

well-defined, since b|L = 0. Moreover, Fns is H-equivariant with respect to

the affine action of H on Hns:

αns(h)ξ = ρns(h)ξ +
bns(h)

‖β(Y )ns‖ , h ∈ H, ξ ∈ Hns;

Fns satisfies Fns(x0) = 0, and it is a local isometry, since (dFns)x0(Y ) =

β(Y )ns/‖β(Y )ns‖.
Claim: Fns is harmonic. Indeed, by the computation in the proof of

Lemma 3.3.20 in [BdlHV], we have

∆Fns(x) = − dimHm(C)

∫

L

ρns(h
−1k)ρns(Y )

β(Y )ns

‖β(Y )ns‖dk,

for x ∈ Hm(C) and h ∈ H such that hx0 = x (here dk denotes normalized

Haar measure on the compact group L). This integral is zero, since ρns has

no non-zero L-invariant vectors. This proves the claim.

We have

‖F (exp tY x0)‖2 = ‖bs(exp tY )‖2 + ‖β(Y )ns‖2‖Fns(exp tY x0)‖2, t ∈ R.

Since, as seen above, H1(H, ρs) = 0, the function

t 7→ ‖bs(exp tY )‖2

is bounded. On the other hand, it is an observation of Gromov (Example

(b) on p. 111 in [Gro03]; see also Proposition 3.3.21 in [BdlHV]) that the

growth rate of a harmonic, locally isometric, equivariant mapping on Hn(C)

is independent of n. Hence, by the Claim, F and Fns have the same growth

rate:

‖F (exp tY x0)‖2 = 2t + o(t) = ‖Fns(exp tY x0)‖2 as t →∞.

This implies ‖β(Y )ns‖2 = 1, that is, β(Y )s = 0. This concludes the proof of

the Lemma.

Proof of Theorem 2: Assume, by contradiction, that Hs 6= 0, and let

ξ be a unit vector in Hs.

Claim: ρs(Y )ξ 6= 0. Indeed, otherwise, ρs(exp tY )ξ = ξ for every t ∈ R.

Since H = LAL, it would follow that ξ is ρs(H)-fixed. Hence, the matrix
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coefficient g 7→ 〈πc(g)ξ|ξ〉 would be 1 on the non-compact closed subgroup H,

and this would contradict the Howe-Moore theorem [HM79] on the vanishing

of coefficients at infinity of G. This establishes the claim.

Let b ∈ Z1(G, πc) be a cocycle which is not a coboundary. Since H1(K, πc|K) =

0, up to adding a coboundary, we may assume that b|K = 0. By the lemma:

β(Y )s = 0. Replace now the cocycle b by the cohomologous cocycle

b′ : g 7→ b(g) + πc(g)ξ − ξ.

For the corresponding vector

β(Y )′ =
d

dt
b′(exp tY )|t=0,

we have β(Y )′ = β(Y ) + ρs(Y )ξ. The Lemma, applied now to β(Y )′, shows

that β(Y )′s = 0. This is a contradiction, since β(Y )′s = ρs(Y )ξ 6= 0. This

concludes the proof of Theorem 2.

Remark: We conclude by explaining why Theorem 2 fails when replacing

SU(n, 1) by SO0(n, 1). Indeed, set G = SO0(3, 1) and H = SO0(2, 1).

Let G = KAN be the Iwasawa decomposition of G (with K = SO(3)),

and let P = MAN be the standard minimal parabolic subgroup of G (with

M = SO(2)); write an element of M as rθ =

(
cos θ − sin θ
sin θ cos θ

)
, and define

a character χ : M → U(1) by χ(rθ) = eiθ; extend χ to a character χ̃ of P by

χ̃(rθan) = χ(rθ).

It is known (see [Del77], Proposition V.6) that the unique irreducible

cohomological representation of G is the principal series representation πc =

IndG
P χ̃. The K-types are easily determined: indeed it is well-known (see e.g.

[Lip74], Example (4) on p. 48) that πc|K is unitarily equivalent to IndK
Mχ.

Let σn denote the unique irreducible representation of K = SO(3) in degree

2n+1. By Frobenius reciprocity, σn appears in πc|K if and only if χ appears

in σn|M , and this happens exactly for n ≥ 1.

Let us now restrict to H, whose maximal compact subgroup is L ' SO(2).

Since, for every n ≥ 1, the restriction σn|L has non-zero fixed vectors, we see

that πc|L has an infinite-dimensional subspace of fixed vectors.
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