Restricting cohomological representations of $SO_0(n, 1)$ and SU(n, 1)

Alain VALETTE

September 3, 2003

To Slava Grigorchuk, on his 50th birthday

1 Introduction

Let π be a unitary representation of a locally compact group G. We shall denote by $Z^1(G,\pi)$ the space of (continuous) 1-cocycles on G with values in the Hilbert space of π , by $B^1(G,\pi)$ the subspace of 1-coboundaries, and by $H^1(G,\pi)=Z^1(G,\pi)/B^1(G,\pi)$ the 1-cohomology of G with coefficients in π . We will also need the reduced 1-cohomology $\overline{H^1}(G,\pi)=Z^1(G,\pi)/\overline{B^1(G,\pi)}$, where the closure is taken in the topology of uniform convergence on compact subsets of G.

We say that π is cohomological if $H^1(G,\pi) \neq 0$. We will be mainly interested in irreducible cohomological representations. We will use the standard notation \widehat{G} for the dual of G (i.e. the set of unitary irreducible representations of G, modulo unitary equivalence), and the standard abuse of notation $\pi \in \widehat{G}$ to mean that π is a unitary irreducible representation of G.

Recall that SU(n,1) denotes the group of isometries with determinant 1 of the hermitian form $x_1\overline{y_1}+\ldots x_n\overline{y_n}-x_{n+1}\overline{y_{n+1}}$ on \mathbb{C}^{n+1} , and that $SO_0(n,1)$ denotes the connected component of identity of $SU(n,1)\cap GL_{n+1}(\mathbb{R})$. Remember also that, up to a finite covering, $SO_0(n,1)$ (resp. SU(n,1)) is the group of orientation-preserving isometries of n-dimensional real hyperbolic space $\mathbb{H}^n(\mathbb{R})$ (resp. complex hyperbolic space $\mathbb{H}^n(\mathbb{C})$). Delorme has proved ([Del77], Théorème V.5) that, for $G = SO_0(n,1)$ $(n \geq 3)$, there exists, up to unitary equivalence, a unique irreducible unitary representation of G which

is cohomological; while for G = SU(n,1) $(n \ge 1)$ ¹, there are exactly two inequivalent unitary irreducible representations of G which are cohomological; they are contragredient of each other.

This note is devoted to the properties of restrictions of irreducible cohomological representations of $SO_0(n, 1)$ and SU(n, 1), to closed subgroups. Here is the first result.

Theorem 1 Let G denote either $SO_0(n,1)$ or SU(n,1). Let H be a closed subgroup of G, isomorphic either to $SO_0(m,1)$ or to SU(m,1) for some $m \leq n$. Let $\pi_c \in \widehat{G}$ and $\sigma_c \in \widehat{H}$ be irreducible cohomological representations. Then the restriction $\pi_c|_H$ of π_c to H contains either σ_c or its contragredient $\overline{\sigma_c}$ as a sub-representation.

In spring 2002, N. Bergeron was working on a vast generalization of Theorem 1 to restrictions of cohomological representations in any cohomological degree $\leq \frac{d_H}{2}$ where $d_H = m$ (resp. $d_H = 2m$) if $H = SO_0(m,1)$ (resp. H = SU(m,1)): see [Ber03], Theorem 3.4. His proof uses methods completely different from the ones of this paper. During a visit at Neuchtel, he asked me whether Theorem 1 could possibly admit a "soft" proof, based on general principles. After I produced the proof given below (already included in [Ber03] as fact 6.5), Bergeron used it to prove the following Lefschetz-type result ([Ber03], Theorem 6.4). Let X_G denote the Riemannian symmetric space associated to G (so that $X_G = \mathbb{H}^n(\mathbb{R})$ if $G = SO_0(n,1)$, and $X_G = \mathbb{H}^n(\mathbb{C})$ if G = SU(n,1)). Suppose that G and H above are given as algebraic \mathbb{Q} -groups 2 . Then the stable restriction map

$$\lim_{\Gamma} H^{1}(\Gamma \backslash X_{G}) \to \prod_{g \in G(\mathbb{Q})} \lim_{\Gamma} H^{1}((H(\mathbb{R}) \cap g^{-1}\Gamma g) \backslash X_{H})$$

(where the inductive limit is taken over congruence subgroups Γ of $G(\mathbb{Z})$), is injective.

Recall that a representation of a semisimple Lie group S (with finite centre) is said to be *spherical* if it has a non-zero vector fixed under some maximal compact subgroup of S. To motivate our second result, recall another result of Delorme ([Del77], Proposition V.3): an irreducible, cohomological representation of S cannot be spherical.

¹Remember that $SO_0(2,1)$ is locally isomorphic to SU(1,1).

²Assume also here that G is not a \mathbb{Q} -isotropic form of SO(3,1).

We will see that the cohomological irreducible representations of SU(n, 1) are non-spherical in a very strong sense: roughly speaking, they remain non-spherical after restricting to SU(m, 1) (m < n).

Theorem 2 Set G = SU(n,1), and let π_c be an irreducible cohomological representation of G. Let H be a closed subgroup of G, isomorphic to SU(m,1). Then $\pi_c|_H$ has no non-zero L-invariant vector, where L is a maximal compact subgroup of H.

Conceivably, it is possible to prove Theorem 2 using the description of π_c in terms of Langlands parameter given in [BW80], 4 of Chapter VI, but we have not pursued this approach. Instead, we appeal to a geometric observation of Gromov [Gro03] on the growth of harmonic equivariant maps $\mathbb{H}^n(\mathbb{C}) \to \mathcal{H}$, where \mathcal{H} is a Hilbert space endowed with an affine isometric action of SU(n,1). Note that Theorem 2 becomes false upon replacing SU(n,1) by $SO_0(n,1)$, as we show in the final remark.

2 Proof of Theorem 1

We proceed in 3 steps.

- First step: we claim that $H^1(H, \pi_c|_H) \neq 0$. This follows immediately from a result of Shalom ([Sha00b], Theorem 3.4) who proved that, for every unitary representation ρ of G and any closed non-compact subgroup H of G, the restriction map $H^1(G, \rho) \to H^1(H, \rho|_H)$ is injective.
- Second step: we claim that $\pi_c|_H$ does not almost have invariant vectors. Indeed, let K be a maximal compact subgroup of G; by Theorem 5.4 in Chapter IV of [BW80], there exists some integer $N \in \mathbb{N}$ such that all K-finite matrix coefficients of the tensor power $\pi_c^{\otimes N}$ are in $L^2(G)$. It is known that this implies that $\pi_c^{\otimes N}$ is a subrepresentation of a direct sum of copies of the left regular representation of G (see Corollary 1.2.4 in Chapter V of [HT92]). Restricting to H, we see that $(\pi_c|_H)^{\otimes N}$ is a subrepresentation of a direct sum of copies of the left regular representation of H. Assume that $\pi_c|_H$ almost has invariant vectors. Then the same holds for $(\pi_c|_H)^{\otimes N}$. It follows that the left regular representation of H almost has invariant vectors. This contradicts the fact that H is not amenable.
- Third step: A result of Guichardet (Théorème 1 in [Gui72]) says that, for a unitary representation ρ of H without non-zero fixed vector, the space

 $B^1(H,\rho)$ of coboundaries is closed in the space $Z^1(H,\rho)$ of cocycles if and only if ρ does not almost have invariant vectors. So, combining the first two steps, we have

$$\overline{H^1}(H, \pi_c|_H) = H^1(H, \pi_c|_H) \neq 0.$$

Now decompose $\pi_c|_H$ into a direct integral of irreducible representations of H:

$$\pi_c|_H = \int_{\widehat{H}} \sigma d\mu(\sigma).$$

Since $\overline{H^1}(H, \pi_c|_H) \neq 0$, there exists a Borel subset B of \widehat{H} with $\mu(B) \neq 0$ such that $H^1(H, \sigma) \neq 0$ for every $\sigma \in B$ (see Proposition 4 in [Gui72]). On the other hand, by the result of Delorme mentioned above, there exists at most two irreducible representations of H with non-zero 1-cohomology. It follows that at least one of these representations, call it σ_c , must be an atom of μ , that is, $\mu\{\sigma_c\} \neq 0$. This means that σ_c is a subrepresentation of $\pi_c|_H$.

3 Proof of Theorem 2

We fix several notations. Let K be a maximal compact subgroup of G. Let G = KAK be a Cartan decomposition of G. We will use the fact that any inclusion of H = SU(m,1) into G = SU(n,1) is induced by an inclusion of $\mathbb{H}^m(\mathbb{C})$ into $\mathbb{H}^n(\mathbb{C})$ as a totally geodesic submanifold (see [Ber03], Proposition 6.3). Therefore we may assume that $L = K \cap H$ and $A \subset H$, so that H = LAL is a Cartan decomposition of H. Since dim A = 1, we have $A = \{\exp tY : t \in \mathbb{R}\}$ for a unit vector Y in the Lie algebra \mathfrak{a} of A. Denote by \mathcal{H} the Hilbert space of π_c .

Let \widehat{H}_s be the spherical dual of H, that is, the set of all spherical irreducible unitary representations of H. Set

$$\widehat{H}_{\rm ns} = \widehat{H} \setminus \widehat{H}_{\rm s}.$$

We have a direct integral decomposition

$$\begin{array}{rcl} \pi|_{H} & = & \displaystyle \int_{\widehat{H}} \sigma d\mu(\sigma) = \displaystyle \int_{\widehat{H}_{\mathrm{s}}} \sigma d\mu(\sigma) \oplus \displaystyle \int_{\widehat{H}_{\mathrm{ns}}} \sigma d\mu(\sigma) \\ & = & \displaystyle \rho_{\mathrm{s}} \oplus \rho_{\mathrm{ns}}. \end{array}$$

If $b \in Z^1(G, \pi_c)$, set

$$\beta(Y) = \frac{d}{dt}b(\exp tY)|_{t=0}.$$

Write

$$b = b_{\rm s} \oplus b_{\rm ns}$$
 and $\beta(Y) = \beta(Y)_{\rm s} \oplus \beta(Y)_{\rm ns}$

in the decomposition $\pi|_H = \rho_s \oplus \rho_{ns}$.

Let \mathcal{H}_s , \mathcal{H}_{ns} be the subspaces defined by the representations ρ_s , ρ_{ns} respectively. We have to show that the subspace \mathcal{H}_s is zero. We start with a weaker statement:

Lemma 1 Let $b \in Z^1(G, \pi_c)$ be a cocycle which is not a coboundary and such that $b|_K = 0$. Then $\beta(Y)_s = 0$

Proof of the lemma: Endow the Hilbert space \mathcal{H} with the affine isometric action of G given by

$$\alpha(g)v = \pi_c(g)v + b(g)$$

 $(v \in \mathcal{H}, g \in G)$. Then the map $b : G \to \mathcal{H}$ factors through a G-equivariant mapping $F : G/K \simeq \mathbb{H}^n(\mathbb{C}) \to \mathcal{H}$ with $F(x_0) = 0$, where $x_0 = K$. By an unpublished result of Shalom (for a proof, see either the preprint version of [Sha00a], or Proposition 3.3.15 in [BdlHV]), the map F is harmonic (in the sense that $\Delta F = 0$, where Δ is the Laplace operator on $\mathbb{H}^n(\mathbb{C})$).

Using the irreducibility of the isotropy representation of K on the tangent space $T_{x_0}(G/K)$, it is easy to see that there exists $\lambda > 0$ such that $\lambda \|dF_x(Z)\| = \|Z\|$ (for every $x \in G/K$, $Z \in T_x(G/K)$; for details, see Proposition 3.3.17 in [BdlHV]). So, replacing b by λb and F by λF , we may assume that F is a local isometry. In particular $\|\beta(Y)\| = \|dF_{x_0}(Y)\| = \|Y\| = 1$.

By the second step in the proof of Theorem 1, $\pi_c|_H$ and hence ρ_s , do not almost have invariant vectors. On the other hand, spherical representations have trivial cohomology, as was already mentioned. Therefore,

$$H^1(H, \rho_s) = \overline{H^1}(H, \rho_s) = 0.$$

Since $H^1(H, \pi|_H) \neq 0$, it follows that b_{ns} is not a coboundary, hence $\beta(Y)_{ns} \neq 0$.

For $x \in \mathbb{H}^m(\mathbb{C})$, define

$$F_{\rm ns}(x) = \frac{b_{\rm ns}(h)}{\|\beta(Y)_{\rm ns}\|},$$

where $h \in H$ is such that $hx_0 = x$. The mapping $F_{ns} : \mathbb{H}^m(\mathbb{C}) \to \mathcal{H}_{ns}$ is well-defined, since $b|_L = 0$. Moreover, F_{ns} is H-equivariant with respect to the affine action of H on \mathcal{H}_{ns} :

$$\alpha_{\rm ns}(h)\xi = \rho_{\rm ns}(h)\xi + \frac{b_{\rm ns}(h)}{\|\beta(Y)_{\rm ns}\|}, \qquad h \in H, \ \xi \in \mathcal{H}_{\rm ns};$$

 $F_{\rm ns}$ satisfies $F_{\rm ns}(x_0) = 0$, and it is a local isometry, since $(dF_{\rm ns})_{x_0}(Y) = \beta(Y)_{\rm ns}/\|\beta(Y)_{\rm ns}\|$.

Claim: $F_{\rm ns}$ is harmonic. Indeed, by the computation in the proof of Lemma 3.3.20 in [BdlHV], we have

$$\Delta F_{\rm ns}(x) = -\dim \mathbb{H}^m(\mathbb{C}) \int_L \rho_{\rm ns}(h^{-1}k) \rho_{\rm ns}(Y) \frac{\beta(Y)_{\rm ns}}{\|\beta(Y)_{\rm ns}\|} dk,$$

for $x \in \mathbb{H}^m(\mathbb{C})$ and $h \in H$ such that $hx_0 = x$ (here dk denotes normalized Haar measure on the compact group L). This integral is zero, since $\rho_{\rm ns}$ has no non-zero L-invariant vectors. This proves the claim.

We have

$$||F(\exp tYx_0)||^2 = ||b_s(\exp tY)||^2 + ||\beta(Y)_{ns}||^2 ||F_{ns}(\exp tYx_0)||^2, \qquad t \in \mathbb{R}.$$

Since, as seen above, $H^1(H, \rho_s) = 0$, the function

$$t \mapsto \|b_{\mathbf{s}}(\exp tY)\|^2$$

is bounded. On the other hand, it is an observation of Gromov (Example (b) on p. 111 in [Gro03]; see also Proposition 3.3.21 in [BdlHV]) that the growth rate of a harmonic, locally isometric, equivariant mapping on $\mathbb{H}^n(\mathbb{C})$ is independent of n. Hence, by the Claim, F and F_{ns} have the same growth rate:

$$||F(\exp tYx_0)||^2 = 2t + o(t) = ||F_{ns}(\exp tYx_0)||^2 \text{ as } t \to \infty.$$

This implies $\|\beta(Y)_{ns}\|^2 = 1$, that is, $\beta(Y)_s = 0$. This concludes the proof of the Lemma.

Proof of Theorem 2: Assume, by contradiction, that $\mathcal{H}_s \neq 0$, and let ξ be a unit vector in \mathcal{H}_s .

Claim: $\rho_s(Y)\xi \neq 0$. Indeed, otherwise, $\rho_s(\exp tY)\xi = \xi$ for every $t \in \mathbb{R}$. Since H = LAL, it would follow that ξ is $\rho_s(H)$ -fixed. Hence, the matrix

coefficient $g \mapsto \langle \pi_c(g)\xi|\xi\rangle$ would be 1 on the non-compact closed subgroup H, and this would contradict the Howe-Moore theorem [HM79] on the vanishing of coefficients at infinity of G. This establishes the claim.

Let $b \in Z^1(G, \pi_c)$ be a cocycle which is not a coboundary. Since $H^1(K, \pi_c|_K) = 0$, up to adding a coboundary, we may assume that $b|_K = 0$. By the lemma: $\beta(Y)_s = 0$. Replace now the cocycle b by the cohomologous cocycle

$$b': g \mapsto b(g) + \pi_c(g)\xi - \xi.$$

For the corresponding vector

$$\beta(Y)' = \frac{d}{dt}b'(\exp tY)|_{t=0},$$

we have $\beta(Y)' = \beta(Y) + \rho_s(Y)\xi$. The Lemma, applied now to $\beta(Y)'$, shows that $\beta(Y)'_s = 0$. This is a contradiction, since $\beta(Y)'_s = \rho_s(Y)\xi \neq 0$. This concludes the proof of Theorem 2.

Remark: We conclude by explaining why Theorem 2 fails when replacing SU(n,1) by $SO_0(n,1)$. Indeed, set $G = SO_0(3,1)$ and $H = SO_0(2,1)$.

Let G = KAN be the Iwasawa decomposition of G (with K = SO(3)), and let P = MAN be the standard minimal parabolic subgroup of G (with M = SO(2)); write an element of M as $r_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, and define a character $\chi : M \to U(1)$ by $\chi(r_{\theta}) = e^{i\theta}$; extend χ to a character $\tilde{\chi}$ of P by $\tilde{\chi}(r_{\theta}an) = \chi(r_{\theta})$.

It is known (see [Del77], Proposition V.6) that the unique irreducible cohomological representation of G is the principal series representation $\pi_c = Ind_P^G\tilde{\chi}$. The K-types are easily determined: indeed it is well-known (see e.g. [Lip74], Example (4) on p. 48) that $\pi_c|_K$ is unitarily equivalent to $Ind_M^K\chi$. Let σ_n denote the unique irreducible representation of K = SO(3) in degree 2n+1. By Frobenius reciprocity, σ_n appears in $\pi_c|_K$ if and only if χ appears in $\sigma_n|_M$, and this happens exactly for $n \geq 1$.

Let us now restrict to H, whose maximal compact subgroup is $L \simeq SO(2)$. Since, for every $n \geq 1$, the restriction $\sigma_n|_L$ has non-zero fixed vectors, we see that $\pi_c|_L$ has an infinite-dimensional subspace of fixed vectors.

Acknowledgements: I thank N. Bergeron for arousing my interest in restrictions of cohomological representations, and B. Bekka for useful comments on a first version.

References

- [BdlHV] B. Bekka, P. de la Harpe, and A. Valette. Kazhdan's property (T). Preprint, aug. 2003.
- [Ber03] N. Bergeron. Lefschetz properties for arithmetic real and complex hyperbolic manifolds. *Int. Math. Res. Not.*, 20:1089–1122, 2003.
- [BW80] A. Borel and N. Wallach. Continuous cohomology, discrete subgroups and representations of reductive groups. Princeton Univ. Press, 1980.
- [Del77] P. Delorme. 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. *Bull. Soc. Math. France*, 105:281–336, 1977.
- [Gro03] M. Gromov. Random walk in random groups. Geom. funct. anal., 13:73–146, 2003.
- [Gui72] A. Guichardet. Sur la cohomologie des groupes topologiques II. Bull. Sci. Math., 96:305–332, 1972.
- [HM79] R. Howe and C.C. Moore. Asymptotic properties of unitary representations. *J. Functional Anal.*, 32:72–96, 1979.
- [HT92] R. Howe and E.C. Tan. *Non-abelian harmonic analysis*. Springer-Verlag Universitext, 1992.
- [Lip74] R.L. Lipsman. *Group representations*. Springer-Verlag, LNM 388, 1974.
- [Sha00a] Y. Shalom. Rigidity of commensurators and irreducible lattices. *Invent. Math.*, 141:1–54, 2000.
- [Sha00b] Y. Shalom. Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group. *Ann. Math.*, 152:113–182, 2000.

Author's address:

Institut de Mathématiques - Université de Neuchâtel Rue Emile Argand 11 CH-2007 Neuchâtel - SWITZERLAND alain.valette@unine.ch